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In this paper, a crack in a strip of a viscoelastic functionally graded material is stud
under antiplane shear conditions. The shear relaxation function of the material is
sumed asm5m0 exp~by/h! f ~t!, where h is a length scale and f(t) is a nondimension
function of time t having either the form f~t!5m` /m01~12m` /m0!exp~2t/t0! for a
linear standard solid, or f~t!5~t0 /t!q for a power-law material model. We also consid
the shear relaxation functionm5m0 exp~by/h!@t0 exp~dy/h!/t# q in which the relax-
ation time depends on the Cartesian coordinate y exponentially. Thus this latter m
represents a power-law material with position-dependent relaxation time. In the a
expressions, the parametersb, m0 , m` , t0 ; d, q are material constants. An elastic crac
problem is first solved and the correspondence principle (revisited) is used to o
stress intensity factors for the viscoelastic functionally graded material. Formulas
stress intensity factors and crack displacement profiles are derived. Results for
quantities are discussed considering various material models and loa
conditions.@DOI: 10.1115/1.1354205#
d
u
y

c

p
i

s

e

i

l
e

a

e
re

ed
bit
Vis-
be-
stic
-
ely

is
as-

f

w

ate

is
ain
ed

re-
ally
the
re-

ne
tion
ed

s
e

1 Introduction
Functionally graded materials are the outcome of the nee

accommodate materials exposure to nonuniform service req
ments. Those materials are characterized by continuously var
properties due to continuous change inmicrostructural details
over defined geometrical orientations and distances, such as
position, morphology, and crystal structure. The material gra
tion may be either continuous or layered comprised, for exam
of gradients of ceramics and metals. In applications involv
severe thermal gradients~e.g., thermal protection systems!, func-
tionally graded material systems take advantage of heat and
rosion resistance typical of ceramics, and mechanical strength
toughness typical of metals. Other relevant applications of fu
tionally graded materials involve polymers~@1#!, biomedical sys-
tems ~@2#!, natural composites~@3#!, and thermoelectric device
for energy conversion~@4#!. Various thermomechanical problem
associated to functionally graded materials have been studied
example, constitutive modeling~@5–7#!, higher order theory~@8#!,
thermal stresses~@9,10#!, static and dynamic response of plat
~@11#!, yield stress gradient effect~@12#!, strain gradient theory
~@13#!, fracture behavior~@14–16#!, and statistical model for brittle
fracture~@17#!.

The antiplane shear crack problem has been extensively stu
in the literature as it provides the basis for understanding
opening mode crack problem. Several numerical and analyt
semi-analytical solutions have been presented considering ho
geneous materials~e.g., @18,19#!, nonhomogeneous materia
~e.g., @20,21#!, and bonded homogeneous viscoelastic lay
~@22#!. However, to the best of the authors’ knowledge, the
is no published analytical/semi-analytical type solution for t
problem of an antiplane shear crack in viscoelastic function
graded materials. This is the subject of this paper, which cons
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of applying Paulino and Jin’s~@23#! revisited correspondenc
principle for viscoelastic functionally graded materials to fractu
mechanics.

One of the primary application areas of functionally grad
materials is high-temperature technology. Materials will exhi
creep and stress relaxation behavior at high temperatures.
coelasticity offers a basis for the study of phenomenological
havior of creep and stress relaxation. In this paper, viscoela
fracture~stationary crack! of functionally graded materials is stud
ied under antiplane shear conditions. Specifically, an infinit
long strip containing a crack parallel to the strip boundaries
investigated. The shear relaxation function of the material is
sumed to take separable forms in space and time, i.e.,

m5m0 exp~by/h! f ~ t !,

whereh is a length scale andf (t) is a nondimensional function o
time t having either the form

f ~ t !5m` /m01~12m` /m0!exp~2t/t0!: linear standard solid

or

f ~ t !5~ t0 /t !q: power-law material.

We also consider the following variant form of the power-la
material model

m5m0 exp~by/h!@ t0 exp~dy/h!/t#q,

in which the relaxation time depends on the Cartesian coordin
y exponentially. In the above expressions, the parametersb, m0 ,
m` , t0 ; d, q are material constants. An elastic crack problem
first solved and the ‘‘correspondence principle’’ is used to obt
the stress intensity factor for the viscoelastic functionally grad
material.

This manuscript is organized as follows. The next section p
sents the basic equations of viscoelasticity theory of function
graded materials, which are the basis for this study. Then
correspondence principle is revisited and recast in the form
cently given by Paulino and Jin@23#, followed by a discussion of
relaxation functions with separable forms. Next, the antipla
shear problem is formulated together with an integral equa
solution approach for a crack in a viscoelastic functionally grad
material strip. Formulas for stress intensity factors~as a function
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of geometry, material constants, and loading! are derived consid-
ering both Heaviside step function loading and exponentially
caying or increasing loading. Afterwards, the recovery of the d
placement field is carried out and applied to obtain the ac
crack profile. Several results for the above problem are prese
and discussed. Finally, conclusions are inferred and extension
this work are pointed out. An Appendix, showing the integ
equation kernel derivation, supplements the paper.

2 Basic Equations
The basic equations of quasi-static viscoelasticity of functi

ally graded materials are the equilibrium equation

s i j , j50, (1)

the strain-displacement relationship

« i j 5
1
2 ~ui , j1uj ,i !, (2)

and the viscoelastic constitutive law

si j 52E
0

t

m~x;t2t!
dei j

dt
dt, skk53E

0

t

K~x;t2t!
d«kk

dt
dt, (3)

with

si j 5s i j 2
1
3 skkd i j , ei j 5« i j 2

1
3 «kkd i j , (4)

wheres i j are stresses,« i j are strains,si j and ei j are deviatoric
components of the stress and strain tensors, respectively,ui are
displacements,d i j is the Kronecker delta,x5(x1 ,x2 ,x3), m(x,t)
and K(x,t) are the relaxation functions in shear and dilatatio
respectively,t denotes the time, and the Latin indices have
range 1, 2, 3 with repeated indices implying the summation c
vention.Note that for functionally graded materials the relaxatio
functions also depend on spatial positions, whereas in homo
neous viscoelasticity, they are only functions of time, i.e.m[m~t!
andK[K(t) ~@24#!.

3 Correspondence Principle Revisited
In general, the correspondence principle of homogeneous

coelasticity theory does not hold for functionally graded materia
However, for a class of functionally graded materials with rela
ation functions of the form

m~x,t !5m0m̃~x! f ~ t !,
(5)

K~x,t !5K0K̃~x!g~ t !,

wherem0 and K0 are material constants, andm̃(x), K̃(x), f (t),
and g(t) are nondimensional functions, Paulino and Jin@23#
showed that the correspondence principle still holds. In this c
the Laplace transformed nonhomogeneous viscoelastic solu
can be obtained directly from the solution of the correspond
nonhomogeneous elastic problem by replacingm0 and K0 with
m0p f̄(p) and K0pḡ(p), respectively, where f(̄p) and ḡ(p) are the
Laplace transforms of f(t) and g(t), respectively, and p is
transform variable. The final solution is realized upon inverti
the transformed solution.

Among the various models for graded viscoelastic materials
the standard linear soliddefined by

m~x,t !5m`~x!1@me~x!2m`~x!#expF2
t

tm~x!G ,
(6)

K~x,t !5K`~x!1@Ke~x!2K`~x!#expF2
t

tK~x!G ,
and thepower-law modelgiven by

m~x,t !5me~x!F tm~x!

t Gq

, K~x,t !5Ke~x!F tK~x!

t Gq

, 0,q,1,

(7)
Journal of Applied Mechanics
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wheretm(x) and tK(x) are the relaxation times in shear and bu
muduli, respectively, andq is a material constant. Particular in
stances of the above models for graded viscoelastic materials
be obtained such that assumption~5! is satisfied. Thus the discus
sion below indicates the type of revision needed in the gen
viscoelastic models so that the correspondence principle
holds.

• Standard linear solid~6!. If the relaxation timestm andtK are
constants, ifme(x) andm`(x) have the same functional form, an
if Ke(x) andK`(x) also have the same functional form, then t
model ~6! satisfies assumption~5!.

• Power-law model~7!. If the relaxation timestm and tK are
independent of spatial position in model~7!, then assumption~5!
is readily satisfied. Moreover, even if the relaxation times dep
on the spatial position in model~7!, then the corresponding non
homogeneous elastic material has the properties

m5me~x!@ tm~x!#q, K5Ke~x!@ tK~x!#q, (8)

rather thanm5me(x) and K5Ke(x). Thus assumption~5! is
satisfied again.

4 Viscoelastic Antiplane Shear Problem
Under antiplane shear conditions, the only nonvanishing fi

variables are

u3~x,t !5w~x,y;t !,

s31~x,t !5tx~x,y;t !, s32~x,t !5ty~x,y;t !,

2«31~x,t !5gx~x,y;t !, 2«32~x,t !5gy~x,y;t !,

with x5(x1 ,x2)5(x,y). Here new notations for the nonvanishin
displacement, stresses, and strains are used for the sak
simplicity. The basic equations of mechanics satisfied by th
variables are

]tx

]x
1

]ty

]y
50, (9)

gx5
]w

]x
, gy5

]w

]y
, (10)

tx5E
0

t

m~x,y;t2t!
dgx

dt
dt, ty5E

0

t

m~x,y;t2t!
dgy

dt
dt. (11)

In the present study, the following three material models
employed. The first is thestandard linear solid~see ~6!! with
constant relaxation time

m5m0 exp~by/h!Fm`

m0
1S 12

m`

m0
DexpS 2

t

t0
D G , (12)

whereb, m0 , m` , andt0 are material constants andh is a length
scale. The second model is apower-law material~see~7!! with
constant relaxation time

m5m0 exp~by/h!S t0

t D q

. (13)

The third model is also apower-law material~see~7!!, but with
position-dependent relaxation time

m5m0 exp~by/h!F t0 exp~dy/h!

t Gq

5m0 exp@~b1dq!y/h#S t0

t D q

,

(14)
whered andq are material constants.

5 Relaxation Functions With Separable Forms
The present discussion is based on the main argument tha

functional form of the chosen relaxation function~s! is appropriate
if the basic constitutents of the functionally graded material ha
MARCH 2001, Vol. 68 Õ 285
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approximately the same relaxation pattern. Thus this argum
indicates the need for an approach integrating mechanics mo
ing, material properties experiments, and synthesis~see@25# for a
review of fabrication processes for functionally graded materia!.
This point is elaborated upon below.

It can be seen in~12!, ~13!, and~14! that the relaxation modul
are separable functions in space and time. This is necessary fo
revisited correspondence principle~see Section 3! to be applied
~@23#!. This kind of relaxation functions may be appropriate fo
functionally graded material with its constituent materials hav
the same time-dependence of shear modulus. For model~12!, this
means that the constituents should have the same ratiom` /m0 and
relaxation timet0 . For model~13!, this implies that the constitu
ents should have the same relaxation timet0 and parameterq. For
model~14!, however, it is only required that the constituents ha
the same parameterq. The constituents may have different rela
ation times. Potentially, this kind of functionally graded materi
may include some polymeric/polymeric materials such
Propylene-homopolymer/Acetal-copolymer. The relaxation
havior of Propylene homopolymer and Acetal copolymer
found to be similar—see Figs. 7.5 and 10.3, respectively,
Ogorkiewicz@26#.

Another argument potentially in favor of the selected class
relaxation functions~5! is the technique developed by Lambro
et al. @27# for fabricating large scale polymeric functionall
graded materials. The technique consists of generating a con
ously inhomogeneous property variation by selective ultravio
irradiation of a polyethylene carbon monoxide copolymer. Due
the fact that the functionally graded material is obtained by c
trolling ultraviolet irradiation time of the same base polymer, w
conjecture that the viscoelastic behavior of such material may
predicted by~5!. However, further experimental research needs
be done in order to validate or invalidate the present conjectu

6 Mode III Crack in a Functionally Graded Material
Strip

Consider an infinite nonhomogeneous viscoelastic strip cont
ing a central crack of length 2a, as shown in Fig. 1. The strip is
fixed along the lower boundary (y52h) and is displacedw(t)
5w0W(t) along the upper boundary (y5h), wherew0 is a con-
stant andW(t) is a nondimensional function of timet. It is sup-
posed that the crack lies on thex-axis, from2a to a, and is of
infinite extent in thez-direction ~normal to thex-y plane!. The
crack surfaces remain traction-free. The boundary condition
the crack problem, therefore, are

w50, y52h, uxu,`, (15)

w5w0W~ t !, y5h, uxu,`, (16)

ty50, y50, uxu<a, (17)

Fig. 1 A viscoelastic functionally graded material strip occu-
pying the region zx zË` and zy zÏh with a crack at zx zÏa and
yÄ0. The lower boundary of the strip „yÄÀh … is fixed and the
upper boundary „yÄh … is subjected to uniform antiplane dis-
placement w 0W„t …. The symbol : indicates an arrow perpen-
dicular to the strip plane and pointing toward the viewer.
286 Õ Vol. 68, MARCH 2001
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ty~x,01!5ty~x,02!, a,uxu,`, (18)

w~x,01!5w~x,02!, a,uxu,`. (19)

According to the correspondence principle~see Section 3!, one
can first consider a nonhomogeneous elastic material with
shear modulus

m5m0 exp~by/h!, (20)

and the viscoelastic solutions for models~12! and ~13! may be
obtained by the correspondence principle. For the material mo
~14! the viscoelastic solution can still be obtained by the cor
spondence principle provided that the corresponding elastic m
rial has the shear modulusm5m0 exp@(b1qd)y/h# ~cf. ~5! and
~14!!.

For the elastic crack problem, the solution consists of a reg
solution ~for an uncracked strip!

w5w~y!5
exp~b!2exp~2by/h!

exp~b!2exp~2b!
w0 , (21)

tx50, ty5
bm0w0 /h

exp~b!2exp~2b!
(22)

and a perturbed solution~by the crack! satisfying the following
boundary conditions:

w50, y56h, uxu,`, (23)

ty52
bm0w0 /h

exp~b!2exp~2b!
, y50, uxu<a, (24)

ty~x,01!5ty~x,02!, a,uxu,`, (25)

w~x,01!5w~x,02!, a,uxu,`. (26)

The governing differential equation ofw(x,y) for the nonho-
mogeneous elastic material~20! is

¹2w1
b

h

]w

]y
50. (27)

By using the Fourier transform method~see, for example,@28#!,
the boundary value problem described by Eqs.~23! to ~27!
can be reduced to the following singular integral equation~see
Appendix!:

E
21

1 F 1

s2r
1k~r ,s,b!Gw~s!ds52

2pbw0 /h

exp~b!2exp~2b!
, ur u<1,

(28)

where the unknown density functionw(r ) is given by

w~x!5
]

]x
@w~x,01!2w~x,02!#, (29)

the nondimensional coordinatesr ands are

r 5x/a, s5x8/a, (30)

respectively, and the Fredholm kernelk(r ,s,b) is

k~x,x8,b!5aE
0

`

P~x,x8,j,b!dj (31)

with P(x,x8,b) being given by

P~x,x8,j,b!5@j~A~b/h!214j222j!22~b2/h212j2!

3exp~2Ab214h2j2 !

2j~2j1A~b/h!214j2 !

3exp~22Ab214h2j2 !#
Transactions of the ASME
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3
sin@~x2x8!j#

j@12exp~22Ab214h2j2!#A~b/h!214j2
. (32)

As expected, in the limit ofh→` ~free space! andb→0 ~homo-
geneous material case!, we obtain thatP(x,x8,j,b)→0. More-
over, the kernel k(x,x8,b) is symmetric with respect tob. Such
symmetry will be addressed later in the paper. The functionw(r )
can be further expressed as

w~r !5c~r !/A12r 2, (33)

wherec(r ) is continuous forr P@21,1#. Whenw(r ) is normal-
ized byw0 /h, the elastic Mode III stress intensity factor,K III

e , is
obtained as

K III
e 52m0S w0

2hDApac~1,b!. (34)

Here, the notationc~1,b! is adopted to emphasize the dependen
of c~1! on b.

7 Stress Intensity Factors
The stress intensity factors for viscoelastic functiona

graded materials satisfying~5! can be obtained using the co
respondence principle between the elastic and the Lap
transformed viscoelastic equations. Thus, formulas for stress
tensity factors are derived first for general time-dependent lo
ing, and then the results obtained are particularized for expo
tially decaying or increasing loading and Heaviside step funct
loading.

As stated above, for nonhomogeneous viscoelastic mater
the Mode III stress intensity factor,K III , can be obtained by
means of the correspondence principle~see Section 3!. The
upper boundaryy5h of the strip is subjected to an antiplan
displacementw0W(t), as illustrated by Fig. 1. In this case, th
stress intensity factors for material models~12!, ~13!, and ~14!
will be

K III 52m0S w0

2hDApac~1,b!L21

3H Fm`

m0
1S 12

m`

m0
D p

p11/t0
GW̄~p!J , (35)

K III 52m0S w0

2hDApac~1,b!L21@ t0
qG~12q!pqW̄~p!#, (36)

and

K III 52m0S w0

2hDApac~1,b1qd!L21@ t0
qG~12q!pqW̄~p!#,

(37)

respectively, wherep is the Laplace transform variable,L21 rep-
resents the inverse Laplace transform,W̄(p) is the Laplace trans-
form of W(t), andG~•! is the Gamma function.

7.1 Stress Intensity Factors for Exponentially Decaying or
Rising Loading. Consider as an example

W~ t !5exp~2t/tL!→W̄~p!51/~p11/tL! (38)

where tL is a constant measuring the time variation of t
load. Note thattL.0 represents an exponentially decaying loa
while tL,0 corresponds to an exponentially rising load. This ki
of time-dependent loading has been used by Broberg@29#. The
stress intensity factors under the loading condition~38! then
become

K III 52m0S w0

2hDApac~1,b!F~ t !, (39)

where
Journal of Applied Mechanics

oaded 24 Sep 2009 to 192.17.146.85. Redistribution subject to ASME li
ce

lly
-
ace
in-

ad-
en-

ion

ials,

e
e

e
d,
d

F~ t !5
m`

m0
expS 2

t

tL
D1S 12

m`

m0
D 1

t02tL

3F t0 expS 2
t

tL
D2tL expS 2

t

t0
D G , (40)

for the standard linear solid~12!, and

F~ t !5S t0

t D q

2
1

tL
E

0

tS t0

t D q

expS 2
t2t

tL
Ddt, (41)

for the power-law model~13!.
For thepower-law material with position-dependent relaxatio

time ~14!, the stress intensity factor is

K III 52m0S w0

2hDApac~1,b1qd!F~ t !, (42)

whereF(t) is given in ~41!.

7.2 Stress Intensity Factors for Heaviside Step Function
Loading. For the Heaviside loading conditions,

W~ t !5H~ t !→W̄~p!51/p, (43)

where H(t) is the Heaviside step function. The stress intens
factors then become~cf. ~39!!

K III 52m0S w0

2hDApac~1,b!F~ t !,

whereF(t) is given by

F~ t !5
m`

m0
1S 12

m`

m0
DexpS 2

t

t0
D , (44)

for the linear standard solid~12!, and

F~ t !5S t0

t D q

(45)

for the power-law model~13!.
Finally, the stress intensity factor for thepower-law

material with position-dependent relaxation time~14! is given by
~cf. ~42!!

K III 52m0S w0

2hDApac~1,b1qd!F~ t !,

whereF(t) is provided in~45!. It is seen thatq andd ~parameters
describing the position dependence of the relaxation time! affect
the stress intensity factor only through the combined param
(b1qd).

8 Crack Displacement Profile
Accurate representation of the crack profile is relevant in fr

ture mechanics, especially when the crack-surface displaceme
measured experimentally and correlated with results obtained
numerical methods. Thus the crack displacement profile for
problem illustrated in Fig. 1 is recovered in this section. Fir
general time-dependent loading is considered, and then the fo
lation is particularized for the Heaviside step function loading a
the exponentially decaying or rising loading.
MARCH 2001, Vol. 68 Õ 287
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It follows from Eqs. ~29! and ~33!, and the correspondenc
principle, that the crack-sliding displacement under the tim
dependent loading,w0W(t), can be expressed by the dens
function w(x) or c(r ) ~normalized byw0 /h! as follows:

@w#5w~x,01!2w~x,02!
(46)

5
w0W~ t !

h E
2a

x

w~x8!dx85w0W~ t !S a

hD E
21

r c~s!

A12s2
ds.

The displacement at the upper surface of the crack is given b
t

v

t

i

n

n

a

288 Õ Vol. 68, MARCH 2001
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1

2
@w#1

1

2p Fw0W~ t !

h G E
2a

a

kd~x,x8!w~x8!dx8

5
1

2
@w#1

w0W~ t !

2p S a

hD E
21

1

kd~r ,s!
c~s!

A12s2
ds,

(47)

wherekd(x,x8) is
kd~x,x8!5E
0

` @2b12b exp~2Ab214h2j2!2b exp~22Ab214h2j2!#

A~b/h!214j2@12exp~22Ab214h2j2!#
3

sin@~x2x8!j#

j
dj. (48)
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Note that the displacements are not symmetric with respectb
~see Fig. 1!, however, the stress intensity factors are~cf. ~28! and
~32!!. The displacement at the lower crack surface is then gi
by

w~x,02!5w~x,01!2@w#. (49)

In expressions~46! and ~47!, W(t) is given in ~38! for the
exponentially decaying or rising load. For the Heaviside s
function load,W(t) is given by~43!.

9 Numerical Aspects
To obtain the numerical solution of integral Eq.~28!, c(r ) is

expanded into a series of Chebyshev polynomials of the first k
By noting the relationship~33! betweenw(r ) andc(r ), w(r ) is
expressed as follows~Erdogan et al.@28#!:

w~r !5
1

A12r 2 (n51

`

anTn~r !, ur u<1, (50)

whereTn(r ) are Chebyshev polynomials of the first kind andan
are unknown constants. By substituting the above equation
integral Eq.~28!, we have

(
n51

`

$pUn21~r !1Hn~r !%an52
pbw0 /h

exp~b!2exp~2b!
, ur u<1,

(51)

where Un21(r ) are Chebyshev polynomials of the second ki
andHn(r ) are given by

Hn~r !5E
21

1

ak~r ,s,b!
Tn~s!

A12s2
ds. (52)

To solve the functional Eq.~51!, the series on the left side is firs
truncated at theNth term. A collocation technique is then used a
the collocation points,r i , are chosen as the roots of the Cheb
shev polynomials of the first kind

r i5cos
~2i 21!p

2N
, i 51,2, . . . ,N. (53)

The functional Eq.~51! is then reduced to a linear algebraic equ
tion system

(
n51

N

$pUn21~r i !1Hn~r i !%an52
pbw0 /h

exp~b!2exp~2b!
,

i 51,2, . . . ,N. (54)

After an(n51,2, . . . ,N) are determined, the nondimension
stress intensity factor,2c~1,b!, is computed as follows:
o

en

ep

nd.

into

d

t
d

y-

a-

l

2c~1,b!52(
n51

N

an . (55)

In the following numerical calculations, it is found that 2
collocation points lead to a convergent stress intensity fac
result.

It is known from (39) that the stress intensity factor is a mu
plification of three parts. The first term is a dimensional ba
m0(w0/2h)Apa, the second term is a geometrical and mater
nonhomogeneity correction factor,2c(1,b), which can be ob-
tained from the numerical solution of singular integral Eq. (28
and the third term is the time evolution of stress intensity fact
F(t), which is obtained analytically from the inverse Laplac
transform.

Note that, according to Fig. 1, the crack is located at midhei
of the material strip and the origin of the coordinate system (x,y)
is located at the center of the crack. Such choice of refere
system introduces certain symmetries in the solution, which
discussed in the examples below.

10 Results
Numerical results for stress intensity factors are first obtain

for a homogeneous elastic strip~see Fig. 1!. According to Table 1,
the stress intensity factors are found in good agreement with th
reported in the literature, e.g., the handbook by Tada et al.@30#.
Furthermore, for a homogeneous viscoelastic strip, it is evid
that the stress intensity factor is given by~39! with b50 andF(t)
is given by~40! and~41! for the exponentially decaying or rising
loading, and by~44! and ~45! for the Heaviside step function
loading. Note that the functionF(t) is not related to the nonho
mogeneous material parameterb.

Figure 2 shows normalized stress intensity factor~see ~39!!,
2c~1,b!, versus the nonhomogeneous parameterb considering
various strip thicknessesh/a for the linear standard solid~12!
and the power-law model with constant relaxation time~13!. Note
that although the relaxation times are different for both mod

Table 1 Mode III stress intensity factors „SIF… for a homoge-
neous strip

h/a
SIF

~this study!
SIF

~@30#!

0.5 0.5360 0.5631
1.0 0.7598 0.7641
1.5 0.8626 0.8634
2.0 0.9136 0.9138
5.0 0.9840 0.9840

10.0 0.9959 0.9959
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~cf. Eqs.~40! and ~41!, or Eqs.~44! and ~45!!, they do have the
same solution2c~1,b! ~see Section 5!. The stress intensity
factor decreases with increasingubu for all thickness cases (h/a)
considered. The stress intensity factor is lower than that of
corresponding homogeneous material~b50!. It is noted that the
stress intensity factor is an even function ofb. However, this
symmetry is valid only for the crack located in the center of t
strip.

Fig. 2 Normalized Mode III stress intensity factor versus non-
homogeneous material parameter b for various strip thick-
nesses considering the linear standard solid and the power-law
material with constant relaxation time
Journal of Applied Mechanics
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Figure 3 shows normalized stress intensity factor~see ~42!!,
2c(1,b1qd!, versus the nonhomogeneous parameterb for vari-
ous strip thicknessesh/a and threed values for the power-law
model with position-dependent relaxation time~14!. The effect of
spatial position dependence of the relaxation time on the st
intensity factor is reflected through the parameterd. The param-
eterq is taken as 0.4 in all calculations. Thus the curves ford561
may be obtained from the curved50 by shifting this curve by
b570.4. It is clear from Fig. 3 that with respect to the corr
sponding model with constant relaxation time~i.e., d50!, a posi-
tive d lowers the stress intensity factor whenb.0 and increases
the stress intensity factor forb less than20.5qd. A negatived
lowers the stress intensity factor whenb,0 and increases the
stress intensity factor forb larger than 0.5qd.

Figure 4 illustrates the time evolution of normalized stress
tensity factors,F(t), considering both Heaviside step functio
loading and exponentially decaying or rising loading for the st
dard linear solid~see~40! and ~44!! and the power-law materia
~see~41! and~45!!. The ratiom` /m0 is taken as 0.5 in all subse
quent calculations for the standard linear solid. It is evident t
under the fixed displacement condition, stress intensity factor
creases monotonically with increasing time for Heaviside s
function loading and exponentially decaying loading~Figs. 4~a!
and 4~b!!. For exponentially rising loading, however, the stre
intensity factors will increase with time for longer times~Figs.
4~c! and 4~d!!. By observing the plots in Figs. 4~a! and 4~b!, one
notices that, for exponentially decaying loading, the stress in
sity factor can become negative as the ratiotL /t0 decreases, which
occurs, for example, fortL /t051.0. This happens because
stress relaxation for long-time behavior.Note that a negative
stress intensity factor does not imply crack closure because
Fig. 3 Normalized Mode III stress intensity factors versus nonhomogeneous parameter b for three d
values and qÄ0.4, „a… h ÕaÄ0.5; „b… h ÕaÄ1.0; „c… h ÕaÄ2.0; „d… h ÕaÄ20.0
MARCH 2001, Vol. 68 Õ 289

cense or copyright; see http://www.asme.org/terms/Terms_Use.cfm



290 Õ Vol

Downloaded 24 Sep
Fig. 4 Time variation of normalized Mode III stress intensity factor „a… standard linear solid „decaying
loading …; „b… power-law material „decaying loading …; „c… standard linear solid „rising loading …; „d… power-
law material „rising load …
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associated to a Mode III crack, and not a Mode I (or mixed mo
crack. Thus, in the present study, a negative stress intensity fa
is allowed without violating the crack face traction free con
tion. The crack faces do not close, they just slide in the oppo
direction.

Figure 5 illustrates the normalized stress intensity factors~nor-
malized by m0(w0/2h)Apa! versus time for Heaviside ste
function loading considering the following viscoelastic mater
models: standard linear solid~see ~39! and ~44!!, power law
material ~see ~39! and ~45!!, and power-law material with
position-dependent relaxation time~see~42! and ~45!!. A finite
thickness strip withh/a52.0 ~Fig. 1! is considered. Note that
for all the models, the stress intensity factors decrease mono
cally with increasing time. The first two models are investiga
for the nonhomogeneous parameterb50, 1, 2 with b50 cor-
responding to the homogeneous material case. Due to the sym
try of stress intensity factor aboutb, the stress intensity facto
for b521, 22 are identical to those forb51, 2, respectively.
Moreover, the stress intensity factor decreases with increa
ubu. The last model is investigated forb52 andd521,0,1 with
d50 corresponding to position-independent relaxation time.
this special case, the stress intensity factor decreases with inc
ing d. This is becauseb1qd is positive for theb and d values
considered.

Figure 6 illustrates the normalized stress intensity factors~nor-
malized bym0(w0/2h)Apa! versus time for exponentially decay
ing loading considering the following models: standard line
solid ~see~39! and~40!!, power-law material~see~39! and~41!!,
and power-law material with position-dependent relaxation ti
~see~42! and ~41!!. The same qualitative observations for Fig.
also hold for Fig. 6.
. 68, MARCH 2001
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Figure 7 presents the normalized stress intensity factors~nor-
malized bym0(w0/2h)Apa! versus time for exponentially rising
loading for the standard linear solid~see~39! and~40!!. Compar-
ing this figure with Figs. 5~a! and 6~a! ~Heaviside step function
loading and exponentially decaying loading!, one observes tha
the time variation of stress intensity factors show a convex sh
in Fig. 7 while it shows a monotonically decreasing trend in Fi
5~a! and 6~a!.

Figure 8 shows crack profiles for the Heaviside step funct
loading considering the standard linear solid and the power
material with position-dependent relaxation time~see~46!, ~47!,
and ~49!!. A finite thickness strip geometry withh/a52 ~Fig. 1!
is considered. The former model~Fig. 8~a!! is investigated for the
nonhomogeneity parameterb50, 1, 2 withb50 corresponding to
the homogeneous material case. The latter model~Fig. 8~b!! is
investigated forb52 andd521, 0, 1 withd50 corresponding to
position-independent relaxation time.

Figure 9 shows crack profiles for the exponentially decay
loading considering the standard linear solid and the power-
material with position-dependent relaxation time~see~46!, ~47!,
and ~49!!. As before, a finite thickness strip geometry withh/a
52 ~Fig. 1! is considered. The former model~Fig. 9~a!! is inves-
tigated for the nonhomogeneity parameterb52 andt/t051, 2, 3.
The latter model~Fig. 9~b!! is investigated forb52, d51, and
t/t051, 2, 3. A comparison of all the plots in Figs. 8 and
permits to evaluate the corresponding crack profiles for vari
material models and various parameters. This information is
tentially valuable when correlated with fracture experiments, e
crack-sliding displacement measurements.
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11 Concluding Remarks and Extensions
This paper illustrates an application of Paulino and Jin’s@23#

revisited correspondence principle to fracture mechanics of
coelastic functionally graded materials. An effective integ
equation method for antiplane shear cracking in viscoelastic fu
tionally graded materials is presented. The elastic function
graded material crack problem is solved and the correspond
principle between the elastic and the Laplace transformed
coelastic equations is used to obtain stress intensity factors
viscoelastic functionally graded materials. Formulas for stress

Fig. 5 Normalized Mode III stress intensity factor versus time:
Heaviside step function loading, „a… standard linear solid; „b…
power-law material; „c… power-law material with position-
dependent relaxation time
Journal of Applied Mechanics
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tensity factors and crack displacement profiles are provided. S
eral numerical results for these quantities are presented cons
ing various viscoelastic material models~e.g., standard linear
solid, power-law model with both position-independent a
position-dependent relaxation time! and loading conditions. It is
important to remark that the solution of the fracture mechan
problem with prescribed displacement~see Fig. 1! is different
from the solution with prescribed traction~cf. Erdogan@15,20#!.

Fig. 6 Normalized mode III stress intensity factor versus time:
exponentially decaying loading, „a… standard linear solid; „b…
power-law material; „c… power-law material with position-
dependent relaxation time
MARCH 2001, Vol. 68 Õ 291
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This work offers promising avenues for further extensio
For instance, it may be used to calibrate numerical methods~e.g.,
finite element method and boundary element method! for vis-
coelastic functionally graded materials. Moreover, the discuss
on relaxation functions of separable forms in space and time~Sec-
tion 5! indicates the need for micromechanics models for v
coelastic behavior. Other relevant topics associated with
work also deserve further investigation. Such topics include:~a!
investigation of antiplane shear cracking in bonded viscoela
layers where one of the layers is a functionally graded mate
~b! extension of the antiplane shear crack model to Mode I cra
These topics are presently being pursued by the authors.

Fig. 7 Normalized Mode III stress intensity factor versus time:
exponentially rising loading „standard linear solid …

Fig. 8 Crack face displacements: Heaviside step function
loading, „a… standard linear solid; „b… power-law material with
position-dependent relaxation time
292 Õ Vol. 68, MARCH 2001
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Appendix
In the following, a relatively detailed derivation of integral E

~28! is given, which refers to the Mode III fracture mechani
problem illustrated by Fig. 1. By using Fourier transform, t
solution of the basic Eq.~27! can be expressed as follows:

w5
1

A2p
E

2`

` H A1 expF2b1m

2

y

hG1A2 expF2b2m

2

y

hG J
3exp~2 ixj!dj, y.0,

w5
1

A2p
E

2`

` H B1 expF2b1m

2

y

hG1B2 expF2b2m

2

y

hG J
3exp~2 ixj!dj, y,0, (56)

whereA1 , A2 , B1 , andB2 are unknowns, andm is

m[m~j!5Ab214h2j2. (57)

The stressty is obtained from~56! by Hooke’s law,

Fig. 9 Crack face displacements: exponentially decaying load-
ing, „a… standard linear solid; „b… power-law material with
position-dependent relaxation time
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ty5m0 exp~by /h!
]w

]y

5
m0 exp~by /h!

A2p
E

2`

` H 2b1m

2h
A1 expF2b1m

2

y

hG
1

2b2m

2h
A2 expF2b2m

2

y

hG J exp~2 ixj!dj, y.0,

ty5m0 exp~by /h!
]w

]y

5
m0 exp~by /h!

A2p
E

2`

` H 2b1m

2h
B1 expF2b1m

2

y

hG
1

2b2m

2h
B2 expF2b2m

2

y

hG J exp~2 ixj!dj, y,0.

(58)

By using the boundary conditions~23! to ~26!, the unknownsA2 ,
B1 , andB2 can be expressed byA1 which is given by

A15
1

i j H 12exp~m!2@12exp~2m!#

3
2b1m1~b1m!exp~m!

2b1m1~b1m!exp~2m!J
3

1

A2p
E

2a

a

w~x8!exp~ ix8j!dx8, (59)

wherew(x) is the density function defined by

w~x!5
]

]x
@w~x,01!2w~x,02!#. (60)

Further, the stressty at y50 is expressed byw(x) as

tyuy505
m0

2p E
2a

a F 1

x82x
1k~x,x8,b!Gw~x8!dx8 (61)

wherek(x,x8,b) is given in ~31!. By substituting the above ex
pression into the boundary condition~24!, the integral Eq.~28! is
deduced.
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