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Abstract

This paper presents an assessment and comparison of boundary element method (BEM) formulations for elastoplasticity using both

the consistent tangent operator (CTO) and the continuum tangent operator (CON). These operators are integrated into a single

computational implementation using linear or quadratic elements for both boundary and domain discretizations. This computational

setting is also used in the development of a method for calculating the J integral, which is an important parameter in (nonlinear)

fracture mechanics. Various two-dimensional examples are given and relevant response parameters such as the residual norm, com-

putational processing time, and results obtained at various load and iteration steps, are provided. The examples include fracture

problems and J integral evaluation. Finally, conclusions are inferred and extensions of this work are discussed. Ó 2001 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Modeling of material nonlinear problems can be accomplished by, for example, the ®nite element method
(FEM) or the boundary element method (BEM). Fig. 1 shows two meshes corresponding to application of
each of these methods to a small-strain elastoplastic problem considering linear elements. Fig. 1(a) shows a
possible mesh for the FEM, which requires discretization of the entire domain. Fig. 1(b) illustrates the
modeling approach for the BEM, which is the method of choice in this work. Note that in addition to the
boundary mesh (one-dimensional elements), domain cells (two-dimensional elements) are also needed,
however, these cells are only required in regions of potential nonlinearity. If quadratic elements were
employed in Fig. 1, the FEM mesh would have 144 elements (T6) and 323 nodes; and the corresponding
BEM mesh would have 30 elements (3-noded) and 64 nodes (including 4 double nodes for corner modeling)
on the boundary plus 36 elements (T6) in the interior and 95 nodes (27 on the boundary). Thus the
boundary element treatment is best suited for nonlinear problems in which the size of the plastic zone is
relatively small compared to the overall size of the ®nite domain. Moreover, the BEM is also advantageous
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for unbounded domains containing a plastic region of ®nite extension, such as geotechnical problems in-
volving tunnels and foundations.

This paper addresses two implicit algorithms, involving the consistent tangent operator (CTO) and the
continuum tangent operator (CON) for the BEM modeling of small-strain elastoplastic problems. Most of
the publications on BEM analysis of nonlinear problems in solid mechanics report on the use of contin-
uum-based explicit and implicit approaches for ``time'' integration of the appropriate rate equations.
Banerjee and his co-workers [1] have presented a variable sti�ness continuum explicit formulation. Con-
tinuum implicit BEM formulations have been presented by Jin et al. [2], and Telles and Carrer [3,4]. Leu
and Mukherjee [5,6] have presented continuum implicit objective integration schemes for recovery of stress
sensitivities at a material point. Their work addresses large-strain viscoplastic problems, but only considers
integration of the algorithmic constitutive model (somehow analogous to the radial return algorithm) at a
material point. They have coupled this analysis with the BEM to solve general boundary value problems
[7,8]. Application of the BEM to nonlinear (elastoplastic) fracture mechanics can also be found, for ex-
ample, in the books by Cruse [9] and Leit~ao [10].

The CTO, however, has not been employed in the BEM before 1996. Bonnet and Mukherjee [11] were the
®rst to present the CTO in implicit BEM for usual and sensitivity problems in elastoplasticity and, later on,
Poon et al. [12] have developed a computational implementation for two-dimensional small-strain elas-
toplastic problems with isotropic hardening. They have shown that the converged value of the ``global''
CTO appears, as expected, as the ``sti�ness'' matrix for the linear system of equations that govern the
elastoplastic strain increment over a ®nite time step. The results obtained are very accurate as compared
with analytical solutions and the FEM code ABAQUS.

However, the actual di�erences between CTO BEM and CON BEM have not yet been discussed further,
not even in an example. This paper makes this comparison from nonlinear constitutive relations and BEM
theory, and then integrates both CTO and CON into a single computer code using either linear or quadratic
elements. This computational setting is further used in the development a method for evaluating the J
integral considering elastoplastic fracture mechanics. This paper also provides a numerical comparison of
different load and iteration steps during the nonlinear solution procedure. From this study, a good un-
derstanding of the techniques employed here can be obtained.

The goal for the remainder of this paper consists of developing a comprehensive presentation, and the
next sections are organized as follows. First, some background is given and the basic notation and ter-
minology is established. Next, the elastoplastic BEM formulation is derived in terms of both CTO and
CON. Then, a method for computing the J integral, which is an important parameter in (nonlinear)
fracture mechanics, is discussed in detail. Afterwards, the algorithm for the nonlinear computational
procedure is presented and several numerical examples are given. The examples include crack problems and
J integral evaluation. Subsequently, conclusions are inferred and directions for future work are discussed.

Fig. 1. Comparison of modeling strategies: (a) FEM mesh ± 144 linear elements (T3) and 90 nodes; (b) BEM mesh ± boundary

discretization consists of 30 elements (2-noded) and 34 nodes (including four double nodes for corner modeling) on the boundary, and

interior discretization consists of 36 linear elements (T3) and 30 nodes (14 on the boundary).
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2. Basic concepts

This section reviews some relevant concepts and establishes the notation and terminology used herein.
These concepts include constitutive law, radial return algorithm (RRA), CON, CTO, and Newton iteration
method. The discussion below focuses on rate-independent plasticity with the von-Mises yield criterion and
an associative ¯ow rule. For the sake of simplicity, only isotropic hardening is considered in the present
work. Kinematic hardening is accounted for by Paulino and Liu [13] in a BEM context, and by Simo and
Taylor [14] in an FEM context.

Consider an Euclidean setting and de®ne the displacement vector u � uiei, where ei are the basis vectors
and summation is applied to repeated indices. From standard kinematic considerations, the total strain
tensor is obtained as the symmetric part of the displacement gradient tensor

e � $Su; �1�

in which $S � �$� $T�=2, and the superscript T denotes the transpose. The stress tensor is denoted by
r � rijei 
 ej, where 
 denotes the tensor product, and the local balance equations (in the absence of body
forces) are

$ � r � 0; r � rT: �2�

Consider a computational plasticity setting and the evolution problem from a discrete incremental
standpoint for a ®nite time step Dt (as opposed to continuous time). The elastoplastic constitutive law
reduces to providing a rule which outputs rn�1 consistent with the yield criterion, for any given strain
increment (input):

Den � en�1 ÿ en; �3�
such that

rn�1 � �r�en; rn; �ep
n ;Den�: �4�

The notation �r symbolically denotes the action of the RRA [14,15] (which will be discussed later), the
subscript n above refers to time (or pseudo-time) tn, �ep is the cumulated equivalent plastic strain given by

�ep �
Z t

0

���
2

3

r
kdp�s�k ds; �5�

where dp is the plastic strain rate tensor (dp � _ep), and

kdpk � dp : dp� �1=2 � �
����������
dp

ijd
p
ij

q
: �6�

Moreover, tr�dp� � 0, where tr��� denotes the trace operator.
Now let s and e denote the deviatoric stress and strain tensors, which are given by

s � rÿ 1

3
�tr r�1 and e � eÿ 1

3
�tr e�1; �7�

respectively, where 1 � dijei 
 ej. The yield condition is

f �s; j� � ksk ÿ
���
2

3

r
j��ep� � 0; �8�

where �ep ! j��ep� is the hardening rule. The consistency condition reduces to the scalar equation

F�cDt� � kstrial
n�1k ÿ

���
2

3

r
j �ep

n�1

� �
ÿ 2G�cDt� � 0; �9�
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where

�ep
n�1 � �ep

n �
���
2

3

r
�cDt�; �10�

and strial
n�1 is the trial deviatoric stress given as

strial
n�1 � sn � 2GDen; �11�

in which G is the shear modulus of the material. Moreover, the notation j��ep
n� � jn will be adopted in the

development below. From a numerical point of view, the solution of Eq. (9), from which the values of �cDt�
are determined, can be effectively accomplished by means of the the local Newton iteration procedure
summarized below.

2.1. Determination of �cDt� using Newton iteration method

1. Let: �ep�k�1�
n�1 � �ep�k�

n�1 �
������������2=3�p

k�k�, where k � cDt.

2. Compute: DF�k�k�� � ÿ2G�1� �j0=3G���k�.
3. Perform iteration: k�k�1� � k�k� ÿ �F�k�k��=DF�k�k���.
4. Check convergence: If jF�k�k��j > EPS, then k  k � 1, and GGOTOOTO Step 1.

Here EPS is a prescribed tolerance indicating accuracy of the converged value, and D denotes the differ-
ential operator.

If f �str
n�1; jn�6 0, then str

n�1 is elastic, and

�r � KDen : �1
 1� � 2GDen � rn; �12�
where K is the bulk modulus of the material. This is the elastic constitutive equation in incremental form.
On the other hand, if f �str

n�1; jn� > 0, �r is given by the following equations, which constitute the RRA.

2.2. Radial return algorithm

1. Compute trial elastic stress: strial
n�1 � sn � 2GDen.

2. Compute unit normal: n̂ � strial
n�1=kstrial

n�1k.
3. Use above converged value of �cDt� to compute equivalent plastic strain: �ep

n�1 � �ep
n �

��������
2=3

p �cDt�.
4. Compute the deviatoric stress: sn�1 �

������������2=3�p
jn�1n̂.

5. Add elastic volume change: rn�1 � Ken�1 : �1
 1� � sn�1.
Here, �cDt� solves Eq. (9). An illustration of the RRA is given in Fig. 2, where only the deviatoric com-
ponents are shown and the actions take place on the p-plane. If the elastic trial stress strial

n�1 and the stress r
�i�
n�1

at the ith iteration are computed from the nonconverged stress s
�iÿ1�
n�1 at the previous iteration (rather than

from converged stress sn as above), then the CTO becomes a special case of the CON.
The expression for the CTO, which is the fourth-order tensor

Cn�1 � o�r
oDen

; �13�
depends on the particular algorithm den ! rn�1 chosen. For the RRA presented here, it takes the form
[14,15]

C ep
n�1 � K1
 1� 2Gb I

ÿ ÿ 1
3
1
 1

�ÿ 2G�cn̂
 n̂; �14�
where I � �1=2��dikdjl � dildjk�ei 
 ej 
 ek 
 el and

b �
���
2

3

r
jn�1

kstrial
n�1k

; �c � 1

1� j0
3G

ÿ �1ÿ b�: �15�

2160 G.H. Paulino, Y. Liu / Comput. Methods Appl. Mech. Engrg. 190 (2001) 2157±2179



For the CON, its expression takes the common form used in FEM

C ep
n�1 � K1
 1� 2G I

ÿ ÿ 1
3
1
 1

�ÿ 2Gcn̂
 n̂; �16�

where

c � 1

1� j0
3G

: �17�

Notice that in Eq. (14), b6 1, and that for a large time step strial
n�1 may lay far out of the yield surface so

that b may become signi®cantly less than unity. In addition, because �c � c� bÿ 1, then cÿ 1 < �c6 c.
Hence, for large time steps, the CTO, Eq. (14), may di�er signi®cantly from the CON, Eq. (16). It is in-
teresting to observe that when the parameter b � 1 in Eq. (14), the CTO becomes the CON, Eq. (16). As a
result, use of the continuum operator in conjunction with the RRA, leads to loss of the quadratic rate of
asymptotic convergence which characterizes Newton's iteration method. This is the basic di�erence between
CTO and CON methods.

It should be indicated that when rn�1 � �r�en; rn; �ep
n ;Den� is elastic, one has

Cn�1 � C ep
n�1 � C ; �18�

where C is the fourth-order tensor of elastic constants

C � k1
 1� 2lI ; �19�

in which 1 is the rank two tensor, I is the rank four tensor (as given before), and k and l are the Lam�e
constants of the material. Moreover, l � G.

3. Elastoplastic boundary element formulation

An initial strain formulation for elastoplastic problems is adopted here. Next, the BEM representation at
internal points is given and the global BEM CTO is presented. Then a brief discussion is provided on
recovering the CON in the context of the present BEM formulation.

Fig. 2. Illustration of the RRA.
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3.1. Initial strain formulation

Adoption of an initial strain formulation for elastoplasticity leads to the following regularized BIE [8]:Z
oX
�ui�z� ÿ ui�x��Pki�x; z� dSz ÿ

Z
oX

pi�z�Uki�x; z� dSz �
Z

X
Uki;j�x; z�Cijabe

p
ab�z� dVz; �20�

without consideration of body forces. In Eq. (20), x is any ®xed point on the boundary oX; X denotes the
domain; Uki; Pki denote the components of the elastic singular kernels for displacement and traction (Kelvin
kernels), respectively, i.e., those created in the in®nite space R2 by a unit point force applied at x along the
k-direction; p � r � n is the traction vector; and the tensor C is given by Eq. (19). Moreover, the variable
®eld point is denoted by z and � � �;j � o� � �=ozj. The Kelvin kernels [16] are available in many references and
can be found, for example, in Chapter 2, p. 46 of [8].

The matrix equation obtained from Eq. (20) can be written in symbolic form as

�H �fug ÿ �G �fpg � �Q�fC : epg: �21�

In the standard BEM, the above equation is discretized and then recast as

�A�fyg � ff g � �Q�fC : epg; �22�
where y collects the boundary unknowns and ff g is the contribution of known boundary variables, i.e.,
values prescribed by the boundary conditions.

3.2. BEM representation at internal points

The displacement at an interior point is given by

uk�x� �
Z

oX
pi�z�Uki�x; z� dSz ÿ

Z
oX

ui�z�Pki�x; z� dSz �
Z

X
Uki;j�x; z�Cijabe

p
ab�z� dVz: �23�

Di�erentiation of the interior displacement integral equation with respect to x`, and regularization [17],
yields the representation formula for the displacement gradient

uk;`�x� �
Z

oX
ui�z�Pki;`�x; z� dSz ÿ

Z
oX

pi�z�Uki;`�x; z� dSz ÿ Cijabe
p
ij�x�

Z
oX

n`�z�Uka;b�x; z� dSz

ÿ
Z

X
Uki;j`�x; z�Cijab�ep

ab�z� ÿ ep
ab�x�� dVz: �24�

The total strain at x is then readily obtained from the above equation. In symbolic form, one has

feg � �G 0�fpg ÿ �H 0�fug � �Q0�fC : epg � ÿ�A0�fyg � ff 0g � �Q0�fC : epg: �25�
Substituting for fyg from Eq. (22) into the above equation, one obtains

feg � fng � �S�fC : epg; �26�
where

fng � ff 0g ÿ �A0��A�ÿ1ff g;
S� � � �Q0� ÿ �A0��A�ÿ1�Q�:

Note that fng denotes the purely elastic solution, i.e., the one obtained for the same loading but in the
absence of plastic strain.

From Hooke's law and the additive decomposition of strain (r � C : �eÿ ep�), one obtains

fC : epg � fC : eg ÿ frg; �27�
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which is incorporated in Eq. (26), giving

feg � fng � �S��fC : eg ÿ frg�: �28�
Finally, the strain and the total stress are related through

S� �frÿ Ceg ÿ fng � �I �feg � f0g: �29�
This development follows that of Refs. [3,11]. The above formulae for elastic problems with initial strain are
given in accumulated form as opposed to rate form.

3.3. The global BEM CTO and CON

Consider the evolution of the continuum between time tn and tn�1. Using the notation D���n � ���n�1 ÿ ���n
and Eq. (29), one obtains

S� �fDrn ÿ CDeng ÿ fDnng � �I �fDeng � f0g; �30�
which includes the equilibrium constraint.

On the other hand, the RRA, Eq. (4), relates �r � rn�1 � rn � Drn to Den. Combining the constitutive and
equilibrium equations in the form

frng � fDrng � f�rg;
one obtains a nonlinear equation for Den of the form

fG�Den�g � S� �f�r�en; rn; �ep
n ;Den� ÿ rn ÿ CDeng ÿ fDnng � �I �fDeng � f0g; �31�

which has been written in a manner similar to Eq. (9). Thus, from a numerical point of view, the Newton
method [18] can also be applied to Eq. (31). In this case, the correction fdei

ng � fDei�1
n g ÿ fDei

ng to fDei
ng

solves

��S��C ÿ C i
n�1� ÿ �I ��fdei

ng � fG�Dei
n�g: �32�

Now let �Di
n�1� � �S��C ÿ C i

n�1� so that

�S��C ÿ C i
n�1� ÿ �I � � �Di

n�1� ÿ �I �; �33�

which is referred to as the global CTO by Mukherjee and co-workers [11,12] (see [19] for the FEM version).
Note that the local CTO Cn�1 is given by Eq. (13). Once the nonlinear equation (31) is solved for Den, all the
variables at time tn�1 are readily computed. The Newton step, Eq. (32), involves the di�erence �C ÿ C i

n�1�
between the elastic constitutive law and the local CTO, rather than the local CTO itself. This is consistent
with the fact that Eq. (30) accounts for both equilibrium and elastic constitutive law, while for the FEM
[14], only equilibrium is accounted for.

The elastic constitutive law and the local CTO di�er only at points (referred to as ``currently plastic'')
where the current strain increment has a nonzero plastic component. Hence, it is convenient to rewrite the
Newton step, Eq. (32), using a block decomposition:

��Di
n�1� ÿ �I ��PPfdei

ngP � fG�Dei
n�gP; �34�

fdei
ngE � �Di

n�1�EPfdei
ngP ÿ fG�Dei

n�gE: �35�
The subscripts E, P indicate vectors and matrices restricted to the currently elastic (E) or plastic (P)
nodes. Thus, only the restriction to currently plastic nodes of the global CTO ��Di

n�1� ÿ �I ��PP needs to be
factored. This shows that the global CTO has to be set up and factored only at currently plastic nodes,
the currently elastic part fdei

ngE being given explicitly by Eq. (35), after Eq. (34) is solved for fdei
ngP.

Moreover,
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�Di
n�1�PE � �Di

n�1�EE � �0�: �36�
The dimension of the linear system in Eq. (34) is directly associated to the size of the plastically deforming
zone. This leads to an e�cient solution scheme with savings in computing time.

The above process and equations for the CTO BEM are completely suitable for the CON BEM in
elastoplasticity, where the RRA �r � rn�1 behaves in such a way that the stresses r

�i�
n�1 at the ith iteration are

computed from the nonconverged stresses s
�iÿ1�
n�1 at the previous iteration (i.e., with nonconverged �cDt�), and

the CTO parameter b � 1. This framework is adopted here.

4. J integral ± theory and implementation

The J integral is accepted as a quasi-static fracture mechanics parameter for linear material response and,
with limitations, for nonlinear material response [20,21]. This is one of a class of path-independent integrals
that can be derived systematically for linearly elastic materials [22]. It is also path independent when the
deformation theory of plasticity is used. The development below illustrates the application of J to elas-
toplastic materials, and its evaluation using the present BEM implementation. The J integral (see Fig. 3) is
de®ned as

J �
Z

Cc

W n1� ÿ piui;1� dC; �37�

where n1 is the ®rst component of the unit normal vector to Cc, dC a length increment, and W is the strain
energy density given by

W �
Z �kl

0

rij deij � WE � WP; �38�

where WE and WP denote the elastic and plastic contributions to W, respectively. Moreover,

WE � 1

2
rije

e
ij; �39�

and

WP �
Z ê

0

�r d�ep: �40�

The equivalent plastic strain �ep is de®ned in Eq. (5) and the equivalent stress is given by

�r �
�����������
3

2
s : s

r
�

�������
3J2

p
; �41�

Fig. 3. Illustration of contour for J integral evaluation.
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where J2 is the second invariant of the stress deviatoric tensor. Equation (41) is obtained from the ®rst
condition of Eq. (7) through the RRA (Eq. (4)).

The second term on the right-hand side of Eq. (37) is calculated as follows. The unknown tractions on
the boundary at a certain load level are recovered from the vector fyg in Eq. (22), and the tractions on
the contour chosen for J integral evaluation are obtained from p � r � n. The term u1;1 � e11 is obtained
directly from Eq. (25) for the internal strains, and the term u2;1 is obtained in a manner similar to
Eq. (25), i.e.,

fu2;1g � � �G �fpg ÿ � �H �fug � ��Q�fC : epg: �42�
The unknown boundary quantities are obtained from the vector fyg in Eq. (22). Moreover, fC : epg is
obtained by means of Eq. (27). Because Eq. (42) is evaluated for all internal cells, the J contours can be
de®ned for any path along the edges of the domain cells (interior elements).

If the J contour is chosen such that it passes through nodes of the domain cells, the evaluation of J is
straightforward. For example, considering the three nodes of an edge of a quadratic triangular (or
quadrilateral) cell, and applying Simpson's rule [18], one obtains

J ec � h
1

3
f1

�
� 4

3
f2 � 1

3
f3

�
; �43�

where J ec denotes J for an edge of a cell, h is half the length of integration, and f is the integrand of Eq. (37)
which is a function of WE, WP, ri;j, and ui;j at each of the three points of the edge in consideration. The
changes are little if other types of elements or integration schemes are used. All the relevant quantities are
computed at each load step, and the ®nal result is the sum of all the incremental contributions. Moreover,
in order to account for the entire integration contour,

J �
XM

i�1

J ec
i ; �44�

where M is the number of cells that the selected contour passes through.

5. Computational algorithm

The discretization process for material nonlinear problems by means of the BEM involves both boundary
elements and domain integration cells. Note, however, that the domain discretization is restricted to the
potentially plastic region of X (outside this region, no plastic strain is expected), as explained in Section 1.
The following algorithm, based on Sections 2 and 3, is presented for solving the incremental elastoplastic
problem, from the initial time t0 to the ®nal time t�NT �. The initial time t0 is assumed to correspond to the ®rst
yield load.

For 06 n6 �NT ÿ 1�:
1. Compute fDnng (purely elastic internal strain)
2. Initialize fDe0

ng (e.g., to the elastic value)
Iterative solution of Eq. (31):

(2.1) i � 0
(2.2) Compute the residual fG�Dei

n�g from Eq. (31).
(2.3) Convergence test: if the condition in Eq. (45) is satis®ed, GOTOOTO 3.
(2.4) i :� i� 1
(2.5) Compute the local CTO or CON, C ep

n�1, at all nodes and determine the sets of currently elas-
tic (E) and currently plastic (P) nodes.
(2.6) Set up and factor the global CTO or CON, ��Di

n�1� ÿ �I ��PP, and set up ��Di
n�1� ÿ �I ��EP.

(2.7) Solve Eq. (34) for fdei
ngP and compute fdei

ngE using Eq. (35).
(2.8) Update: fDei

ng :� fDei
ng � fdei

ng.
(2.9) GOTOOTO (b) (i.e., start new iteration).
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3. Update:
· f�epgn�1 � f�epgn �

��
2
3

q
f�cDt�g,

· frn�1g � f�r�Dei
n�1�g.

· fen�1g � feng � fDeng
Continue

Note that for the CTO, �cDt� is the converged value obtained by the Newton iteration method; for the
CON, �cDt� is the unconverged value.

The convergence of the problem is measured in terms of the discrete residual norm (see Eq. (31)) for all
the nodes, which is de®ned as

kfG�Den�gk �def

��������������������������PfG�Den�g2

4N

s
6TOL; �45�

where N denotes the total numbers of nodes, and TOL is a speci®ed tolerance. In this work,
TOL � 5:0� 10ÿ10 been found to be an adequate estimate for practical purposes. Unless otherwise stated,
this value has has been adopted for the examples presented in this work. While this tolerance may appear to
be a severe condition to achieve, it will be shown by means of examples that this condition is easily satis®ed
when the CTO is used.

6. Examples

In order to provide a quantitative assessment of both the CTO BEM and the CON BEM, two groups of
examples are investigated: a group which does not involve cracks (the ®rst two examples) and a group
involving cracks (the last three examples). The examples investigated are listed below:
1. Elastoplastic plate with a circular hole under uniaxial tension.
2. Elastoplastic hollow cylinder subjected to internal pressure.
3. Cracks emanating from a hole in an elastic plate.
4. Center-cracked elastoplastic plate.
5. Elastoplastic hollow cylinder with cracks emanating from the inner face.
Due to obvious symmetry reasons, only a quarter portion of the above problems is modeled. For the sake
of simplicity, the Cartesian axes are referred as �x; y� rather than �x1; x2�. As usual, the linearly elastic
example (#3) only requires boundary discretization (see Section 1). All the other examples are elastoplastic,
and require discretization of the potentially plastic zone (see Fig. 1) in addition to the boundary discreti-
zation. Example #2 is solved using linear (2-noded boundary elements and 3-noded triangular internal
cells) and quadratic (3-noded boundary elements and 6-noded triangular internal cells) interpolation of
nodal quantities. All the other examples are solved using quadratic elements. Some of the nonlinear ex-
amples (e.g., the ®rst two) are solved using a single load step. Use of a single load step is valid only for
certain special situations, such as when every continuum point undergoes proportional loading. Thus, one
should be careful in these situations. In general, repeating the analysis using more load steps and comparing
the results is a more reliable strategy [12].

A preprocessing computer program to generate two-dimensional BEM meshes considering both
boundary and domain discretization has been developed. In this preprocessor, the interior cells are gen-
erated by means of trans®nite mapping.The main program for small-strain elastoplastic analysis contains
both linear and quadratic elements, and double nodes are used to model corners and crack tips. All the
computations in this work have been performed in an engineering workstation (Silicon Graphics ± SGI).

6.1. Plate with a circular hole under uniaxial tension

Fig. 4 refers to a rectangular plate with a centered circular hole subjected to increasing extension under
plane strain. This problem has been studied by Bonnet et al. [23], however, symmetry was not taken
into account in order to avoid introduction of corners. They have modeled the entire plate and have
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approximated each of the outer corners by a smooth (C1) arc. Here, only one quarter the plate is considered
(see Fig. 4). The objective is to assess performance comparison between the CTO BEM and the CON BEM,
and to show the signi®cant loss in rate of convergence which occurs when the CON is used in place of the
CTO (derived from the integration algorithm).

The numerical calculations are performed with 3-noded boundary elements and 6-noded triangular in-
ternal cells, as illustrated by Fig. 5. The elastic constants are G � 1:0 and m � 0:3. Consistent units are used
here. The material deforms according to the classical J2 plasticity theory, with isotropic hardening of the
form

j � 2G�0:001� 0:001��ep�m�; �46�
where the hardening exponent m � 0:0 refers to the elastic perfectly plastic case. The initial tensile load is
taken p � p0 � 6:0� 10ÿ4 so that a good portion of the sample has yielded. In order to compare the CTO
and CON operators, various load and hardening parameters are used. The results obtained are summarized
in Tables 1±4, and Figs. 6±8.

Fig. 5. BEM mesh for analysis of the plate with a hole under remote uniaxial tension. The boundary discretization consists of 20

quadratic elements and 45 nodes (including ®ve double nodes for the corners); the domain discretization consists of 18 elements (T6)

and 45 nodes.

Fig. 4. Quarter portion of a plate with a centered circular hole subjected to uniaxial tension.
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Table 4

Comparison of the stress ry at y � 0:0 (x-axis) obtained with CTO BEM and CON BEM using m � 0:2 and p � 0:8p0, where

p0 � 6:0� 10ÿ4

x-coordinate ry (CTO) ry (CON)

1.0000 0.26563Eÿ02 0.22828Eÿ02

1.0632 0.25873Eÿ02 0.23662Eÿ02

1.1263 0.21516Eÿ02 0.23400Eÿ02

1.2211 0.16911Eÿ02 0.17662Eÿ02

1.3158 0.13283Eÿ02 0.13680Eÿ02

1.4579 0.92692Eÿ03 0.94415Eÿ03

1.6000 0.58902Eÿ03 0.59609Eÿ03

1.8000 0.14249Eÿ03 0.13847Eÿ03

2.0000 )0.45574E)03 )0.47853E)03

Table 3

Comparison of CTO BEM and CON BEM using a single load step and m � 0:2 for various load levelsa �p�

Load p 0:8p0 p0 1:2p0 1:4p0

Iteration (CTO) 2 3 4 5

Iteration (CON) 11 23 5 3

CPU s (CTO)b 7.5 7.8 8.4 9.3

CPU s (CON)b 8.6 11.8 9.2 9.1

ResNorm (CTO) 8.1470254Eÿ11 3.4970898Eÿ10 4.8204413Eÿ11 7.9956174Eÿ11

ResNorm (CON) 3.5013656Eÿ10 2.0357074Eÿ09c 5.7704451Eÿ06c 1.8717323Eÿ05c

a The reference load is p0 � 6:0� 10ÿ4.
b SGI workstation.
c Divergence occurs (cf. Eq. (45)).

Table 1

Comparison of CTO BEM and CON BEM with various hardening parametersa considering a single load step with p � p0 � 6:0� 10ÿ4

m 0.2 0.01 0.0001 0.00000001 0.000000

Iteration (CTO) 3 ± ± ± ±

Iteration (CON) 23 23 22 22 ±

CPU s (CTO)b 7.8 7.4 7.4 7.5 7.5

CPU s (CON)b 11.8 11.7 11.7 11.7 7.5

ResNorm (CTO) 3.497089Eÿ10 1.827282Eÿ11 1.827282Eÿ11 1.827282Eÿ11 1.766191Eÿ11

ResNorm (CON) 2.035707Eÿ09 3.917355Eÿ10 3.857193Eÿ10 3.709319Eÿ10 1.766191Eÿ11

a The special case with m� 0.0 corresponds to elastic perfectly plasticity.
b SGI workstation.

Table 2

Comparison of CTO BEM and CON BEM in 4 load steps with m � 0:2 and p � p0 � 6:0� 10ÿ4

Load step 1 2 3 4

Iteration (CTO) ± ± 2 3

Iteration (CON) ± ± 9 22

CPU s (CTO)a 7.4 7.4 7.6 8.1

CPU s (CON)a 7.4 7.5 8.3 12.7

ResNorm (CTO) 4.4154784Eÿ12 5.9490741Eÿ12 3.8687151Eÿ11 3.3372949Eÿ10

ResNorm (CON) 4.4154784Eÿ12 5.9490741Eÿ12 3.6908099Eÿ10 2.1643349Eÿ09

a SGI workstation.
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Fig. 6. ry vs. x=R at y � 0:0.

Fig. 7. Mises e�ective stress �r vs. x=R at y � 0:0.

Fig. 8. rh at R � 1 vs. the angle h along the circular hole boundary.
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Tables 1±3 display the load steps, number of iterations, CPU time (seconds), and the residual norm
(ResNorm) according to Eq. (45). As a general assessment, these tables show that the number of iterations
for the CTO is much less than that required for the CON. Moreover, the residual norm (which provides a
direct measure of how well the convergence condition given by Eq. (45) is satis®ed), and CPU time for the
CTO are also smaller than those for the CON. This illustrates the practical importance of the CTO BEM in a
Newton solution procedure.

Table 1 provides a comparison of the CTO BEM and CON BEM with various hardening parameters
m. Note that when m approaches zero (but is not precisely zero), there are no iterations for the results
obtained with the CTO, but there are iterations with the CON. However, when m is actually zero (perfect
plasticity case), both methods have no iterations. Table 2 shows a comparison of the CTO BEM and
CON BEM at various load steps. Again, one can see that the CTO is clearly better than the CON with
respect to number of iterations, CPU time, and residual norm. Table 3 shows a comparison of different
load levels carried out in a single step. As the load increases, the results obtained with the CTO do
converge according to the condition given by Eq. (45), however, those obtained with the CON only
converge at relatively smaller loading levels. Note that only the smallest load, i.e., p � 0:8p0, leads to a
fully converged result for the CON. This means that, in this example, the CTO can solve the nonlinear
problem with large loading in just one load step, while the CON cannot. Therefore, the results for the
CTO and CON in the last three columns of Table 3 should not be directly compared against each other
because the CON does not satisfy the condition established by Eq. (45). Table 4 shows a comparison of
the stress ry at y � 0:0 obtained with both the CTO BEM and the CON BEM. The results agree relatively
well with each other.

Figures 6±8 show a comparison of stresses obtained at several representative locations by means of the
CTO BEM, CON BEM and the FEM code ABAQUS. The FEM discretization employs 8-noded
quadrilateral elements (Q8) on a relatively ®ne mesh. Fig. 6 shows a comparison of the stress ry at y � 0:0
as a function of x, Fig. 7 gives a comparison of the von-Mises effective stress �rMises at y � 0:0 along the x-
axis, and Fig. 8 provides a comparison of the hoop stress rh along the inner face of the hole as a function
of the angle h (see Figs. 4 and 5 for the problem description and discretization, respectively). From the
plots in these three ®gures, one can be verify that the results of the CTO in one, four, and six load steps
agree very well; and these results are also close to the ABAQUS results. However, the CON results
display relatively larger errors, especially for the one load step case. This might be due to the convergence
accuracy (see Eq. (45)) ± the residual norm for the CTO BEM is smaller than TOL � 5:0� 10ÿ10, while
the CON BEM in one and four load steps cannot reach converged results within this tolerance. In fact,
the CON reaches convergence with TOL � 5:0� 10ÿ9. However, when the CON takes six load steps, the
results satisfy the same convergence criterion as the CTO BEM (i.e., TOL � 5:0� 10ÿ10). Figs. 6±8 show
that the results of CON with six load steps are close to the results of both the CTO and the ABAQUS
program.

6.2. Hollow cylinder subjected to internal pressure

Fig. 9 shows a hollow cylinder subjected to internal pressure, which deforms under plane strain
conditions. This type of problem has been studied by Poon et al. [12] considering symmetry, and by
Bonnet et al. [23], without consideration of symmetry (see related comments on the previous example).
The hollow cylinder has inner radius 1 and outer radius 2. As before, the elastic constants are G � 1:0
and m � 0:3. Consistent units are used here. This example also concerns hardening of the form estab-
lished by Eq. (46), i.e.,

j � 2G�0:001� 0:001��ep�m�;

where m � 0:2 (nonlinear strain hardening). The internal pressure is p � 12� 10ÿ4, resulting in a plastic
front at roughly r � 1:15 (where r denotes the radial distance). The internal cells extend to r � 1:2, which is
far enough to cover the plastic zone. The entire load has been applied in a single load step.
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Two meshes have been considered for this example, one using linear elements and the other using
quadratic elements. The mesh with linear elements is shown in Fig. 10. For the mesh with quadratic ele-
ments, the boundary discretization consists of 30 elements and 64 nodes (including four double nodes for
the corners); the domain discretization consists of 36 elements (T6) and 95 nodes. The mesh with linear
elements (see Fig. 10) is essentially a stripped-down version of the mesh with quadratic elements (not shown
here), where the intermediate nodes of all the quadratic elements (both on the boundary and in the interior
of the domain) are absent.

Fig. 11 shows a comparison of hoop stress (rh) along the h � 0 radial segment (see Fig. 9) obtained with
ABAQUS, the quadratic CTO (QCTO), and the linear CTO (LCTO). Here, ``quadratic'' and ``linear'' refer
to the element type used in the BEM implementation. The ABAQUS solution is used as the reference result,
and the FEM discretization consists of 8-noded quadrilateral elements (Q8) on a relatively ®ne mesh. Both
the QCTO and LCTO agree reasonably well with the ABAQUS (reference) solution.

Fig. 9. Quarter portion of a hollow cylinder subjected to internal pressure loading.

Fig. 10. BEM mesh for analysis of the hollow cylinder subjected to internal pressure. The boundary discretization consists of 30 linear

elements and 34 nodes (including four double nodes for the corners); the domain discretization consists of 36 elements (T3) and 30

nodes.
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6.3. Cracks emanating from a hole in an elastic plate

This example consists of verifying a linear elastic fracture mechanics (LEFM) problem that has been
suggested as a benchmark problem by the ``National Agency for Finite Element Methods and Standards''
(NAFEMS). It is described in the NAFEMS publication ``2D Test Cases in Linear Elastic Fracture Me-
chanics'' and also in the ABAQUS Veri®cation Manual [24]. This example is illustrated in Fig. 12, which
refers to stretching of a rectangular plate with horizontal cracks on opposite sides of a centered circular
hole. Due to symmetry reasons, only one quarter of the test geometry is modeled.

Fig. 12. Quarter portion of a plate with a crack emanating from the hole. The geometry satis®es the following relations:

�R� a�=W � 0:3;R=W � 0:25, and H=W � 2:0.

Fig. 11. Comparison of hoop stress (rh) along the h � 0 radial segment using ABAQUS (reference solution), quadratic CTO (QCTO),

and linear CTO (LCTO). Here, ``quadratic'' and ``linear'' refer to the element type used in the BEM implementation.
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The numerical calculations are performed with 3-noded boundary elements and 6-noded triangular in-
ternal cells (used for J evaluation), as illustrated by Fig. 13. Note that the elements in the interior mesh
change orientation at the crack tip. The material has Young's modulus E � 207 GPa and m � 0:3. Ac-
cording to Fig. 12, the height is H � 20 mm, the width is W � 10 mm, the hole radius is R � 2:5 mm, and
the crack length is a � 0:5 mm The plate is loaded with a uniform tensile traction p � 100 N/mm2 acting on
the top of the plate.

The target solution for the mode I stress intensity factor (SIF) is KI=K0 � 1:05, where K0 � r
������
pa
p

(with
r � p), and plane stress state is considered. In the plane strain BEM code, the J integral is evaluated on the
contours shown in Fig. 13, and then the SIF is calculated in a postprocessing stage using
KI �

�����������������������
J E �1ÿ m2�p

. The results are itemized below:
· Target solution: KI=K0 � 1:05.
· Contour 1: KI=K0 � 1:131.
· Contour 2: KI=K0 � 1:016.

The average result of above two contours is 1.073, and thus the relative error with respect to the
target solution is 2.19%. This example validates the present BEM scheme for solving a mode I LEFM
problem.

6.4. Center-cracked elastoplastic plane stress plate

Hellen [25] has presented a standard test consisting of a center-cracked plane stress plate with a crack
length 2a, width 2W , ratio a=W � 0:2, and height 2:5W . Hellen [25] has studied this problem using the FEM
and Leit~ao [10] has used the BEM. Elastic perfectly plastic behavior, with yield stress rY, is assumed, and a
uniform load of magnitude pn is applied normal to the edges, parallel to the crack axis. This example is
illustrated by Fig. 14, where only one quarter of the test geometry is modeled.

The BEM mesh uses 3-noded boundary elements and 6-noded triangular internal cells, as illustrated by
Fig. 15. Note that the elements in the interior mesh change orientation at the crack tip. The elastic constants
of the material are Young's modulus E � 100; 000 MPa, and m � 0:3. The yield stress is rY � 1; 000 MPa.
The width of the plate is W � 100 mm. The load is applied up to 0:93pn, where pn � 0:8rY.

Fig. 13. BEM mesh for analysis of the elastic plate with a crack emanating from the hole. The boundary discretization consists of 30

quadratic elements and 66 nodes (including six double nodes for the corners and the crack tip); the domain discretization consists of 56

elements (T6) and 135 nodes. The two bold contours are used for J integral evaluation.
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The results obtained are summarized in Fig. 16 and Table 5. The J integrals have been calculated in a
manner analogous to the previous example. Fig. 16 shows a comparison of normalized J integral results
obtained with the CTO BEM, the CON BEM, and those obtained by Leit~ao [10]. The present BEM results
agree well with those by Leit~ao [10]. Although both the CTO and CON results are approximately the same,
Table 5 shows that the number of iterations, CPU time, and residual norm (Eq. (45) obtained with the CTO
BEM are smaller than those obtained with the CON BEM. Thus, this example illustrates the superiority of
the CTO BEM over the CON BEM for a fracture mechanics problem.

Fig. 14. Quarter portion of a plate with a centered crack subjected to uniaxial tension. The (semi-)crack length is a, the width is W, the

height is H, and a=W � 0:2.

Fig. 15. BEM mesh for analysis of the plate with a centered crack. The boundary discretization consists of 43 quadratic elements and

91 nodes (including ®ve double nodes for the corners and the crack tip); the domain discretization consists of 132 elements (T6) and 299

nodes. The three bold contours are used for J integral evaluation.
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Fig. 17. Quarter portion of a hollow cylinder with symmetric horizontal cracks subjected to internal pressure loading.

Fig. 16. Variation of the J integral with the load. Here J is normalized as
������������������������
�EJ�=�ar2

Y�
p

.

Table 5

Comparison of CTO BEM and CON BEM in 10 load steps

Load step 1±5 6 7 8 9 10

Iteration (CTO) ± 3 3 4 4 4

Iteration (CON) ± 7 8 12 18 19

CPU s (CTO)a 308.6 315.3 322.1 330.1 338.7 347.8

CPU s (CON)a 389.6 400.8 413.0 430.3 456.4 485.7

ResNorm (CTO) 7.2235Eÿ11 9.6221Eÿ11 1.0886Eÿ10 1.2705Eÿ10 1.6864Eÿ10 2.1298Eÿ10

ResNorm (CON) 7.2235Eÿ11 1.2473Eÿ10 3.9289Eÿ10 4.7790Eÿ10 3.6198Eÿ10 3.8290Eÿ10

a SGI workstation.
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6.5. Hollow cylinder with symmetric horizontal cracks at the inner face

Fig. 17 shows a quarter portion of a hollow cylinder with symmetric horizontal cracks at the inner
face. The hollow cylinder has inner radius R1 � 60 mm, outer radius R2 � 120 mm, and the crack length is
a � 15 mm. The material is assumed to be elastic perfectly plastic with yield stress rY � 4:0� 104 MPa. The
elastic properties are Young's modulus E � 3:0� 107 MPa, and m � 0:3. The pressure loading is applied at
the inner face of the cylinder (see Fig. 17), and the crack faces are assumed to be traction-free (i.e., there is
no pressure applied to the crack faces). This is a simpli®ed setting, which is used with the purposes of
checking the e�ectiveness of the present computational scheme, and of comparing the CTO BEM, the CON
BEM, and the FEM solution obtained with ABAQUS.

The BEM mesh is illustrated in Fig. 18. Note that the elements in the domain change orientation at the
crack tip. Three contour integral paths are chosen for J integral evaluation. In order to verify the accuracy
of the method used here, the above problem (see Fig. 17) has been solved with the commercial FEM
program ABAQUS. The FEM mesh consists of 659 nodes and 114 8-noded quadratic elements (Q8), which
includes 12 special elements at the crack tip region.

The calculation results are shown in Tables 6±8. Table 6 shows a comparison of the CTO and CON at
various increments in terms of the number of iterations, CPU time, and residual norm (see Eq. (45)). Table
7 lists the average values of the J integral obtained with the CTO BEM, the CON BEM and the ABAQUS
results. The BEM results for the J integral are the average obtained with the three J integral contours
shown in Fig. 18. The relative error is calculated according to

Error � jJ�BEM� ÿ J�ABAQUS�j
J�ABAQUS� 100%:

The results in Table 7 show that both the CTO and CON results agree well with the ABAQUS results.
Table 8 shows a comparison of the J integral at various load levels and the corresponding J values at each
of the contours shown in Fig. 18. Although the CON results for the J integral are very close to the CTO
results, the number of iterations for the CTO BEM are much less than those for the CON BEM. This fact
con®rms the conclusion reached for the previous example.

Fig. 18. BEM mesh for analysis of the hollow cylinder with symmetric horizontal cracks. The boundary discretization consists of 44

quadratic elements and 93 nodes (including ®ve double nodes for the corners and the crack tip); the domain discretization consists of

160 elements (T6) and 357 nodes. The three bold contours are used for J integral evaluation.
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7. Conclusions and extensions

The present study highlights the main features of the CTO and CON in the context of nonlinear con-
stitutive relations and the BEM. It is worth noting that the CON becomes the special case of the CTO when
the parameter b � 1, and r

�i�
n�1 at the ith iteration is computed from the nonconverged stress s

�iÿ1�
n�1 at the

previous iteration (rather than from the converged stress). Thus, use of the CON in conjunction with the
RRA leads to loss of the quadratic rate of asymptotic convergence which characterizes Newton's iteration
method. The CTO is also especially advantageous in sensitivity calculations [11,26].

Various examples have been presented, which include fracture problems and J integral evaluation. The
numerical results support that the CTO is more powerful than the CON with respect to number of iter-
ations, CPU time, residual norm, and convergence properties. For instance, in the ®rst example of Section
6, the CTO achieves convergence in only one load step, while the CON needs six load steps (see Figs. 6±8).

Direct extension of the present work includes investigation of improved strategies for accurate evaluation
of stresses at corner, e.g., using a Galerkin BEM [27], and use of other material models and criteria. This

Table 8

J integral (N/mm) values of CTO BEM and CON BEM at three contour pathsa

J contour 10,000 MPa 12,000 MPa 14,000 MPa 16,000 MPa

1 (CTO) 516.60 745.24 1019.0 1359.3

2 (CTO) 463.38 668.51 914.14 1219.5

3 (CTO) 415.78 599.69 819.41 1090.2

1 (CON) 516.60 745.24 1019.0 1358.4

2 (CON) 463.38 668.51 914.14 1218.5

3 (CON) 415.78 599.69 819.41 1089.3

a The contour numbers are shown in Fig. 18.

Table 6

Comparison of CTO BEM and CON BEM in 10 load steps, p � 14; 000 MPa

Load step 1±8 9 10

Iteration (CTO) ± 2 3

Iteration (CON) ± 5 6

CPU s (CTO)a 456.3 463.4 471.7

CPU s (CON)a 450.8 461.7 473.8

ResNorm (CTO) 9.2004Eÿ12 3.6237Eÿ10 1.1465Eÿ11

ResNorm (CON) 9.2004Eÿ12 2.5792Eÿ10 1.5201Eÿ10

a SGI workstation.

Table 7

Comparison of J integrals (N/mm) with CTO BEM, CON BEM, and ABAQUS

Loading (MPa) J (CTO) Error (%) J (CON) Error (%) J (ABAQUS)

10,000 465.25 0.5 465.25 0.5 462.97

12,000 671.15 1.0 671.15 1.0 677.93

14,000 917.52 2.8 917.52 2.8 944.07

16,000 1223.00 3.7 1222.07 3.8 1270.00
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work also has potential applications to nonlinear self-adaptive BEM with localized nonlinearity, which can
be considered as an extension of previous work by Paulino et al. [27±30]. For instance, in an h-adaptive
scheme, the initial mesh can be set as the boundary mesh only. As the analysis progresses, the boundary
mesh is automatically re®ned, and as plasticity develops, new domain cells are automatically created. In this
manner, elastoplastic problems could be solved ef®ciently (i.e., without unnecessary interior discretization)
and without prior knowledge of the location and size of zones of nonlinearity (see Section 1). This topic is
presently under investigation.
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