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Abstract. An edge crack in a strip of a functionally graded material (FGM) is studied under transient thermal
loading conditions. The FGM is assumed having constant Young’s modulus and Poisson’s ratio, but the thermal
properties of the material vary along the thickness direction of the strip. Thus the material is elastically homoge-
neous but thermally nonhomogeneous. This kind of FGMs include some ceramic/ceramic FGMs such as TiC/SiC,
MoSi2/Al2O3 and MoSi2/SiC, and also some ceramic/metal FGMs such as zirconia/nickel and zirconia/steel.
A multi-layered material model is used to solve the temperature field. By using the Laplace transform and an
asymptotic analysis, an analytical first order temperature solution for short times is obtained. Thermal stress
intensity factors (TSIFs) are calculated for a TiC/SiC FGM with various volume fraction profiles of the constituent
materials. It is found that the TSIF could be reduced if the thermally shocked cracked edge of the FGM strip is
pure TiC, whereas the TSIF is increased if the thermally shocked edge is pure SiC.

Key words: Fracture mechanics, stress intensity factor, functionally graded material, thermal stress, heat conduc-
tion.

1. Introduction

Ceramic materials represent one of the most promising materials for future technologies of
aerospace, nuclear and other engineering applications because of their excellent properties
at high temperatures and their superior corrosion and wear resistance. One major limitation
of ceramics is their inherent brittleness that can result in catastrophic failure under severe
thermal shock loads. To overcome this disadvantage, considerable efforts have been made
to toughen ceramics with some success. On the other hand, for ceramics in high tempera-
ture applications, one may specifically design the material to reduce thermal stresses when
subjected to a thermal shock. This is one of the objectives to be fulfilled by the concept of
functionally graded materials (FGMs)(Koizumi, 1993; Hirai, 1996; Suresh and Mortensen,
1998). An FGM is a multi-phase material with the volume fractions of the constituents varying
gradually in a pre-determined profile, thus giving a non-uniform micro-structure in the ma-
terial with continuously graded macro-thermomechanical properties. By introducing thermal
conductivity gradient, Hasselman and Youngblood (1978) showed that significant reductions
in the magnitude of the tensile thermal stress in ceramic cylinders could be achieved. Thermal
residual stresses may be relaxed in a metal-ceramic layered material by inserting a functionally
graded interface layer between the metal and the ceramic (Kawasaki and Watanabe, 1987;
Drake et al., 1993; Giannakopoulos et al., 1995). When subjected to thermal shocks, FGM
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coatings may suffer significantly less damage than conventional ceramic coatings (Kuroda
et al., 1993; Takahashi et al., 1993).

The knowledge of fracture behavior of FGMs is important in order to evaluate their in-
tegrity. The existing analytical studies in this aspect have been mainly related to crack growth
behavior in FGMs with specific material properties. By assuming an exponential spatial vari-
ation of elastic modulus, Delale and Erdogan (1983), Erdogan (1995) and Erdogan and Wu
(1997) solved crack problems under mechanical loading conditions. Gu and Asaro (1997a)
calculated the stress intensity factor (SIF) for a semi-infinite crack in both isotropic and
orthotropic materials. They also studied crack deflection problem in FGMs (Gu and Asaro,
1997b). Honein and Herrmann (1997) studied conservation laws for inhomogeneous elastic
materials and obtained the SIF for a semi-infinite crack by using the path-independent integral
that they proposed. Since the material properties in those studies were specifically assumed,
the SIF concept could be well defined. For general inhomogeneous materials, Schovanec and
Walton (1988) and Jin and Noda (1994a) showed that the crack tip fields are identical to those
in homogeneous materials provided that the material properties are continuous and piece-
wise differentiable. Hence, the SIF can still be used to study fracture behavior of FGMs
as long as the crack tip nonlinear deformations and process zones are completely included
within the region dominated by the SIF. The SIF dominant (K-dominant) zone, however, may
be reduced significantly if the modulus gradient is very large. Jin and Batra (1996a) gave a
rough estimate on the effect of modulus gradients in theK-dominant zone. They also studied
crack growth resistance curve (R-curve) in FGMs using both rule of mixtures and crack-
bridging concepts. The effect of loading conditions and specimen size on theR-curve and
residual strength behavior were also investigated (Jin and Batra, 1996a; 1998). Cai and Bao
(1998) performed a crack-bridging analysis to predict crack propagation in FGM coatings.
Using a finite element method, Bao and Wang (1995) studied multi-cracking in an FGM
coating. Carpenter et al. (1999) presented a testing protocal and analysis for a sub-scale FGM
specimen suitable for experimental measurement of critical SIF andJ–R curve. Paulino et al.
(1999) analyzed an antiplane shear crack in an FGM in the context of gradient elasticity.

For thermal loading problems, by assuming exponential variations in both elastic and ther-
mal properties, Noda and Jin (1993) and Erdogan and Wu (1996) computed steady thermal
stress intensity factors (TSIFs) for cracks in thermally loaded FGM strips. Jin and Noda
(1994b) and Jin and Batra (1996b) also considered cracks subjected to transient thermal
loads. Choi et al. (1998) studied cracking in a layered material with an FGM interfacial zone
subjected to a thermal shock. Using both experimental and numerical techniques, Kokini and
Choules (1995) and Kokini and Case (1997) investigated surface and interface cracking in
FGM coatings subjected to thermal shocks. By employing a finite element method, Noda
(1997) analyzed an edge crack problem in a zirconia/titanium FGM plate subjected to cyclic
thermal loads. Reddy and Chin (1998) performed a thermomechanical analysis of FGM cylin-
ders and plates under bending. Aboudi et al. (1997) examined microstructural optimization of
FGMs subjected to a thermal gradient via the coupled higher order theory. Joachim-Ajao
and Barber (1998) have studied the effect of material properties in thermoelastic contact
problems. Georgiadis et al. (1991) presented an asymptotic solution for short-time transient
heat conduction between two dissimilar bodies in contact. All the above references focus on
FGMs, except the last two, which have a more general scope.

In this paper, an edge crack in an FGM strip under transient thermal loading conditions is
studied (see Figure 1). The FGM is assumed having constant Young’s modulus and Poisson’s
ratio, but the thermal properties of the material vary along the thickness direction of the strip.
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A multi-layered material model is used to solve the temperature field. By using Laplace trans-
form and asymptotic analysis, an analytical first order temperature solution for short times
is obtained. Thermal stresses and TSIFs are calculated for a TiC/SiC FGM, and the effect
of the volume fraction profiles of the constituent materials on thermal stresses and TSIFs is
discussed.

General purpose numerical methods such as the finite element method (FEM) or the bound-
ary element method (BEM) can be used to tackle the problem investigated here. However, the
standard FEM leads to undesirable jumps in derivative response quantities (e.g., fluxes and
stresses) at bimaterial interfaces. Moreover, these methods require a discretization process
which is time consuming and may require several iteration steps for achieving the desired
accuracy level. The present contribution combines analytical techniques with the integral
equation method to solve heat transfer and edge crack problems in FGM strips subjected to
transient thermal loading conditions by means of a multi-layered material model with arbitrary
number of layers. Thus the solution for this class of problems can be obtained effectively,
efficiently and accurately.

2. Temperature field

A thermal conduction problem for an FGM strip is described, a multi-layered material model
is introduced, and its discretization is discussed. The classical temperature solution for a
homogeneous material is presented and limitations of applying the solution to the layered
material model is pointed out. The solution approach taken here aims at overcoming the
complexity of existing temperature solutions based on multi-layered material model in the
literature. Thus, a feasible solution approach is given here by means of the Laplace transform
technique. To avoid difficulties associated with the numerical inversion of the Laplace trans-
form, a closed form analytical solution is sought. This is fulfilled by inverting the Laplace
transform of the temperature for large values of their argument. Thus an analytical asymptotic
solution of temperature for short times is obtained. This asymptotic solution is the main con-
tribution of the present work in the sense that it allows to study the effect of volume fraction
profiles in FGMs on the thermal stress and thermal fracture (see Section 6).

2.1. MULTI -LAYERED MATERIAL MODEL

Consider an infinite strip of thicknessb with an edge crack of lengtha as shown in Figure 1.
The strip is initially at a constant temperature. Without loss of generality, the initial constant
temperature can be assumed as zero. The surfacesX = 0 andX = b of the strip are suddenly
cooled down to temperatures−T0 and−Tb, respectively. Since the heat will flow only in the
X-direction, the initial and boundary conditions for the temperature field are

T = 0, t = 0, (1)

T = −T0, X = 0, (2)

T = −Tb, X = b. (3)

Here an idealized thermal shock boundary condition is assumed, i.e., the heat transfer coef-
ficient on the surfaces of the FGM strip is infinitely large. This corresponds the most severe
thermal stress induced in the strip. In other words, the thermal stress will be lower if a finite
heat transfer coefficient is used. Later, we will discuss the effect of a finite heat transfer
coefficient on the solution method developed in this section.
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Figure 1. An FGM strip occupying the region 0≤ x ≤ b and |y| < ∞. The bounding surfaces of the strip are
subjected to uniform thermal loadsT0 andTb. (a) a layered material; (b) an edge crack in the layered material.

The heat flow is controlled by the following conduction equation

∂

∂X

[
k(X)

∂T

∂X

]
= ρ(X)c(X)∂T

∂t
. (4)

whereT is the temperature field,t the time,k(X) the thermal conductivity,ρ(X) the mass
density andc(X) the specific heat. Tanigawa et al. (1996) used a laminated material model to
solve (4). They modeled the FGM by a laminated composite and each lamina was assumed
as a homogeneous layer. With this model, they were able to obtain the temperature field
in a similar way to that described by Ozisik (1980) for the heat conduction in a laminated
composite material. The disadvantage of their analysis method is that to ensure convergence
of the series solution, one has to numerically determine a sufficiently large number of the roots
(eigenvalues) of a transcendental equation and the transcendental function is a determinant
whose order is twice the number of layers which may become very large if the FGM strip is
to be reasonably modeled by a layered material. This is particularly true for small times at
which the solution series converges very slowly.In this study, we also use a discrete model,
i.e., the FGM strip is devided into many layers in theX-direction, sayN +1 layers, as shown
in Figure 1, and in each layer, the material properties are assumed as constants. However,
we first determine the temperatures at the interfaces between layers and represent intra-layer
temperatures by those interface temperatures without solving an eigenvalue problem. Further,
an asymptotic temperature solution for small times is obtained here.

The heat conduction equation in thenth homogeneous layer is given by

∂2T

∂X2
= 1

κn

∂T

∂t
, Xn < X < Xn+1, n = 0,1, ..., N, (5)
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whereXn andXn+1 are theX− coordinates of the two boundaries of thenth layer andκn is
the thermal diffusivity of the layer given by1

κn = kn/(ρncn), n = 0,1, ..., N, (6)

in which kn, ρn andcn are the thermal conductivity, mass density and specific heat of thenth
layer. Here it is understood thatX0 = 0 andXN+1 = b. The temperatures at the boundaries
of thenth layer are assumed asTn(t) andTn+1(t), respectively. Hence, the conditions for the
nth layer are

T = 0, t = 0,

T = Tn(t), X = Xn,
T = Tn+1(t), X = Xn+1. (7)

Note thatT0(t) = −T0 andTN+1(t) = −Tb. By assuming the above conditions, the following
temperature continuity conditions (Carslaw and Jaeger, 1959) at the interfaces between the
layers are satisfied

T |X→X+n = T |X→X−n , n = 1,2, ..., N. (8)

TheN unkown interface temperatures,Tn(t), (n = 1,2, ..., N), are to be determined by the
heat flux continuity conditions (Carslaw and Jager, 1959) at the interfaces between the layers

kn−1
∂T
∂X

∣∣∣X→X−n = kn ∂T∂X ∣∣X→X+n , n = 1,2, ..., N. (9)

The continuity conditions (8) and (9) were employed by Gray and Paulino (1997) to solve
general interface and multi-zone problems for finite geometries by means of the symmetric
Galerkin boundary element method.

2.2. TEMPERATURE SOLUTION IN TERMS OF INTERFACE TEMPERATURES

The temperature solution in thenth layer under the conditions (7) is well known and can be
found in heat conduction books, for example, Carslaw and Jaeger (1959), as follows

T (x, t) = 2κn
hn

∞∑
`=1

`π

hn
exp(−κn`2π2t/h2

n) sin

(
`πx

hn

)
×

×
∫ t

0
exp(κn`

2π2t ′/h2
n)
[
Tn(t

′)− (−1)` Tn+1(t
′)
]

dt ′,

0< x < hn, n = 0,1, ..., N, (10)

wherex is the local coordinate andhn is the thickness of thenth layer given by

x = X −Xn, hn = Xn+1 −Xn, (11)

respectively. The above expression of the temperature field can not be used in (9) to determine
the unknownsTn(t) as the right hand side series does not converge uniformly in the interval

1The symbolsk andκ should not be confused. Note thatk denotes thermal conductivity andκ denotes thermal
diffusivity.
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considered. Thus the following alternative form for the temperature is used (Ozisik, 1980)

T (x∗, τ ) = (1− x∗)Tn(τ)+ x∗Tn+1(τ )−
−2

∞∑
`=1

sin(`πx∗)
`π

[
Tn(τ)− β`n

∫ τ

0
exp(−β`n(τ − τ ′))Tn(τ ′)dτ ′

]
+

+2
∞∑
`=1

(−1)`
sin(`πx∗)

`π

[
Tn+1(τ )− β`n

∫ τ

0
exp(−β`n(τ − τ ′))Tn+1(τ

′)dτ ′
]
,

0< x∗ < 1, n = 0,1, ..., N, (12)

wherex∗ andτ are nondimensional space coordinate and time

x∗ = x/hn = (X −Xn)/(Xn+1−Xn), (13)

τ = tκ0/b
2, (14)

respectively, andβ`n is a constant defined by

β`n = κn

κ0

(
b

hn

)2

(`π)2. (15)

The unknown interface temperaturesTn(τ)may be determined by substituting the temperature
solution (12) into the interface conditions (9). This will result in a system of Volterra integral
equations ofTn(τ) as follows

kn−1

kn
{Tn(τ)− Tn−1(τ )−

−2
∞∑
`=1

(−1)`[(Tn−1(τ )− β`(n−1)

∫ τ

0
exp(−β`(n−1)(τ − τ ′))Tn−1(τ

′)dτ ′] +

+2
∞∑
`=1

[(Tn(τ)− β`(n−1)

∫ τ

0
exp(−β`(n−1)(τ − τ ′))Tn(τ ′)dτ ′] }

= hn−1

hn
{Tn+1(τ )− Tn(τ)−

−2
∞∑
`=1

[Tn(τ)− β`n
∫ τ

0
exp(−β`n(τ − τ ′))Tn(τ ′)dτ ′] +

+2
∞∑
`=1

(−1)`[(Tn+1(τ )− β`n
∫ τ

0
exp(−β`n(τ − τ ′))Tn+1(τ

′)dτ ′] } ,

n = 1,2, ..., N. (16)

It is evident that the above equation is not appropriate to numerically determine the unknowns
Tn(τ) because the series involved converge slowly and, more importantly, the convergence is
dependent on the yet to be determinedTn(τ). To overcome this difficulty, we do not determine
Tn(τ) by direct use of (16). Instead, we will study the problem in the Laplace transformed
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plane and try to first obtain the Laplace transforms ofTn(τ). By applying Laplace transform
to (16) and using the convolution theorem, we have

kn−1

kn

{
T̄n(s)

[
1+ 2

∞∑
`=1

s

s + β`(n−1)

]
− T̄n−1(s)

[
1+ 2

∞∑
`=1

(−1)`
s

s + β`(n−1)

]}

= hn−1

hn

{
T̄n+1(s)

[
1+ 2

∞∑
`=1

(−1)`
s

s + β`n

]
− T̄n(s)

[
1+ 2

∞∑
`=1

s

s + β`n

]}
,

n = 1,2, ..., N, (17)

in which T̄n(s) is the Laplace transform ofTn(τ), defined by

T̄n(s) =
∫ ∞

0
exp(−sτ)Tn(τ)dτ. (18)

It is noted thatT̄0(s) = −T0/s andT̄N+1(s) = −Tb/s sinceT0(τ ) = −T0 andTN+1(τ ) = −Tb.
Hence, Equation (17) may be rewritten in compact form as

N∑
n=1

amn(s)T̄n(s) = bm(s), m = 1,2, ..., N, (19)

whereT̄n(s) are normalized byT0, amn(s) has a banded structure with the non-zero elements
given by

an(n−1)(s) = −kn−1

kn
Gn−1(s), n = 2,3, ..., N,

ann(s) = kn−1

kn
Fn−1(s)+ hn−1

hn
Fn(s), n = 1,2, ..., N,

an(n+1)(s) = −hn−1

hn
Gn(s), n = 1,2, ..., N − 1, (20)

and the components ofbm(s) are

b1(s) = −k0

k1

G0(s)

s
,

bN(s) = −
(
Tb

T0

)
hN−1

hN

GN(s)

s
,

bm(s) = 0, m = 2,3, ..., N − 1, (21)

whereFn(s) andGn(s) are

Fn(s) = 1+ 2s
∞∑
`=1

1

s + β`n =
√
s

γn
coth

√
s

γn
, n = 0,1,2, ..., N, (22)

Gn(s) = 1+ 2s
∞∑
`=1

(−1)`

s + β`n =
√
s

γn

1

sinh

√
s

γn

, n = 0,1,2, ..., N, (23)
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respectively, in which the constantsγn are defined by

γn =
√
κn

κ0

(
b

hn

)
=
√
β`n

`2π2
. (24)

After T̄n(s) are solved from (19), we may use inverse Laplace transform to getTn(τ) in the
time domain. In general, numerical inversion has to be invoked, however, there are difficulties
with the numerical inverse Laplace transform. This is particularly true if allT̄n(s) ( n = 1, 2,
...,N ) are simultaneously inverted since the numerical algorithms are generally not stable
(Bellman et al., 1966). For instance, a small perturbation inT̄n(s) may induce a large change
in Tn(τ).

2.3. ASYMPTOTIC SOLUTION OF TEMPERATURE FOR SHORT TIME

It is well known in the Laplace transform theory that one can obtain an approximate solution
of the temperature for small values of timeτ by inverting its Laplace transform for large
values ofs. Thus the asymptotic solutions of the interface temperaturesTn(τ) for small values
of time τ are investigated next.

For large values ofs, it is first noted that

Fn(s)→
√
s

γn
, s →∞,

Gn(s)→ 2

√
s

γn
exp

(
−
√
s

γn

)
, s →∞. (25)

Substitution of the above expressions into (20) and (21) yields the first order expressions of
an(n−1)(s), ann(s), an(n+1)(s) andb1(s), bN(s) for larges as follows

an(n−1)(s)→ a0
n(n−1)

√
s exp

(
−
√
s

γn−1

)
, s →∞,

ann(s)→ a0
nn

√
s, s →∞,

an(n+1)(s)→ a0
n(n+1)

√
s exp

(
−
√
s

γn

)
, s →∞, (26)

and

b1(s)→ b0
1√
s

exp

(
−
√
s

γ0

)
, s →∞,

bN(s)→
(
Tb

T0

)
b0
N√
s

exp

(
−
√
s

γN

)
, s →∞, (27)

where the constantsa0
n(n−1), a

0
nn, a

0
n(n+1) andb0

1, b0
N are

a0
n(n−1) = −2

kn−1

kn

1

γn−1
, n = 2,3, ..., N,

a0
nn =

kn−1

kn

1

γn−1
+ hn−1

hn

1

γn
, n = 1,2, ..., N,

a0
n(n+1) = −2

hn−1

hn

1

γn
, n = 1,2, ..., N − 1, (28)
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and

b0
1 = −2

k0

k1

1

γ0
, b0

N = −2
hN−1

hN

1

γN
. (29)

With the above asymptotic expressions, the approximate solutions ofT̄n(s) for large values of
s are obtained as follows

T̄n(s) = T̄ (1)n (s)+
(
Tb

T0

)
T̄ (2)n (s), n = 1,2, ..., N,

T̄ (1)n (s) = L(0)n

s
exp

(
−√s

n∑
i=1

1

γi−1

)
,

T̄ (2)n (s) = P (0)n

s
exp

(
−√s

N∑
i=n

1

γi

)
, n = 1,2, ..., N, (30)

where the constantsL(0)n andP (0)n are

L(0)n = b̃0
n/a

0
nn, n = 1,2, ..., N, (31)

P (0)n = −
a0
n(n+1)

a0
nn

P
(0)
n+1, n = 1,2, ..., N − 1,

P
(0)
N = b0

N/a
0
NN, (32)

in which b̃0
n are given by

b̃0
1 = b0

1,

b̃0
n = −

a0
n(n−1)

a0
(n−1)(n−1)

b̃
(0)
n−1, n = 2,3, ..., N. (33)

By applying inverse Laplace transform to (30), we obtain the normalized interface tempera-
turesTn(τ) ( normalized byT0 ) for short timeτ as follows

Tn(τ) = T (1)n (τ )+
(
Tb

T0

)
T (2)n (τ ), n = 1,2, ..., N,

T (1)n (τ ) = L(0)n erfc

(
1

2
√
τ

n∑
i=1

1

γi−1

)
,

T (2)n (τ ) = P (0)n erfc

(
1

2
√
τ

N∑
i=n

1

γi

)
, n = 1,2, ..., N, (34)

where erfc(·) is the complementary error function defined by

erfc(x) = 1− erf(x) = 1− 2√
π

∫ x

0
exp(−y2)dy. (35)

After obtaining the interface temperatures, the intra-layer temperatures (normalized byT0)
can be calculated by substituting (34) into (12). For the first layer (0th layer), the temperature
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is given by

T (x∗, τ ) = −(1− x∗)+ x∗T1(τ )+
+2

∞∑̀
=1

sin(`πx∗)
`π

exp(−β`0 τ)+

+2
∞∑̀
=1
(−1)`

sin(`πx∗)
`π

[
I
(3)
`1 (τ )+

(
Tb

T0

)
I
(4)
`1 (τ )

]
.

(36)

For the last layer (N th layer), the temperature is obtained by

T (x∗, τ ) = (1− x∗)TN(τ)− x∗
(
Tb

T0

)
−

−2

(
Tb

T0

) ∞∑̀
=1
(−1)`

sin(`πx∗)
`π

exp(−β`N τ)−

−2
∞∑̀
=1

sin(`πx∗)
`π

[
I
(1)
`N (τ)+

(
Tb

T0

)
I
(2)
`N (τ)

]
.

(37)

Finally, for the intermediate layers (n = 1,2, ..., N − 1), the temperature is

T (x∗, τ ) = (1− x∗)Tn(τ)+ x∗Tn+1(τ )−

−2
∞∑̀
=1

sin(`πx∗)
`π

[
I
(1)
`n (τ )+

(
Tb

T0

)
I
(2)
`n (τ )

]
+

+2
∞∑̀
=1
(−1)`

sin(`πx∗)
`π

[
I
(3)
`(n+1)(τ )+

(
Tb

T0

)
I
(4)
`(n+1)(τ )

]
.

(38)

The functionsI (i)`n (i = 1,2,3,4; n = 1,2, ..., N) in (36)–(38) are given by

I
(1)
`n (τ ) =

L(0)n

2
√
π

(
n∑
i=1

1

γi−1

)∫ τ

0
(τ ′)−

3
2 exp

−β`n(τ − τ ′)− 1

4τ ′

(
n∑
i=1

1

γi−1

)2
 dτ ′,

(39)

I
(2)
`n (τ ) =

P (0)n

2
√
π

(
N∑
i=n

1

γi

)∫ τ

0
(τ ′)−

3
2 exp

−β`n(τ − τ ′)− 1

4τ ′

(
N∑
i=n

1

γi

)2
 dτ ′, (40)

I
(3)
`n (τ ) =

L(0)n

2
√
π

(
n∑
i=1

1

γi−1

)∫ τ

0
(τ ′)−

3
2 exp

−β`(n−1)(τ − τ ′)− 1

4τ ′

(
n∑
i=1

1

γi−1

)2
 dτ ′,

(41)

I
(4)
`n (τ ) =

P (0)n

2
√
π

(
N∑
i=n

1

γi

)∫ τ

0
(τ ′)−

3
2 exp

−β`(n−1)(τ − τ ′)− 1

4τ ′

(
N∑
i=n

1

γi

)2
 dτ ′.

(42)

Equations (36)–(38) will be used to study thermal stresses and TSIFs in the FGM strip.
Usually the series in these equations converge slowly. A linear interpolation may be used to
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obtain the temperatures within the layers with satisfactory accuracy if a large number of layers
is chosen. In this particular case, the series in (36)–(38) may be ignored, i.e., only the first line
in each of these Equations (36)–(38) is considered to determine intra-layer temperatures.

3. Thermal stress

The temperature and mechanics analyses are uncoupled in this work, i.e. the temperature
analysis is performed first, and the stress analysis is conducted afterwards. In the following
study of thermal stresses in the FGM strip and TSIFs at the tip of an edge crack shown in
Figure 1, a special kind of FGM is considered in which the Young’s modulus and Poisson’s
ratio are constant. This assumption will limit the applications of the present analysis, however,
there do exist some FGM systems, especially ceramic/ceramic FGMs, for which Young’s
modulus may be approximately assumed as constant. Examples include MoSi2/Al2O3 system
(Miyamoto et al., 1997) and TiC/SiC system (Sand et al., 1999). Ceramic/metal systems in-
clude zirconia/nickel FGM (Miyamoto, 1997; Moriya et al., 1999) whose Young’s modulus
may not change significantly because nickel alloys and partially stablized zirconia have similar
Young’s modulus, and zirconia/steel system (Kawasaki and Watanabe, 1993). The advantage
of assuming a constant Young’s modulus is that the crack analysis is simplified.

The FGM strip is assumed to undergo plane strain deformations and is free from constraints
at the far away ends (see Figure 1). The only nonzero in-plane stressσYY is given by (Jin and
Batra, 1996b)

σ TYY(X, τ) = −
Eα(X)

1− ν T (X, τ)+

+ E

(1− ν2)A0

[
(A22−XA21)

∫ b

0

Eα(X′)
1− ν T (X′, τ )dX′−

− (A12−XA11)

∫ b

0

Eα(X′)
1− ν T (X′, τ )X′ dX′

]
, (43)

whereE is Young’s modulus,ν is Poisson’s ratio,α(X) is the coefficient of thermal expansion,
the superscriptT in σ TYY stands for thermal stress, andAij (i, j = 1,2) andA0 are given by

A11 =
∫ b

0

E

1− ν2
dX = Eb

1− ν2
, A12 = A21 =

∫ b

0

E

1− ν2
X dX = Eb2

2(1− ν2)
,

A22 =
∫ b

0

E

1− ν2
X2 dX = Eb3

3(1− ν2)
, A0 = A11A22− A12A21. (44)

By substituting the temperature solution (36)–(38) into (43), we obtain the normalized thermal
stress in the strip

σ TYY (X, τ)

Eα0T0/(1− ν) = −
α(X)

α0
T (X, τ)+

(
4− 6

X

b

) N∑
n=0

(
hn

b

)(
αn

α0

)
Hn1(τ )−

−
(

6− 12
X

b

)
N∑
n=0

[(
hn

b

)2(
αn

α0

)
Hn2(τ )+

(
hn

b

)(
Xn

b

)(
αn

α0

)
Hn1(τ )

]
,

(45)
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whereαn (n = 0,1, ..., N) are the coefficients of thermal expansion in thenth layer and
Hn1(τ ) andHn2(τ ) are

Hn1(τ ) =
∫ 1

0
T (x∗, τ )dx∗, Hn2(τ ) =

∫ 1

0
T (x∗, τ )x∗dx∗. (46)

in whichT (x∗, τ ) is the temperature in thenth layer given in (36)–(38).

4. Thermal stress intensity factor (TSIF)

Consider an edge crack in the FGM strip shown in Figure 1b. The boundary conditions for the
thermal crack problem are

σXX = σXY = 0, X = 0 andX = b; Y ≥ 0, (47)

σXY = 0, 0≤ X ≤ b, Y = 0, (48)

v = 0, a < X ≤ b, Y = 0, (49)

σYY= − σ TYY(X, τ), 0≤ X ≤ a, Y = 0, (50)

whereσ TYY(X, τ) is given in (45),v is the displacement inY -direction,a andb are the crack
length and the strip thickness, respectively. By using Fourier transform and integral equation
methods, the above boundary value problem is reduced to the following singular integral
equation∫ 1

−1

[
1

s − r +K(r, s)
]
φ(s, τ)ds = −2π(1− ν2)

E
σTYY(X, τ), |r| ≤ 1, (51)

where the unknown density functionφ(r, τ) is

φ(X, τ) = ∂v(X,0, τ )/∂X, (52)

with the notationv ≡ v(X, Y, τ), andr = 2X/a − 1, s = 2X′/a − 1. The kernelK(r, s) is
singular only at(r, s) = (−1, −1) and is given by

K(X, X′) = a
∫ ∞

0
f (X,X′, ξ )dξ, (53)

with f (X,X′, ξ ) being given by

f (X,X′, ξ ) = −0.25/
[
1− (2+ 4(bξ)2

)
exp(−2bξ)+ exp(−4bξ)

]×
×{[−1− (1− 2X′ξ)(3− 2Xξ)]exp[−(X +X′)ξ ] +
+ [(−(1+ 2X′ξ)+ (3+ 2(b −X)ξ)(1− 2bξ(1− 2(b −X′)ξ))+
+ (2+ 4(bξ)2)(1− 2(b − X′)ξ)]exp[−(X −X′ + 2b)ξ ] +
+ [1+ (3+ 2(b −X)ξ)(1+ 2(b −X′)ξ)]exp[−(X +X′ + 2b)ξ ] +
+ [−4− 2X′ξ + 2Xξ ]exp[−(X −X′ + 4b)ξ ] +
+ [1+ (1− 2(b −X′)ξ)(3− 2(b −X)ξ)]exp[−(2b −X −X′)ξ ] +
+ [(3− 2(b −X)ξ)(−1+ 2bξ(1− 2X′ξ))− (1− 2X′ξ)] ×
× exp[−(X′ −X + 2b)ξ ] +
+ [−(3− 2(b −X)ξ)(1+ 2X′ξ)+ (1− 2bξ(1− 2(b −X′)ξ))−
− (2+ 4(bξ)2)]exp[−(4b −X − X′)ξ ] +
+ [4− 2X′ξ + 2Xξ ]exp[−(X′ −X + 4b)ξ ]}.
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The functionφ(r, τ) can be further expressed as (Gupta and Erdogan, 1974)

φ(r, τ) = ψ(r, τ)/√1− r, (54)

whereψ(r, τ) is continuous and bounded forr ∈ [−1, 1]. Whenφ(r, τ) is normalized by
(1+ ν)α0T0, the normalized TSIF,K∗, at the crack-tip is obtained as

K∗ = (1− ν)KI
Eα0T0

√
πb
= −1

2

√
a

b
ψ(1, τ ), (55)

whereKI denotes the mode I TSIF.

5. FGM material properties

A two phase ceramic/metal or ceramic/ceramic FGM is considered here. Since the Young’s
modulus and Poisson’s ratio are assumed constant, only thermal properties are of concern.
Usually, the effective properties of an FGM are calculated from that of its constituent materials
and the volume fractions by means of a micromechanical model. Though such model is not
available for FGMs yet, some models for conventional homogeneous composite materials may
be utilized with reasonable accuracy (Reiter et al., 1997; Reiter and Dvorak, 1998; Dvorak and
Srinivas, 1999). The FGM is assumed as a two phase composite material with graded volume
fractions of its constituent phases.

The thermal conductivity of the FGM,k(X), is

k(X) = km
[
1+ Vi(X)(ki − km)

km + (ki − km)(1− Vi(X))/3
]
, (56)

where the subscriptsi andm stand for the inclusion and matrix properties, respectively, and
Vi(X) is the volume fraction of the inclusion phase. The effective property (56) was obtained
by Hashin and Shtrikman (1962) for a composite spheres model, and by Christensen (1979)
in the context of the three phase model, a generalized self-consistent scheme. In actual FGMs,
there may be no distinct matrix and inclusion phases in a region, however, (56) is still used to
approximate the thermal conductivity of the FGM.

The mass density of the FGM,ρ(X), is described by a rule of mixtures

ρ(X) = Vi(X)ρi + (1− Vi(X))ρm. (57)

The coefficient of thermal expansion of the FGM,α(X), is also calculated from the rule of
mixtures

α(X) = Vi(X)αi + (1− Vi(X))αm. (58)

which is reduced from the general result of two-phase composites (Levin, 1968) for the special
case that the two phases have identical elastic bulk moduli.

The specific heat of the FGM,c(X), is assumed to follow the rule of mixtures in this work

c(X) = Vi(X)ci + (1− Vi(X))cm. (59)

With the thermal properties and mass density of the FGM given by (56)–(59), the temper-
atures, thermal stresses and TSIFs can be calculated from (36)–(38), (45) and (55) for various
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Figure 2. Volume fractions of the inclusion phase in an FGM strip.

Table 1. Material Properties of TiC and SiC.

Materials Young’s Poisson’s Coefficient of Thermal Mass Specific

modulus ratio thermal expansion conductivity density heat

(GPa) (10−6 K−1) (W m−1 K−1) (g cm−3) (J g−1 K−1)

TiC 400 0.2 7.0 20 4.9 0.7

SiC 400 0.2 4.0 60 3.2 1.0

volume fraction profilesVi(X). The volume fraction,Vi(X), is assumed in the form of a power
function, i.e.,

Vi(X) = (X/b)p. (60)

ThusX = 0 corresponds to pure matrix phase andX = b is pure inclusion material. Figure 2
shows the volume fraction of the inclusion phase for various values ofp.

6. Numerical results and discussion

In the following numerical calculations, a TiC/SiC FGM is considered. The material properties
of the titanium carbide (TiC) and the silicon carbide (SiC) are listed in Table 1 (Munz and Fett,
1999; Sand et al., 1999). This is a ceramic/ceramic FGM with potential applications in areas
such as cutting tools and turbines. In most cases, we will assume that the thermally shocked
edgeX = 0 is pure TiC (as the matrix phase) and the opposite edge is pure SiC. We also only
consider the case ofTb/T0 = 0, i.e.Tb = 0 andT0 6= 0. This represents a severe thermal
shock load on the strip, which is important for engineering applications.
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6.1. TEMPERATURE FIELD

The temperature in the FGM strip is calculated from the asymptotic solution (36)–(38). To ob-
tain an idea to what extent the temperature can be approximated by (36)–(38), these equations
are first applied to a homogeneous strip where each layer has identical material properties.
The results are plotted against the following complete temperature solution (normalized by
T0) for a homogeneous strip (Carslaw and Jaeger, 1959),

T (X, τ) = −1−
(
Tb

T0
− 1

)
X

b
− 2

∞∑
`=1

(Tb/T0)(−1)` − 1

`π
sin

(
`πX

b

)
exp(−`2π2τ).

(61)

Since the series in (36)–(38) converge very slowly, a linear interpolation is used to calculate
the intra-layer temperatures. Figure 3a shows the normalized temperatures at different nondi-
mensional timeτ for a 20 layer model where the layers have equal thickness. Figure 3b shows
the results for a 30 layer model (equal thickness). It is seen from Figure 3 that the asymptotic
solution and the complete solution are almost identical in the entire range of the strip for
nondimensional times up toτ = 0.05. Those solutions also agree well with each other in
the entire strip for times up toτ = 0.10. For times up toτ = 0.15, the solutions are in good
agreement in the region ofX/b < 0.6. The results are almost the same for the 20 and 30 layers
models which shows that convergent results are obtained. It will be seen in the following sub-
sections that the thermal stress in the strip and the TSIF reach their maximum values before
the normalized time ofτ = 0.10. Hence, the asymptotic solution (36)–(38) offers a reliable
basis to obtain the maximum thermal stress and the maximum TSIF.

Figure 4 shows normalized temperatures in both the homogeneous strip and FGM strip
for volume fraction profilesp = 0.2, 1.0 and 2.0 (see (60) and Figure 2). The layered model
consists of 45 layers with more layers intensively deployed near the edgeX = 0 as the com-
positional profile of the FGM varies dramatically near the edgeX = 0 in the case ofp = 0.2
(see Figure 2).The 45 layer model is used in all calculations of temperatures, thermal stresses
and TSIFs for the FGM strip.Figure 4a depicts the temperatures atτ = 0.001. It is seen that
the temperature remains at the initial value (T = 0 ) in the region 0.2< X/b ≤ 1. Moreover,
the temperature drops to the boundary value of -1 rapidly near the thermally shocked edge
X = 0. The temperature in the FGM strip for bothp = 1 andp = 2 is almost identical to that
in a homogeneous strip. Figure 4b shows the temperature profiles atτ = 0.01, in which case
the temperature starts dropping around the middle of the strip. Figure 4c gives the temperature
at a longer timeτ = 0.1, and, in this case, the temperature decays within the full width of the
strip.

6.2. THERMAL STRESS

The normalized thermal stresses in the FGM strip are calculated from the asymptotic solution
(45). For verification purposes, Equation (45) is first applied to a homogeneous material. Fig-
ure 5 shows the normalized thermal stresses computed from (45) and the following solution
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Figure 3. Temperature distribution in a homogeneous strip: asymptotic solution versus complete solution. (a) 20
layers; (b) 30 layers.

based on the ‘complete’ temperature field (61) for a homogeneous strip

σ TY (X, τ)

EαmT0/(1− ν) = 2
∞∑
`=1

(Tb/T0)(−1)` − 1

`π
sin

(
`πX

b

)
exp(−`2π2τ)−

−2

(
4− 6

X

b

) ∞∑
`=1

(Tb/T0)(−1)` − 1

`π

1− (−1)`

`π
exp(−`2π2τ)+

+2

(
6− 12

X

b

) ∞∑
`=1

(Tb/T0)(−1)` − 1

`π

(−1)`+1

`π
exp(−`2π2τ). (62)

It is seen that the asymptotic solution agrees well with the complete solution for times up
to τ = 0.10 in the entire strip. Figure 6 shows the normalized thermal stresses in both the
homogeneous strip and the FGM strip for the volume fraction profilesp = 0.2, 1.0 and 2.0
(see (60) and Figure 2). Figure 6a depicts the thermal stresses atτ = 0.001, and Figures 6b
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Figure 4. Temperature distribution in the FGM strip for various times. (a)τ = 0.001; (b)τ = 0.01; (c)τ = 0.10.
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Figure 5. Thermal stresses in a homogeneous strip: asymptotic solution versus complete solution.

and 6c show the results at timesτ = 0.01 andτ = 0.1, respectively. As in the homogeneous
case, tensile stresses develop in the edge regions of the FGM strip and compressive stresses
develop in the middle portion. It is observed that at each time, the thermal stress reaches the
peak value atX = 0. The thermal stress in the FGM strip forp = 0.2 decreases from its
peak value sharply near the thermally shocked edgeX = 0 with an increase inX. It is noted
that the peak thermal stress in the homogeneous strip decreases with increasing time faster
than that in the FGM strip (cf., Figures 6a to 6c). Therefore, the thermal stress nearX = 0
in the FGM strip may be higher than that in the homogeneous strip for a delayed time (see
Figure 6c). However, the peak thermal stress in the FGM strip is almost identical to that in
the homogeneous strip for very smallτ . For example, the normalized peak thermal stresses
(atX = 0) in the FGM strip forp = 0.2 are 0.9587, 0.8778, 0.6763 and 0.4484 for timesτ =
0.0001, 0.001, 0.01 and 0.1, respectively. The corresponding peak values in the homogeneous
strip are 0.9549, 0.8632, 0.6087 and 0.1569, respectively. The stress plot for the shortest time
τ = 0.0001 is not provided here.

6.3. THERMAL STRESS INTENSITY FACTOR(TSIF)

As in the case of thermal stresses, the TSIF of an edge crack in a homogeneous strip is first
studied based on both the asymptotic temperature (36)–(38) and the complete solution (61).
The normalized TSIF calculated based on the complete temperature field has the following
characteristics: for a given normalized crack lengtha/b, the TSIF increases with time, reaches
a peak value at a particular time which increases with the crack length (i.e., the time to reach
the peak TSIF for a longer crack is larger than that for a shorter crack), and then decreases
with further increase of time. There exists a critical crack lengthlc = ac/b at which the peak
TSIF reaches a maximum. The TSIF based on the asymptotic temperature solution also has
these characteristics.

Figure 7a shows the normalized TSIFs for edge cracks with lengths ofa/b = 0.1, 0.3 and
0.5 in a homogeneous strip based on both (36)–(38) and the complete temperature field (61).
It is seen that the TSIFs based on the asymptotic solution are in good agreement with that
based on the complete solution for times up to approximateτ = 0.1, and it is clear that the
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Figure 6. Thermal stresses in the FGM strip for various times. (a)τ = 0.001; (b)τ = 0.01; (c)τ = 0.10.
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Figure 7. (a), Thermal stress intensity factor for a homogeneous strip: asymptotic solution versus complete so-
lution; (b), Peak thermal stress intensity factor for a homogeneous strip: asymptotic solution versus complete
solution.

peak TSIFs occur at times less thanτ = 0.1. Thus the asymptotic solution is able to capture
the peak TSIF.Figure 7b shows the peak TSIFs for cracks of lengths up toa/b = 0.5 in
the homogeneous strip. It is evident that the peak TSIFs based on the asymptotic temperature
solution agree very well with those based on the complete temperature solution. The next
paragraph discusses both the limitations and range of applications of the present approach.

It is noted that the TSIF may reach its peak at times greater thanτ = 0.1 for long cracks
if a finite heat transfer coefficient on the surface of the strip is adopted (see, for example,
the discussion of Lu and Fleck (1998) for a homogeneous solid). In addition, when a ‘hot’
thermal shock (i.e., the surface of the FGM strip is subjected to heating instead of cooling) is
considered, the thermal stress in the central region of the FGM strip will be positive and the
TSIF for a short interior crack may reach the peak at times greater thanτ = 0.1. The present
asymptotic solution for short times is mostly useful for FGM strips with large heat transfer
cofficients when subjected to ‘cold’ thermal shocks and with short edge cracks. The thermal
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Figure 8. Thermal stress intensity factor for the FGM strip for various crack lengths. (a)a/b = 0.1; (b)a/b = 0.3;
(c) a/b = 0.5.
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Figure 9. (a) Peak thermal stress intensity factor versus crack length for the FGM strip; (b) Peak thermal stress
intensity factor versus power indexp of the inclusion volume fraction for the FGM strip.

stress in an FGM strip subjected to a ‘cold’ shock with infinite heat transfer cofficient is the
most severe and, in general, a short edge crack is most dangerous because the TSIF at the
crack tip is significantly larger than those of interior cracks.

Figure 8 shows the normalized TSIF versus nondimensional timeτ for cracks in both the
homogeneous strip and the FGM strip for the volume fraction profilesp = 0.2, 1.0 and 2.0
(see (60) and Figure 2). Figure 8a shows the results fora/b = 0.1, and Figures 8b and 8c show
the results fora/b = 0.3 and 0.5, respectively. Some relevant observations can be made from
these figures. First, the TSIF for cracks in the FGM strip varies with time and crack length
in a similar way to that of the TSIF for a homogeneous strip, i.e., for a given normalized
crack lengtha/b, the TSIF increases with time, reaches a peak value at a particular time
that increases with the crack length, and then decreases with further increase of time (see
introductory paragraph of this Section). There exists a critical crack lengthlFGM

c = aFGM
c /b at

which the peak TSIF reaches a maximum. The time at which the FGM TSIF reaches the peak
decreases with decreasing power indexp of the volume fraction of SiC. Second, the TSIF for
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Figure 10. Thermal stress intensity factor for the FGM strip with SiC as the matrix phase. (a)a/b = 0.1; (b)
a/b = 0.3.

the FGM is lower than that for the homogeneous strip for short times, but may be higher than
that for the homogeneous strip for extended times. Moreover, the peak TSIF for the FGM is
lower than that for the homogeneous strip.

Figure 9a shows the normalized peak TSIFs for both the homogeneous and the FGM
strips. It is observed that the maximum of the peak TSIFs occurs at abouta/b = 0.07 for
the homogeneous strip and at slightly short crack lengths for the FGM. Figure 9b shows the
effect ofp on the peak TSIF for the FGM strip. It is seen that the peak TSIF changes little for
p ≥ 2 but decreases with decreasingp for smallerp. The maximum normalized TSIF for the
FGM strip withp = 0.2 is about 0.08713 while the corresponding value for the homogeneous
strip is about 0.1261.

For all above calculations, we have assumed that the thermally shocked edge of the strip
(X = 0) is pure TiC and the opposite edge (X = b) is pure SiC. Now we consider the
TSIF for the reverse situation whereX = 0 is pure SiC andX = b is pure TiC. Figures 10a



96 Z.-H. Jin and Glaucio H. Paulino

and 10b show the normalized TSIF for edge cracks in this FGM for the casesa/b = 0.1
anda/b = 0.3, respectively. It is observed that, in general, the TSIF for the FGM strip is
actually higher than that for the homogeneous strip and increases with decreasingp which
now represents the power index of TiC volume fraction. The results may be due to the fact
that the thermal conductivity of TiC is lower than that of SiC. Thus care must be exercised in
designing such FGM system so that the thermally shocked edge is TiC.

7. Conclusions

A multi-layered material model is employed to solve the temperature field in a strip of a
functionally graded material subjected to transient thermal loading conditions. The FGM is
assumed having constant Young’s modulus and Poisson’s ratio, but the thermal properties
of the material vary along the thickness direction of the strip. This kind of FGMs include
some ceramic/ceramic FGMs such as TiC/SiC, MoSi2/Al2O3 and MoSi2/SiC, and also some
ceramic/metal FGMs such as zirconia/nickel and zirconia/steel. By using Laplace transform
and an asymptotic analysis, an analytical first order temperature solution for short times is
obtained. For a homogeneous strip, the asymptotic solution for temperature agrees well with
the complete solution for nondimensional times up to aboutτ = 0.10, and so do the thermal
stress and the TSIF of an edge crack. It is noted that the peak TSIF occurs at times less than
τ = 0.1. The thermal stresses and the TSIFs of edge cracks are calculated for a TiC/SiC FGM
with various volume fraction profiles of SiC represented by the power indexp. It is found that
the peak TSIF decreases with a decrease inp if the thermally shocked cracked edge of the
FGM strip is pure TiC, whereas the TSIF is increased if the thermally shocked edge is pure
SiC.
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