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Abstract. A crack in a viscoelastic functionally graded material (FGM) layer sandwiched between two dissimilar
homogeneous viscoelastic layers is studied under antiplane shear conditions. The shear relaxation modulus of
the FGM layer follows the power law of viscoelasticity, i.e., µ = µ0 exp(βy/h)[t0 exp(δy/h)/t]q , where h is
a scale length, and µ0, t0, β, δ and q are material constants. Note that the FGM layer has position-dependent
modulus and relaxation time. The shear relaxation functions of the two homogeneous viscoelastic layers are µ =
µ1(t1/t)

q for the bottom layer and µ = µ2(t2/t)
q for the top layer, where µ1 and µ2 are material constants,

and t1 and t2 are relaxation times. An elastic crack problem of the composite structure is first solved and the
‘correspondence principle’ is used to obtain stress intensity factors (SIFs) for the viscoelastic system. Formulae
for SIFs and crack displacement profiles are derived. Several examples are given which include interface cracking
between a viscoelastic functionally graded interlayer and a viscoelastic homogeneous material coating. Moreover,
a parametric study is conducted considering various material and geometric parameters and loading conditions.

Key words: Antiplane shear, correspondence principle, fracture, functionally graded material, stress intensity
factor, viscoelasticity.

1. Introduction

Functionally graded materials, or FGMs, are special composites that possess continuously
graded properties with gradual change in microstructural details (e.g. composition, morphol-
ogy, crystal structure) over predetermined geometrical orientations and distances (Hirai, 1996).
For example, in a ceramic/metal FGM assemblage, the ceramic phase offers thermal barrier
effects and protects the metal from corrosion and oxidation while the metal phase offers
strength and toughness (Suresh and Mortensen, 1998; Tokita, 1999)

The initial emphasis for FGMs focused on thermal problems, e.g. thermal barrier coat-
ings for space applications (Koizumi, 1993). Under high temperature, materials may exhibit
creep and stress relaxation behavior. Viscoelasticity offers a basis for the study of phenom-
enological behavior of creep and stress relaxation. Another important area of application of
viscoelasticity includes polymer-based FGMs (see, for example, Parameswaran and Shukla,
1998; Lambros et al., 1999; Marur and Tippur, 2000). In this paper, a crack in a viscoelastic
FGM layer sandwiched between two dissimilar homogeneous viscoelastic layers is studied
under antiplane shear conditions (Figure 1). The shear relaxation function of the FGM layer
follows the power law of viscoelasticity with position-dependent modulus and relaxation time,
i.e.,
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Figure 1. A viscoelastic FGM layer sandwiched between two dissimilar homogeneous viscoelastic layers occu-
pying the region |x| < ∞ and −H1 − h1 ≤ y ≤ H2 + h2 with a crack at |x| ≤ a and y = 0. The lower boundary
(y = −H1 −h1) is fixed and the upper boundary (y = H2 +h2) is subjected to the uniform antiplane displacement
w0W(t).

µ = µ(y, t) = µ0 exp(βy/h)[t0 exp(δy/h)/t]q ,
where h is a scale length, and µ0, t0, β, δ and q are material constants. The shear relaxation
functions of the two homogeneous viscoelastic layers are assumed as

µ = µ(t) = µ1(t1/t)
q : bottom layer and µ = µ(t) = µ2(t2/t)

q : top layer,

where µ1 and µ2 are material constants, and t1 and t2 are relaxation times. It is noted that
the FGM layer has position-dependent relaxation time, i.e. the relaxation time of the FGM
depends on the y coordinate exponentially. An elastic crack problem of the composite struc-
ture is first solved and the ‘correspondence principle’ is used to obtain stress intensity factors
(SIFs) for the viscoelastic system.

The antiplane shear crack problem has been extensively studied in the literature as it pro-
vides the basis for understanding the opening mode crack problem. Several numerical and
analytical/semi-analytical solutions have been presented considering homogeneous materials
(e.g., Paulino et al., 1993), nonhomogeneous materials (e.g., Erdogan, 1985), functionally
graded coatings (e.g., Jin and Batra, 1996), homogeneous and nonhomogeneous materials
with strain gradient effects (Paulino et al., 1998), bonded homogeneous viscoelastic layers
(Atkinson and Chen, 1996), and a viscoelastic FGM strip (Paulino and Jin, 2001b). In the latter
paper, various material models were investigated (e.g., linear standard solid, power law model
without and with position-dependent relaxation time) and the solution of the viscoelastic
problem employed Paulino and Jin’s (2001a) revisited correspondence principle.

The present paper considers a crack in a viscoelastic FGM layer embedded between two
dissimilar homogeneous viscoelastic layers subjected to antiplane shear loading. Although the
solution technique employed here is the same as that in Paulino and Jin (2001b) (namely the
integral equation method), the development of the solution procedure, the treatment of the
boundary value problem, and the kernel involved are quite different. The main advantage of

fr354851.tex; 27/08/2001; 7:53; p.2



A crack in a viscoelastic functionally graded material layer 285

the present solution is that it can be applied to various coating structures, for example, both
an FGM coating on a homogeneous substrate and also a two-layer coating structure with an
FGM interlayer can be regarded as special cases of the tri-layer structure of Figure 1. The
crack may be located in the interior of the FGM layer, or at the interface between the FGM
layer and a homogeneous layer. Hence, the present paper emphasizes engineering applications
in important areas such as coating technologies as opposed to Paulino and Jin (2001b) that
emphasizes theoretical aspects of fracture mechanics of viscoelastic FGMs.

A few additional comments about the related work by Atkinson and Chen (1996), who
have also studied multilayer viscoelastic materials subjected to antiplane shear cracking, are
in order. They deal with the problem of a crack lying in a homogeneous viscoelastic layer
embedded in a different viscoelastic medium while we deal with the problem of a crack in a
viscoelastic FGM layer sandwiched between two dissimilar homogeneous viscoelastic layers.
They use the standard linear solid model, while we use the power law material model and
extend such model to FGMs. They employ a free space boundary value problem where the
properties of the top and bottom half space are identical, while we employ finite geometry with
different properties for the top and bottom layers. Finally, we believe that our technique, using
integral equation method, is simpler than the one presented by Atkinson and Chen (1996).

This manuscript is organized as follows. The next section presents the basic equations
of antiplane shear for viscoelastic materials. Then, an integral equation solution approach
for a crack in a viscoelastic FGM layer sandwiched between two dissimilar homogeneous
viscoelastic layers is presented. Formulae for stress intensity factors (SIFs) (as a function of
geometric parameters, material constants and loading) are derived considering time-dependent
loading, such as exponential loading and Heaviside step function loading. Afterwards, the
recovery of the displacement field is carried out and applied to obtain the actual crack profile.
Numerical results for the above problem are presented and discussed. Finally, conclusions
are inferred and a potential extension of this work is pointed out. An Appendix, showing the
integral equation kernel derivation, supplements the paper.

2. Viscoelastic antiplane shear problem

Under antiplane shear conditions, the only nonvanishing field variables are

u3(x; t) = w(x, y; t),
σ31(x; t) = τx(x, y; t), σ32(x; t) = τy(x, y; t),
2ε31(x; t) = γx(x, y; t), 2ε32(x; t) = γy(x, y; t)

in which σij are stresses, εij are strains, t is time, and x = (x, y). The basic equations of
mechanics satisfied by these variables are

∂τx

∂x
+ ∂τy

∂y
= 0, (1)

γx = ∂w

∂x
, γy = ∂w

∂y
, (2)

τx =
∫ t

0
µ(x, y; t − τ)

dγx
dτ

dτ, τy =
∫ t

0
µ(x, y; t − τ)

dγy
dτ

dτ, (3)
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where µ(x, y; t) is the shear relaxation function. Note that for FGMs the relaxation function
depends on both time and spatial position, whereas in traditional homogeneous viscoelasticity,
they are only functions of time, i.e., µ ≡ µ(t) (Christensen, 1971).

In the present study, a power law material model is employed. The shear relaxation mod-
ulus for the FGM is assumed as (Paulino and Jin, 2001a)

µ = µ0 exp(β
y

h
)

[
t0 exp(δy/h)

t

]q
= µ0 exp

[
(β + δq)

y

h

] (
t0

t

)q

, (4)

where µ0, t0, β, δ, q are material constants and h is a scale length (see Figure 1).

3. A mode III crack in a layered FGM system

Consider an infinite viscoelastic FGM system containing a crack of length 2a, as shown in
Figure 1. The FGM layer is sandwiched between two dissimilar homogeneous viscoelastic
layers. The system is fixed along the lower boundary (y = −H1 − h1) and is displaced
w(t) = w0W(t) along the upper boundary (y = H2 + h2), where w0 is a constant, W(t) is
a nondimensional function of time t , H1 and H2 are the thicknesses of the bottom and top
layers, respectively, and h1 and h2 (define the location of the crack) satisfy h = h1 + h2 in
which h is the thickness of the FGM layer. It is assumed that the crack lies on the x-axis from
−a to a and is of infinite extent in the z-direction (normal to the x − y plane). The crack
surfaces remain traction free. The boundary conditions of the crack problem, therefore, are

w = 0, y = −(H1 + h1), |x| < ∞, (5)

w = w0W(t), y = (H2 + h2), |x| < ∞, (6)

τy(x,−h+
1 ) = τy(x,−h−

1 ), |x| < ∞, (7)

w(x,−h+
1 ) = w(x,−h−

1 ), |x| < ∞, (8)

τy(x, h
+
2 ) = τy(x, h

−
2 ), |x| < ∞, (9)

w(x, h+
2 ) = w(x, h−

2 ), |x| < ∞, (10)

τy = 0, y = 0, |x| ≤ a, (11)

τy(x, 0+) = τy(x, 0−), a < |x| < ∞, (12)

w(x, 0+) = w(x, 0−), a < |x| < ∞. (13)

The shear relaxation modulus of the FGM layer is given in (4). The relaxation functions
for the two homogeneous viscoelastic layers are assumed as follows

µ = µ1(t1/t)
q = µ1(t1/t0)

q(t0/t)
q : bottom layer (14)

and

µ = µ2(t2/t)
q = µ2(t2/t0)

q(t0/t)
q : top layer, (15)
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where µ1 and µ2 are characteristic moduli, and t1 and t2 are characteristic relaxation times.
To make the problem amenable to analytical treatment, the material parameter q is assumed
to be the same for all the three material layers. This is a modeling restriction which implies a
physical constraint in the material system.

By considering continuity of shear relaxation modulus across the interfaces between the
homogeneous layers and the FGM layer, the constants β, δ, µ0 and t0 in (4) can be expressed
by the material properties in the homogeneous layers as follows

β = ln(µ2/µ1), (16)

δ = ln(t2/t1), (17)

µ0 = µ1(µ2/µ1)
h1/h, (18)

t0 = t1(t2/t1)
h1/h. (19)

According to the correspondence principle (Paulino and Jin, 2001a), one can first consider
a nonhomogeneous elastic material with the following shear modulus functions

µ = µ0

(
µ1

µ0

) (
t1

t0

)q

: bottom layer, (20)

µ = µ0 exp
[
(β + qδ)

(y
h

)]
: FGM layer, (21)

µ = µ0

(
µ2

µ0

) (
t2

t0

)q

: top layer. (22)

Then the viscoelastic solution can be readily obtained by means of the correspondence prin-
ciple.

For the elastic crack problem, the solution consists of a regular solution (for an uncracked
strip) and a perturbed solution (by the crack). The regular stress solution can be obtained in a
straightforward manner as follows

τx = 0,

τy = τ0 = µ0β̃w0/h

exp(β̃h1/h)− exp(−β̃h2/h)+ (H1/h)(β̃/µ̃1)+ (H2/h)(β̃/µ̃2)
,

(23)

where β̃, µ̃1 and µ̃2 are constants given by

β̃ = β + qδ, µ̃1 =
(
µ1

µ0

) (
t1

t0

)q

, µ̃2 =
(
µ2

µ0

)(
t2

t0

)q

, (24)

respectively. The displacement in the FGM layer (−h1 ≤ y ≤ h2) is

w =
w0

[
(H1/h)(β̃/µ̃1)+ exp(β̃h1/h)− exp(−β̃y/h)

]
exp(β̃h1/h)− exp(−β̃h2/h)+ (H1/h)(β̃/µ̃1)+ (H2/h)(β̃/µ̃2)

. (25)

For the two homogeneous layers, the displacement for the bottom layer (−H1 − h1 ≤ y ≤
−h1) is given by
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w = w0(β̃/µ̃1)(y +H1 + h1)/h

exp(β̃h1/h)− exp(−β̃h2/h)+ (H1/h)(β̃/µ̃1)+ (H2/h)(β̃/µ̃2)
(26)

and the displacement for the top layer (h2 ≤ y ≤ H2 + h2) is given by

w = w0

[
1 + (β̃/µ̃2)(y −H2 − h2)/h

exp(β̃h1/h)− exp(−β̃h2/h)+ (H1/h)(β̃/µ̃1)+ (H2/h)(β̃/µ̃2)

]
. (27)

For the perturbed problem, the following boundary conditions must be satisfied

w = 0, y = −H1 − h1, |x| < ∞, (28)

w = 0, y = H2 + h2, |x| < ∞, (29)

τy(x,−h+
1 ) = τy(x,−h−

1 ), |x| < ∞, (30)

w(x,−h+
1 ) = w(x,−h−

1 ), |x| < ∞, (31)

τy(x, h
+
2 ) = τy(x, h

−
2 ), |x| < ∞, (32)

w(x, h+
2 ) = w(x, h−

2 ), |x| < ∞, (33)

τy = −τ0, y = 0, |x| ≤ a, (34)

τy(x, 0+) = τy(x, 0−), a < |x| < ∞, (35)

w(x, 0+) = w(x, 0−), a < |x| < ∞, (36)

where τ0 is given in (23).
The displacements w(x, y) are harmonic functions in the two homogeneous elastic layers,

i.e.,

∇2w = 0, (37)

and are governed by the following equation in the nonhomogeneous elastic (FGM) layer

∇2w + β̃

h

∂w

∂y
= 0. (38)

By using the Fourier transform method (see, for example, Erdogan et al., 1973), the boundary
value problem described by Equations (28) to (38) can be reduced to the following singular
integral equation (see Appendix)∫ 1

−1

[
1

s − r
+ k(r, s)

]
ϕ(s) ds = −2π

τ0

µ0
, |r| ≤ 1, (39)

where the unknown density function ϕ(r) is given by

ϕ(x) = ∂

∂x
[w(x, 0+)− w(x, 0−)], (40)

the nondimensional coordinates r and s are
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r = x/a, s = x′/a, (41)

respectively, and the Fredholm kernel k(r, s) is

k(x, x′) = a

∫ ∞

0

{
ξ − 2(m1A+m2B)(m1C +m2D)

(m2 −m1)(AD − BC)

}

×sin[(x − x′)ξ ]
ξ

dξ,

(42)

with m1,m2, A,B,C and D being given in the Appendix.
The function ϕ(r) can be further expressed as

ϕ(r) = ψ(r)/
√

1 − r2, (43)

where ψ(r) is continuous for r ∈ [−1, 1]. When ϕ(r) is normalized by w0/H , the elastic
Mode III stress intensity factor (SIF), Ke

III , is obtained as

Ke
III = −1

2
µ0

(w0

H

) √
πa ψ(1). (44)

Here, H is the total thickness of the FGM system (see Figure 1), i.e.,

H = H1 +H2 + h. (45)

It is noted that ψ(1) is dependent on several material and geometric parameters including
µ2/µ1, t2/t1, q, h/a, h1/h, H1/h and H2/h. Such dependencies will be investigated later in
the paper (see Section 7, Results) by means of parametric studies.

4. Stress intensity factor (SIF)

The SIF for the viscoelastic FGM system can be obtained using the correspondence princi-
ple between the elastic and the Laplace transformed viscoelastic equations (Paulino and Jin,
2001a, 2001b). Thus, formulae for SIFs are derived first for exponential loading, and then the
results obtained are particularized for the Heaviside step function loading.

4.1. SIF FOR EXPONENTIAL LOADING

As stated above, for nonhomogeneous viscoelastic materials, the Mode III SIF, KIII , can be
obtained by means of the correspondence principle. The upper boundary y = H2 + h2 of the
strip is subjected to a time-dependent antiplane displacement w0W(t) as shown in Figure 1.
In this case, the SIF is

KIII = −1

2
µ0

(w0

H

) √
πa ψ(1)L−1 [

t
q

0 +(1 − q) pq W̄(p)
]
, (46)

where p is the Laplace transform variable, L−1 represents the inverse Laplace transform,
W̄(p) is the Laplace transform of W(t), and +(·) is the Gamma function.

Consider as an example

W(t) = exp(−t/tL) → W̄ (p) = 1/(p + 1/tL), (47)

where tL is a positive constant measuring the time variation of loads. Thus the SIF become
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KIII = −1

2
µ0

(w0

H

) √
πa ψ(1)F (t), (48)

where F(t) is given by

F(t) =
(
t0

t

)q

− 1

tL

∫ t

0

(
t0

τ

)q

exp

(
− t − τ

tL

)
dτ. (49)

4.2. SIF FOR HEAVISIDE STEP FUNCTION LOADING

For Heaviside step loading conditions, the material system of Figure 1 is displaced w0 along
the boundary y = H2+h2. As before, the SIF can be obtained by means of the correspondence
principle, and it is given by the expression (48) with F(t) being given by (cf. (49))

F(t) =
(
t0

t

)q

. (50)

5. Crack displacement profile

Accurate description of the crack profile is important in fracture mechanics, especially when
the crack opening/sliding displacements are measured experimentally and correlated with
numerical results. Thus the crack displacement profile for the problem illustrated in Figure 1
is recovered in this Section. First, exponential loading is considered, and then the formulation
is particularized for Heaviside step function loading.

5.1. EXPONENTIAL LOADING

It follows from Equations (40) and (43), and the correspondence principle, that the crack
sliding displacement under the time-dependent loading, w0W(t), can be expressed by the
density function ϕ(x) or ψ(r) (normalized by w0/H ) as follows

[w] = w(x, 0+)− w(x, 0−)

= w0W(t)

H

∫ x

−a
ϕ(x′) dx′ = w0W(t)

( a

H

)∫ r

−1

ψ(s)√
1 − s2

ds.
(51)

The displacement at the upper surface of the crack is given by

w(x, 0+) = 1

2
[w] + 1

2π

[
w0W(t)

H

] ∫ a

−a
kd(x, x

′)ϕ(x′) dx′

= 1

2
[w] + w0W(t)

2π

( a

H

) ∫ 1

−1
kd(r, s)

ψ(s)√
1 − s2

ds,

(52)

where the displacement kernel, kd(x, x′), is

kd(x, x
′) = −

∫ ∞

0

{
1 + 2(m1A+m2B)(C +D)

(m2 −m1)(AD − BC)

}

×sin[(x − x′)ξ ]
ξ

dξ.

(53)
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The displacement at the lower crack surface is then given by

w(x, 0−) = w(x, 0+)− [w]. (54)

5.2. HEAVISIDE STEP FUNCTION LOADING

For Heaviside step function loading, the crack opening displacement and the displacement at
the upper crack face can be obtained directly from (51) and (52) as follows

[w] = w0

( a

H

)∫ r

−1

ψ(s)√
1 − s2

ds, (55)

and

w(x, 0+) = 1

2
[w] + w0

2π

( a

H

) ∫ 1

−1
kd(r, s)

ψ(s)√
1 − s2

ds, (56)

respectively. The displacement of the lower crack face is still given by (54).

6. Numerical aspects

A comprehensive treatment of singular integral equations and their applications to crack prob-
lems can be found in the article by Erdogan et al. (1973) and the book by Hills et al. (1996). To
solve the governing integral Equation (39), ψ(r) is first expanded into a series of Chebyshev
polynomials of the first kind. By noting the relationship (43) between ϕ(r) and ψ(r), the
unknown ϕ(r) is expressed as follows

ϕ(r) = ψ(r)√
1 − r2

= 1√
1 − r2

∞∑
n=1

anTn(r), |r| ≤ 1, (57)

where Tn(r) are Chebyshev polynomials of the first kind and an are unknown constants. By
substituting the above equation into integral Equation (58), we obtain the discrete system

∞∑
n=1

{πUn−1(r)+Hn(r)} an = −2π
τ0

µ0
, |r| ≤ 1, (58)

where Un−1(r) are Chebyshev polynomials of the second kind and Hn(r) are given by

Hn(r) =
∫ 1

−1
ak(r, s, β)

Tn(s)√
1 − s2

ds. (59)

The detailed derivation of the governing integral equation is given in the Appendix. To solve
the functional Equation (58), the series on the left side is truncated at the N th term. A col-
location technique is then used and the collocation points, ri , are chosen as the roots of the
Chebyshev polynomials of the first kind, i.e.,

ri = cos
(2i − 1)π

2N
, i = 1, 2, . . . , N. (60)

The functional Equation (58) is then reduced to a linear algebraic equation system
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292 G. H. Paulino and Z.-H. Jin

Figure 2. Normalized mode III SIF versus nondimensional crack length 2a/h for various shear modulus ratios
µ2/µ1, (a) t2/t1 = 0.2; (b) t2/t1 = 1.0; (c) t2/t1 = 5.0 (H1 = H2 = h, h1 = 0.5h).

N∑
n=1

{πUn−1(ri)+Hn(ri)} an = −2π
τ0

µ0
, i = 1, 2, . . . , N, (61)

where τ0 is given by Equation (23). After an(n = 1, 2, . . . , N) are determined, the nondi-
mensional SIF, −ψ(1, β)/2, is computed as follows

−1

2
ψ(1, β) = −1

2

N∑
n=1

an. (62)

By observing Equation (48), one verifies that the SIF is a multiplification of three parts.
The first part is a dimensional base, µ0(w0/H)

√
πa; the second part is a geometrical and ma-

terial nonhomogeneity correction factor, −ψ(1)/2, which can be obtained from the numerical
solution of the singular integral Equation (39); and the third part is the time evolution of SIF,
F(t), which is obtained (analytically) from the inverse Laplace transform.

In the following numerical calculations, 20 collocation points lead to a convergent SIF
result. According to Figure 1, by taking H1 → 0, H2 → 0, and h1 = h2 = h/2 (crack located

fr354851.tex; 27/08/2001; 7:53; p.10



A crack in a viscoelastic functionally graded material layer 293

Figure 3. Normalized mode III SIF versus nondimensional crack length 2a/h for various relaxation time ratios
t2/t1, (a) µ2/µ1 = 0.2; (b) µ2/µ1 = 1.0; (c) µ2/µ1 = 5.0 (H1 = H2 = h, h1 = 0.5h).

at the center of the FGM layer), the single layer formulation by Paulino and Jin (2001b) is
recovered as a particular case of the present formulation.

7. Results

Figures 2 and 3 show normalized SIF (see Equation (48)), −ψ(1)/2, versus the nondimen-
sional crack length 2a/h considering various modulus ratio µ2/µ1 and relaxation time ratio
t2/t1. The geometric parameters are taken as H1 = H2 = h and h1 = 0.5h, i.e., the crack
is located at the center of the layered structure. The solution is valid for exponential and
Heaviside step function loading (see Section 4). In general, the normalized SIF decreases
with increasing 2a/h. This occurs because the normalization includes the parameter 1/

√
a in

the denominator (cf., Equation (48) ). The SIF is always lower than that of the corresponding
homogeneous material (µ2 = µ1 and t2 = t1).

Comparing the three graphs of Figure 3, one notices that the curves for the SIFs as a
function of the ratio of the crack length to FGM layer thickness (2a/h) are further apart as
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Figure 4. Coating on a substrate with an FGM interlayer. The crack is located in the middle of the FGM interlayer.

|µ2/µ1| differs from 1.0. Moreover, the parameters µ2/µ1 < 1, t2/t1 > 1 lead to higher
normalized SIFs than t2/t1 < 1 (cf., Figure 3(a)). The opposite is true when µ2/µ1 > 1 (cf.,
Figure 3(c)).

Figure 4 illustrates a coating on a substrate with an FGM interlayer. The geometric para-
meters are taken as H1 = 100h, H2 = h and h1 = 0.5h, i.e. the crack is located in the middle
of the FGM layer. For this model, Figures 5 and 6 show normalized SIF, −ψ(1)/2, versus the
nondimensional crack length 2a/h considering various modulus ratio µ2/µ1 and relaxation
time ratio t2/t1. Comparison between Figures 2 and 5, and Figures 3 and 6, shows that the
geometry has a pronounced effect on the normalized SIFs.

Figure 7 illustrates a coating on a substrate with an FGM interlayer. The geometric para-
meters are taken as H1 = 100h, H2 = h and h1 = h, i.e. the crack is located at the interface
between the FGM interlayer and the coating. For this model, Figure 8 shows normalized SIF,
−ψ(1)/2, versus the nondimensional crack length 2a/h considering various modulus ratio
µ2/µ1 and a relaxation time ratio t2/t1 = 1. The overall behavior is similar to the one in
Figure 5(b).

Figure 9 illustrates an FGM coating on a substrate. The geometric parameters are taken
as H1 = 100h, H2 = 0 and h1 = 0.5h, i.e. the crack is located in the middle of the FGM
coating. For this model, Figure 10 shows normalized SIF, −ψ(1)/2, versus the nondimen-
sional crack length 2a/h considering various modulus ratio µ2/µ1 and a relaxation time ratio
t2/t1 = 1.1 The overall behavior is similar to the ones in Figures 5(b) and 8. Thus the previous
results show a significant influence of geometrical parameters (coating on a substrate versus
comparable layer thickness in a tri-layer structure) on SIFs.

Figure 11 illustrates the time evolution of normalized SIF, F(t), considering both exponen-
tial and Heaviside step function loading (see (49) and (50)). It is evident that under the fixed
displacement condition, SIFs decrease monotonically with increasing time. By observing the

1Finite element calculations were performed for the in-plane case analogous to that of Figure 9 when µ2/µ1
= 5.0. The results obtained for the normalized mode I SIFs versus 2a/h display a flat pattern similar to that of
Figure 10 (see curve for µ2/µ1 = 5.0).
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Figure 5. Normalized mode III SIF versus nondimensional crack length 2a/h for various shear modulus ratios
µ2/µ1, (a) t2/t1 = 0.2; (b) t2/t1 = 1.0; (c) t2/t1 = 5.0 (H1 = 100h,H2 = h, h1 = 0.5h) – see model in
Figure 4.

plots in Figure 11, one notices that, for exponential loading, the mode III SIF can become
negative as the ratio tL/t0 decreases, which occurs, for example, for tL/t0 = 1.0. This happens
because of stress relaxation for long-time behavior.

Figure 12 illustrates the normalized SIF (normalized by µ0(w0/H)
√
πa) versus time for

Heaviside step function loading for various modulus ratio µ2/µ1 and a relaxation time ra-
tio t2/t1 = 1.0. The geometric parameters are taken as H1 = H2 = h, h1 = 0.5h and
2a/h = 1.0. The SIF decreases monotonically with increasing time. Figure 13 illustrates
the normalized SIF (normalized by µ0(w0/H)

√
πa) versus time for exponential loading. The

same qualitative observations for Figure 12 also hold for Figure 13.
Figure 14 shows crack profiles for exponential loading for µ2/µ1 = 5.0, t2/t1 = 1.0,

tL/t0 = 5.0 and various nondimensional times t/t0. The geometric parameters are taken as
H1 = H2 = h, h1 = 0.5h and 2a/h = 1.0. Figure 15 shows crack profiles for Heaviside
step function loading for relaxation time ratio t2/t1 = 1.0 and various modulus ratios µ2/µ1.
A comparison of all the plots in Figures 14 and 15 permits to evaluate the corresponding
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Figure 6. Normalized mode III SIF versus nondimensional crack length 2a/h for various relaxation time ratios
t2/t1, (a) µ2/µ1 = 0.2; (b) µ2/µ1 = 1.0; (c) µ2/µ1 = 5.0 (H1 = 100h,H2 = h, h1 = 0.5h) – see model in
Figure 4.

crack profiles for various material parameters considering a representative geometry. This
information is potentially valuable when correlated with fracture experiments, e.g., crack face
displacement measurements.

8. Concluding remarks

This work illustrates an application of Paulino and Jin’s (2001a) revisited correspondence
principle to antiplane shear cracking in bonded viscoelastic layers where one of the layers
is an FGM. An effective integral equation method to solve the fracture mechanics problem
is presented. The elastic FGM crack problem is solved first and the correspondence princi-
ple between the elastic and the Laplace transformed viscoelastic equations is used to obtain
SIFs for viscoelastic FGMs. Formulae for SIFs and crack displacement profiles are provided.
Several numerical results for these quantities are presented for the power law model with
both position-independent and position-dependent relaxation time. The examples emphasize
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Figure 7. Coating on a substrate with an FGM interlayer. The crack is located at the interface between the top two
layers.

Figure 8. Normalized mode III SIF versus nondimensional crack length 2a/h for various shear modulus ratios
µ2/µ1, t2/t1 = 1.0 (H1 = 100h,H2 = h, h1 = h) – see model in Figure 7.

engineering applications involving coating structures with a crack located somewhere in the
interior or on the boundary of the FGM (inter)layer (e.g., coating on a substrate with an FGM
interlayer, FGM coating on a substrate). This investigation shows a significant influence of
geometry (coating on a substrate versus comparable layer thickness in a tri-layer structure) on
SIFs. This work has potential to be used to calibrate numerical methods (e.g. finite element
method) for viscoelastic FGMs. Future investigation involves extension of the present investi-
gation (on mode III crack) to mixed-mode fracture (in-plane loading). Such topic is presently
being pursued by the authors.
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Figure 9. FGM coating on a substrate.

Figure 10. Normalized mode III SIF versus nondimensional crack length 2a/h for various shear modulus ratios
µ2/µ1, t2/t1 = 1.0 (H1 = 100h,H2 = 0, h1 = 0.5h) – see model in Figure 9.
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Figure 11. Time variation of normalized mode III SIF.

Figure 12. Normalized mode III SIF versus time: Heaviside step function loading for various modulus ratioµ2/µ1
(t2/t1 = 1.0, H1 = H2 = h, h1 = 0.5h, 2a/h = 1.0).

Appendix

A relatively detailed derivation of integral Equation (39) is given here, which refers to the
mode III fracture mechanics problem illustrated by Figure 1. By using Fourier transform, the
solution of the basic Equation (38) for the FGM layer can be expressed as
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Figure 13. Normalized mode III SIF versus time: exponential loading for various modulus ratio µ2/µ1
(tL/t0 = 5.0, t2/t1 = 1.0, H1 = H2 = h, h1 = 0.5h, 2a/h = 1.0).

Figure 14. Crack face displacements: exponential loading (tL/t0 = 5.0, µ2/µ1 = 5.0, t2/t1 = 1.0,
H1 = H2 = h, h1 = 0.5h, 2a/h = 1.0).

w = 1√
2π

∫ ∞

−∞
{A2 exp(m1y)+ B2 exp(m2y)} exp(−ixξ) dξ, −h1 ≤ y ≤ 0,

w = 1√
2π

∫ ∞

−∞
{C2 exp(m1y)+D2 exp(m2y)} exp(−ixξ) dξ, 0 ≤ y ≤ h2,

(63)

where A2, B2, C2 and D2 are unknowns, and m1 and m2 are given by
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Figure 15. Crack face displacements: Heaviside step function loading for various modulus ratio µ2/µ1
(t2/t1 = 1.0, H1 = H2 = h, h1 = 0.5h, 2a/h = 1.0).

m1 ≡ m1(ξ) = −β̃ +
√
β̃2 + 4h2ξ 2

2h
, m2 ≡ m2(ξ) = −β̃ −

√
β̃2 + 4h2ξ 2

2h
. (64)

The displacements in the two homogeneous layers may be expressed as follows

w = 1√
2π

∫ ∞

−∞
{A1 exp(−|ξ |y)+ B1 exp(|ξ |y)} exp(−ixξ) dξ, −H1 − h1 ≤ y ≤ −h1,

w = 1√
2π

∫ ∞

−∞
{A3 exp(−|ξ |y)+ B3 exp(|ξ |y)} exp(−ixξ) dξ, h2 ≤ y ≤ H2 + h2,

(65)

where A1, B1, A3 and B3 are unknowns.
The stress τy is obtained from (36) and (65) through Hooke’s law, i.e.

τy = µ0 exp(β̃y/h)
∂w

∂y
=

µ0 exp(β̃y/h)√
2π

∫ ∞

−∞
{m1A2 exp(m1y)+m2B2 exp(m2y)} exp(−ixξ) dξ, −h1 ≤ y ≤ 0,

τy = µ0 exp(β̃y/h)
∂w

∂y
=

µ0 exp(β̃y/h)√
2π

∫ ∞

−∞
{m1C2 exp(m1y)+m2D2 exp(m2y)} exp(−ixξ) dξ, 0 ≤ y ≤ h2,

τy = µ0µ̃1
∂w

∂y
=

µ0µ̃1√
2π

∫ ∞

−∞
|ξ | {−A1 exp(−|ξ |y)+B1 exp(|ξ |y)} exp(−ixξ) dξ, −H1 − h1 ≤ y ≤ −h1,
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τy = µ0µ̃2
∂w

∂y
=

µ0µ̃2√
2π

∫ ∞

−∞
|ξ | {−A3 exp(−|ξ |y)+ B3 exp(|ξ |y)} exp(−ixξ) dξ, h2 ≤ y ≤ H2 + h2.

(66)

By using the boundary conditions (28) to (36), the unknowns A1, A2, Bi(i = 1, 2, 3) and
C2,D2 can be expressed by A3 which is given by

A3 = −(m1A+m2B)/(iξ
√

2π )

(m2 −m1)(AD − BC)

∫ a

−a
ϕ(x′) exp(ix′ξ) dx′, (67)

where ϕ(x) is the density function defined by (40) and A,B,C,D are known functions of ξ :

A = exp[(m1 − |ξ |)h1]
m2 −m1

{
m2[1 − exp(−2H1|ξ |)] − µ̃1|ξ | exp(β̃h1/h)[1 + exp(−2H1|ξ |)]

}
,

B = exp[(m2 − |ξ |)h1]
m1 −m2

{
m1[1 − exp(−2H1|ξ |)] − µ̃1|ξ | exp(β̃h1/h)[1 + exp(−2H1|ξ |)]

}
,

C = exp[−(m1 + |ξ |)h2]
m2 −m1

{
m2[1−exp(−2H2|ξ |)]+µ̃2|ξ | exp(−β̃h2/h)[1+exp(−2H2|ξ |)]

}
,

D = exp[−(m2 + |ξ |)h2]
m1 −m2

{
m1[1−exp(−2H2|ξ |)]+µ̃2|ξ | exp(−β̃h2/h)[1+exp(−2H2|ξ |)]

}
.

(68)

Furthermore, the stress τy at y = 0 is expressed by ϕ(x) as

τy |y=0 = µ0

2π

∫ a

−a

[
1

x′ − x
+ k(x, x′)

]
ϕ(x′) dx′, (69)

where k(x, x′) is given in (42). By substituting the above expression into the boundary condi-
tion (34), the singular integral Equation (39) is deduced.
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