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SUMMARY

The standard (singular) boundary node method (BNM) and the novel hypersingular boundary node
method (HBNM) are employed for the usual and adaptive solutions of three-dimensional potential
and elasticity problems. These methods couple boundary integral equations with moving least-squares
interpolants while retaining the dimensionality advantage of the former and the meshless attribute of
the latter. The ‘hypersingular residuals’, developed for error estimation in the mesh-based collocation
boundary element method (BEM) and symmetric Galerkin BEM by Paulino et al., are extended to
the meshless BNM setting. A simple ‘a posteriori’ error estimation and an e�ective adaptive re�ne-
ment procedure are presented. The implementation of all the techniques involved in this work are dis-
cussed, which includes aspects regarding parallel implementation of the BNM and HBNM codes. Several
numerical examples are given and discussed in detail. Conclusions are inferred and relevant extensions
of the methodology introduced in this work are provided. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The combination of boundary integral equations (BIEs), both in their standard and hyper-
singular forms, together with moving least-squares (MLS) interpolants, leads to a novel and
e�ective environment for reliable computations in applied mechanics. The key features of
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Figure 1. Comparison of BNM or HBNM and BEM input data structure: (a) BNM or HBNM—cells
and collocation nodes; (b) BEM—mesh with elements and collocation nodes.

this environment are reduction of dimension, achieved by means of BIEs (as in the standard
boundary element method—BEM), and the meshless attribute of MLS interpolants. The relia-
bility of the simulations is achieved by means of self-adaptive techniques leading to re�nement
of

• cells,
• node density,
• regions of inuence of the nodes.
It is worth mentioning that the cells are used just for integration, and pose no restriction

on shape or compatibility. This feature makes meshless methods especially suited for self-
adaptive techniques. The input data structure for solving a boundary value problem (BVP)
involves nodes on the boundary and surface cells. The geometry=topology of the cells can
be much simpler than the actual mesh required for conventional boundary elements in the
sense that cells can be divided into smaller ones without a�ecting their neighbours—such is
not the case with boundary (or �nite) elements. To illustrate this point, Figure 1(a) shows
the cell structure and collocation nodes in the meshless boundary node method (BNM) or
hypersingular boundary node method (HBNM), and Figure 1(b) shows the surface mesh,
i.e. elements and collocation nodes, necessary in the conventional boundary element method
(BEM). The (conformal) BEM data structure requires that the collocation nodes be tightly
coupled to the surface mesh. In the BEM, it is possible to collocate a BIE at an arbitrarily
located collocation node—however, interpolants of primary variables are still related to the
geometry of the elements. On the other hand, the BNM data structure is more exible and
allows input for stress analysis from a solid modeler in a natural fashion. This feature makes
meshless methods especially suited for self-adaptive techniques. In particular, the h-version is
explored and two self-adaptive strategies are presented: one is based on progressive re�nement
(iterative) and the other is based on a ONE-step re�nement (non-iterative). Both adaptive
procedures are guided by residual error estimates which are intrinsic to the nature of BIE-
based meshless methods.
From a computational point of view, the present meshless method leads naturally to paral-

lelism. Thus, a simple parallel implementation for the matrix assembly and residual computa-
tion is developed using the message passing interface (MPI) standard. It is shown that, even
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with such simple parallel implementation, signi�cant gains in wall-clock time, compared to
serial implementation, are obtained. The development, and practical use of this computational
environment, is addressed in this work.
This paper is organized as follows. A brief literature review is provided in Section 2. Next,

Section 3 presents the MLS approximation, which includes a technique for evaluation of tan-
gential derivatives on the boundary. Section 4 reviews the standard BIE employed in the
traditional collocation-based BEM, and Section 5 its corresponding meshless version called
the boundary node method (BNM). Section 6 presents the hypersingular BIE (HBIE) method
and Section 7 the hypersingular BNM (HBNM) which is obtained from the corresponding
HBIE. The concept of hypersingular and singular residuals in the meshless setting is explained
in Section 8. Afterwards, Section 9 employs these residuals for a posteriori error estimation
and for guiding the h-version of a self-adaptive re�nement procedure (iterative). The parallel
implementation of the BNM=HBNM and the residual computation is explained in Section 10.
Numerical results for progressively adaptive solutions are given in Section 11. All the numer-
ical results are for three-dimensional (3D) problems in potential theory and linear elasticity,
and include some parallel computing solutions. A novel and alternative ONE-step adaptive
technique based on the idea of multilevel cell re�nement is developed in Section 12, and this
heuristic idea is validated by means of numerical examples. Finally, some concluding remarks
are made in Section 13.

2. RELATED WORK

The task of meshing a 3D object with complicated geometry can be arduous, time consuming
and computationally expensive. Although signi�cant progress has been made in 3D meshing
algorithms (see Reference [1]), a considerable computational burden is associated with these
algorithms. Conventional computational engines such as the �nite di�erence method (FDM),
�nite element method (FEM), and BEM can be used, but often with di�culty, to solve
problems involving changing domains such as large deformation or crack propagation. The
main di�culty in these problems is the task of re-meshing a 3D object after large deformation
or crack propagation. In recent years, novel computational algorithms have been proposed
that circumvent some of the problems associated with 3D meshing. These methods have been
collectively referred to as ‘Meshless’ methods.
Nayroles et al. [2] proposed a method which they call the di�use element method (DEM).

The main idea of their work is to replace the usual FEM interpolation by a ‘di�use approxi-
mation’. Their strategy consists of using a least-squares approximation scheme to interpolate
the �eld variables, which are called MLS interpolants. Nayroles et al. [2] have applied the
DEM to two-dimensional (2D) problems in potential theory and linear elasticity.
Meshless methods proposed to date include the element-free Galerkin (EFG) method [3],

the reproducing kernel particle method (RKPM) [4], h–p clouds [5; 6], the meshless local
Petrov–Galerkin (MLPG) approach [7; 8], local boundary integral equation (LBIE) method
[9], and the natural element method (NEM) [10]. The main idea in the EFG method is
to use moving least-squares (MLS) interpolants to construct the trial functions used in the
Galerkin weak form. A wide variety of problems have been solved using the EFG method.
In the introductory paper by Belytschko et al. [3], the EFG method was applied to 2D
problems in linear elasticity and heat conduction. Since then, the method has been applied
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for example, to solve problems in elasto-plasticity [11] fracture mechanics [12], crack growth
[13; 14], dynamic fracture [15–17], elasto–plastic fracture mechanics [18; 19], plate bending
[20], thin shells [21] and sensitivity analysis and shape optimization [22]. A special issue
of the journal Computer Methods in Applied Mechanics and Engineering contains review
articles by Belytschko et al. [23] and Liu et al. [24] on meshless methods. Another source
of information on the RKPM is an overview article by Liu et al. [25].
Recently, Mukherjee and Mukherjee [26] proposed the meshless method called BNM. As

indicated above, this type of method involves a coupling between MLS interpolants and BIEs.
The BNM has been used for solving 2D problems in potential theory [26] and linear elasticity
[27], and for 3D problems in potential theory [28] and linear elasticity [29].
The present paper develops and employs the HBNM to solve boundary value problems and

also for error estimation and adaptivity. Hypersingular boundary integral equations (HBIEs)
have diverse important applications and are the subject of considerable current research (see
References [30–33]). HBIEs, for example, have been employed for the evaluation of boundary
stresses [34–36], in wave scattering (e.g. Reference [37]), in fracture mechanics (e.g. Ref-
erences [32; 38; 39]), in symmetric Galerkin boundary element formulations (e.g. References
[40–42]), to obtain the hypersingular boundary contour method (e.g. References [43; 44]),
and for adaptive analysis (e.g. References [45–48]).
Another area of major interest in this work is error estimation and adaptivity for meshless

methods. Previous work on domain-based meshless methods include the articles by Chung and
Belytschko [49] and Oden et al. [6], among others. To the best of the authors knowledge, this
is the �rst paper in the literature to address error estimation and adaptivity for boundary-
based (e.g. BIE or HBIE-based) meshless methods.

3. SURFACE APPROXIMANTS

A moving least-squares (MLS) approximation scheme, using curvilinear co-ordinates on the
surface of a three-dimensional (3D) solid body, is suitable for the BNM. Such a scheme (see
Reference [28] for problems in potential theory and Reference [29] for linear elasticity) is
briey described here and employed in the theoretical and numerical schemes.

3.1. Moving least-squares (MLS) approximants

It is assumed that, for 3D problems, the bounding surface @B of a solid body is the union of
piecewise smooth segments called panels. On each panel, one de�nes surface curvilinear co-
ordinates (s1; s2). For problems in potential theory, let u be the unknown potential function
and � ≡ @u=@n (where n is an unit outward normal to @B at a point on it). For 3D linear
elasticity, let u denote a component of the displacement vector u and � be a component of
the traction vector c on @B. One de�nes

u(s)=
m∑
i=1
pi
(
s − sE)ai= pT(s − sE)a; �(s)=

m∑
i=1
pi
(
s − sE)bi= pT(s − sE)b (1)

The monomials pi (see below) are evaluated in local co-ordinates (s1 − sE1 ; s2 − sE2 ) where
(sE1 ; s

E
2 ) are the global co-ordinates of an evaluation point E. It is important to state here that

ai and bi are not constants. Their functional dependencies are determined later. The name
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Figure 2. Domain of dependence and range of inuence: (a) Nodes 1–3 lie within the domain of
dependence of the evaluation point E. The ranges of inuence of nodes 1–4 are shown as grey circles.
The range of inuence of node 4 is truncated at the edges of the body; (b) Gaussian weight function

de�ned on the range of inuence of a node

‘moving least squares’ arises from the fact that the quantities ai and bi are not constants. The
integer m is the number of monomials in the basis used for u and �. Quadratic interpolants,
for example, are of the form

pT(s̃1; s̃2)= [1; s̃1; s̃2; s̃21; s̃
2
2; s̃1s̃2]; m=6; s̃i= si − sEi ; i=1; 2 (2)

The coe�cients ai and bi are obtained by minimizing the weighted discrete L2 norms

Ru=
n∑
I=1
wI (d)

[
pT

(
sI − sE)a − ûI]2; R�=

n∑
I=1
wI (d)

[
pT

(
sI − sE)b− ĉI]2 (3)

where the summation is carried out over the n boundary nodes for which the weight function
wI (d) 6= 0 (weight functions are de�ned in Section 3.3). The quantity d= g(s; sI) is the length
of the geodesic on @B between s and sI : These n nodes are said to be within the domain of
dependence of a point s (evaluation point E in Figure 2(a)). Also, (sI1−sE1 ; sI2−sE2 ) are the local
surface co-ordinates of the boundary nodes with respect to the evaluation point sE =(sE1 ; s

E
2 )

and ûI and �̂I are the approximations to the nodal values uI and �I . These equations above
can be rewritten in compact form as

Ru=
(
P
(
sI − sE)a − û)TW(

s; sI
)(
P
(
sI − sE)a − û) (4)

R�=
(
P
(
sI − sE)b− ĉ)TW(

s; sI
)(
P
(
sI − sE)b− ĉ) (5)

where ûT = (û1; û2; : : : ; ûn), ĉT = (�̂1; �̂2; : : : ; �̂n), P(sI) is an n×m matrix whose kth row is[
1; p2

(
sk1 ; s

k
2

)
; : : : ; pm

(
sk1 ; s

k
2

)]
and W(s; sI) is an n× n diagonal matrix with wkk =wk(d) (no sum over k).
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The stationarity of Ru and Rt , with respect to a and b, respectively, leads to the equations

a(s)=A−1(s)B(s)û; b(s)=A−1(s)B(s) ĉ (6)

where

A(s)=PT
(
sI − sE)W(

s; sI
)
P
(
sI − sE); B(s)=PT

(
sI − sE)W(

s; sI
)

(7)

It is noted from above that the coe�cients ai and bi turn out to be functions of s. Substi-
tuting Equations (6) into Equations (1), leads to

u(s)=
n∑
I=1
�I (s)ûI ; �(s)=

n∑
I=1
�I (s)�̂I (8)

where the approximating functions �I are

�I (s)=
m∑
j=1
pj
(
s − sE)(A−1B

)
jI (s) (9)

As mentioned previously, û and ĉ are approximations to the actual nodal values u and c.
The two sets of values can be related by �nding the number of nodes in the range of inuence
of each collocation node and then evaluating the shape function at each of these nodes. This
procedure leads to

[H]{ûk}= {uk}; [H]{ĉk}= {ck}; k=1; 2; 3 (10)

Equations (10) relate the nodal approximations of u and � to their nodal values.

3.2. Surface derivatives

Surface derivatives of the potential (or displacement) �eld u are required for the HBIE. These
are computed as follows. With

C=A−1B

Equations (8) and (9) give

u(s)=
n∑
I=1

m∑
j=1
pj

(
s − sE)CjI (s)ûI (11)

and the tangential derivatives of u can be written as

@u(s)
@sk

=
n∑
I=1

m∑
j=1

[
@pj
@sk

(
s − sE)CjI (s) + pj(s − sE)@CjI (s)@sk

]
ûI ; k=1; 2 (12)

The derivatives of the monomials pj can be easily computed. These are

@pT

@s1

(
s1 − sE1 ; s2 − sE2

)
=
[
0; 1; 0; 2

(
s1 − sE1

)
; 0;

(
s2 − sE2

)]
(13)

@pT

@s2

(
s1 − sE1 ; s2 − sE2

)
=
[
0; 0; 1; 0; 2

(
s2 − sE2

)
;
(
s1 − sE1

)]
(14)
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After some simple algebra [50], the derivatives of the matrix C with respect to sk take the
form

@C(s)
@sk

= −A−1(s)
@B(s)
@sk

P
(
sI − sE)A−1(s)B(s) +A−1(s)

@B(s)
@sk

; k=1; 2 (15)

with

@B(s)
@sk

=PT
(
sI − sE)@W(s; sI)

@sk
(16)

In deriving Equation (15), the following identity has been used:

@A−1(s)
@sk

=−A−1(s)
@A(s)
@sk

A−1(s); k=1; 2 (17)

Tangential derivatives of the weight functions (described in Section 3.3) are easily computed
[50]. The �nal form of the tangential derivatives of the potential (or displacement) u, at an
evaluation point E, takes the form

@u
@sk

(
sE
)
=

n∑
I=1

m∑
j=1

[
@pj
@sk
(0; 0)CjI

(
sE
)]
ûI

+
n∑
I=1

m∑
j=1

[
pj(0; 0)

{
A−1(sE)

@B
@sk

(
sE
)(
I − P(sI − sE)A−1(sE)B(sE))}] ûI (18)

with k=1; 2: In the above equation I is the identity matrix.

One also needs the spatial gradient of the function u in order to solve the HBIE. For
problems in potential theory, this is easily obtained from its tangential and normal derivatives,
i.e. @u=@sk and @u=@n. For elasticity problems, however, one must also use Hooke’s law at a
point on the surface @B: Details of this procedure are given in Reference [51].
Equation (18) can be rewritten in compact form as:

@u
@sk

(
sE
)
=

n∑
I=1
	(k)I

(
sE
)
ûI ; k=1; 2 (19)

where the approximating functions 	kI are:

	(k)I (s
E) =

m∑
j=1

[
@pj
@sk
(0; 0)CjI

(
sE
)]

+
m∑
j=1

[
pj(0; 0)

{
A−1(sE) @B

@sk

(
sE
) (
I − P(sI − sE)A−1(sE)B(sE))}]

(20)
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3.3. Weight functions

The basic idea behind the choice of a weight function is that its value should decrease with
distance from a node and that it should have compact support so that the region of inuence
of a node is of �nite extent (Figure 2(b)). A possible choice is the Gaussian weight function

wI (d)=

{
e−(d=dI )

2
for d6dI

0 for d¿dI
(21)

Here d= g(s; sI) is the minimum distance, measured on the surface @B, (i.e. the geodesic)
between a point s and the collocation node I . In the research performed to date, the region of
inuence of a node has been truncated at the edge of a panel (Figure 2(a)) so that geodesics,
and their derivatives (for use in Equation (21)), need only be computed on piecewise smooth
surfaces. Finally, the quantities dI determine the extent of the region of inuence (the com-
pact support) of node I . They can be made globally uniform, or can be adjusted such that
approximately the same number of nodes get included in the region of inuence of any given
node I or in the domain of dependence of a given evaluation point E. Such ideas have been
successfully implemented in References [28; 29].

4. BOUNDARY INTEGRAL EQUATIONS

Particular instances of the standard (singular) BIEs for potential theory and linear elasticity
are given below.

4.1. Potential theory

The well-known regularized BIE for 3D problems in potential theory is (see, for example,
Reference [52])

0=
∫
@B
[G(P;Q)�(Q)− F(P;Q)(u(Q)− u(P))] dSQ (22)

where, as mentioned before, u is the potential, �= @u=@n is the ux, and the well-known
kernels for 3D problems are

G(P;Q)=
1

4�r(P;Q)
; F(P;Q)=

@G(P;Q)
@nQ

(23)

Here, r is the Euclidean distance between the source point P and �eld point Q and nQ is
the unit normal to @B at a �eld point Q.

4.2. Linear elasticity

For 3D linear elasticity, the standard boundary integral equation, in regularized form, and in
the absence of body forces, can be written as (see Reference [53])

0=
∫
@B
[Uik(P;Q)�k(Q)− Tik(P;Q)(uk(Q)− uk(P))] dSQ (24)
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where uk and �k are the components of the displacement and traction, respectively, and the
well-known Kelvin kernels are

Uik =
1

16�(1− �)Gr [(3− 4�)�ik + r; ir; k] (25)

Tik =
−1

8�(1− �)r2
[
{(1− 2�)�ik + 3r; ir; k}@r@n − (1− 2�)(r; ink − r; kni)

]
(26)

In the above, ni are the components of the unit normal at the �eld point Q, G is the shear
modulus, � is the Poisson ratio and �ij denotes the Kronecker delta. A comma denotes a
derivative with respect to a �eld point, i.e.

r; i= @r=@yi=(yi(Q)− yi(P))=r (27)

5. BOUNDARY NODE METHOD

The MLS interpolants derived in Section 3 are used to approximate u and � on the boundary
@B. In order to carry out the integrations, the bounding surface is discretized into cells. A
variety of shape functions have been used in this work in order to interpolate the geometry.
In particular, the bilinear (Q4) element and quadratic (T6) triangle have been used. These
‘geometric’ shape functions can be found in any standard text on the FEM (see References
[54; 55]).

5.1. Potential theory

Substituting the expressions for u and � from Equation (8) into Equation (22), and dividing
@B into Nc cells, one gets the discretized form of the BIE for potential problems as follows:

0=
Nc∑
k=1

∫
@Bk

[
G(P;Q)

NQ∑
I=1
�I (Q)�̂I − F(P;Q)

{
NQ∑
I=1
�I (Q)ûI −

NP∑
I=1
�I (P)ûI

}]
dSQ (28)

where �I (P) and �I (Q) are the contributions from the I th node to the collocation point P
and �eld point Q, respectively. Also, NQ nodes are situated in the domain of dependence
of the �eld point Q and NP nodes are situated in the domain of dependence of the source
point P.

5.2. Linear elasticity

The BNM equation for elasticity is obtained by substituting the expressions for uk and �k
from Equation (8) into Equation (24), leading to

0=
Nc∑
m=1

∫
@Bm

[
Uik(P;Q)

NQ∑
I=1
�I (Q)�̂kI − Tik(P;Q)

{
NQ∑
I=1
�I (Q)ûkI −

NP∑
I=1
�I (P)ûkI

}]
dSQ (29)
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5.3. Discretization

In order to evaluate the non-singular integrals in Equations (28) and (29) over (possibly
curved) triangular or rectangular surface cells, 7 point and 3× 3 Gauss quadrature are used,
respectively. However, as Q → P the kernels G and Uik become weakly singular and the
kernels F and Tik become strongly singular. As shown in Equations (28) and (29), the strongly
singular integrands are regularized by using rigid body modes and the regularized versions
are weakly singular. Finally, special integration techniques are used to evaluate the resulting
weakly singular integrals in Equations (28) and (29) [28; 56].
The �nal discretized version of either Equation (28) or Equation (29) has the form

[A(û)]{û}+ [A(�̂)]{ĉ}= {0} (30)

With respect to elasticity theory, the count for the number of equations and unknowns follows.
For NB nodes on the bounding surface, there are a total of 12NB quantities on the boundary,
i.e. 3NB values for each of ui and its nodal approximation ûi, and similarly for �i. For a
well-posed problem, values of either ui or �i are known at each node on the boundary,
so 3NB nodal values are given. Therefore, 9NB equations are needed to solve for the 9NB
remaining unknowns. Equation (30) consists of 3NB equations and Equations (10) consist of
3NB equations each. Thus, a well-posed boundary value problem can be solved using Equation
(30), in combination with Equations (10). An analogous count of equations and unknowns
applies to Equation (28) for potential theory.

6. HYPERSINGULAR BOUNDARY INTEGRAL EQUATIONS

Continuing the basic development of Section 4, we present here the HBIEs for potential theory
and linear elasticity.

6.1. Potential theory

The HBIE is obtained upon di�erentiation of the primary BIE at an internal source point
with respect to the co-ordinates of that source point. Due to di�erentiation, the kernels in the
HBIE become strongly singular and hypersingular, respectively, and appropriate regularization
procedures need to be employed in order to use the HBIEs for carrying out meaningful
computations. The fully regularized HBIE for the Laplace’s equation, at a regular point on
@B (where it is locally smooth) can be written as (see Reference [30]),

0 =
∫
@B

@G(P;Q)
@xm(P)

[�(Q)− �(P)] dSQ − u; k(P)
∫
@B

@G(P;Q)
@xm(P)

(nk(Q)− nk(P)) dSQ

−
∫
@B

@F(P;Q)
@xm(P)

[u(Q)− u(P)− u; k(P)(xk(Q)− xk(P))] dSQ (31)
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Carrying out the inner product of Equation (31) with the source point normal n(P), one
obtains

0 =
∫
@B

@G(P;Q)
@n(P)

[�(Q)− �(P)] dSQ − u; k(P)
∫
@B

@G(P;Q)
@n(P)

(nk(Q)− nk(P)) dSQ

−
∫
@B

@F(P;Q)
@n(P)

[u(Q)− u(P)− u; k(P)(xk(Q)− xk(P))] dSQ (32)

The gradient of the potential function is required in the HBIEs (31) and (32). For potential
problems, the gradient (at a regular boundary point) can be written as

∇u= �n̂+ @u
@s1
t̂1 +

@u
@s2
t̂2 (33)

where �= @u=@n is the ux, n̂ is the unit normal, t̂1; t̂2 are the appropriately chosen unit
vectors in two tangential directions on the surface of the body, and @u=@si; i=1; 2 are the
tangential derivatives of u (along t1 and t2) on the surface of the body.

6.2. Linear elasticity

Similarly, the fully regularized HBIE for linear elasticity can be written as (see Reference
[57])

0 =
∫
@B
Dijk(P;Q)(�k(Q)− �k(P)) dSQ − �km(P)

∫
@B
Dijk(P;Q)(nm(Q)− nm(P)) dSQ

−
∫
@B
Sijk(P;Q)[u(Q)− u(P)− uk;m(P)(ym(Q)− ym(P))] dSQ (34)

where the (strongly singular) kernel Dijk and (hypersingular) kernel Sijk are

Dijk =
1

8�(1− �)r2 [(1− 2�)(�kir; j + �kjr; i − �ijr; k) + 3r; ir; jr; k] (35)

Sijk =
G

4�(1− �)r3
[
3
@r
@n
[(1− 2�)�ijr; k + �(�ikr; j + �jkr; i)− 5r; ir; jr; k]

]

+
G

4�(1− �)r3 [3�(nir; jr; k + njr; ir; k)+ (1− 2�)

× (3nkr; ir; j + nj�ik + ni�jk)− (1− 4�)nk�ij] (36)

Again, taking the inner product of Equation (34) with the source normal, one gets the
equation

0 =
∫
@B
Dijk(P;Q)nj(P)(�k(Q)− �k(P)) dSQ − �km(P)

∫
@B
Dijk(P;Q)nj(P)(nm(Q)− nm(P)) dSQ

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:2233–2269



2244 M. K. CHATI, G. H. PAULINO AND S. MUKHERJEE

−
∫
@B
Sijk(P;Q)nj(P)[uk(Q)− uk(P)− uk;m(P)(ym(Q)− ym(P))] dSQ (37)

The procedure for obtaining the displacement gradients uk;m, that are required in Equations
(34) and (37), is described in Reference [51]. The stress components �ij can be easily obtained
from the displacement gradients using Hooke’s law.

7. HYPERSINGULAR BOUNDARY NODE METHOD

Continuing the early development for the BNM in Section 5, we present here the derivation
for the HBNM for potential theory and linear elasticity.

7.1. Potential theory

Using the interpolation functions for � (Equation (8)2) and for the tangential derivatives of u
(Equation (19)), one can obtain the discretized forms of the potential gradient (see Equation
(33)) and the HBIEs (31) and (32) as follows:

∇u=
n∑
I=1
�I �̂I n̂+

n∑
I=1
	(1)I ûI t̂1 +

n∑
I=1
	(2)I ûI t̂2 (38)

0 =
Nc∑
i=1

∫
@Bi

@G(P;Q)
@xm(P)

[
NQ∑
I=1
�I (Q)�̂I −

NP∑
I=1
�I (P)�̂I

]

− u; k(P)
∫
@Bi

@G(P;Q)
@xm(P)

(nk(Q)− nk(P)) dSQ

−
∫
@Bi

@F(P;Q)
@xm(P)

[
NQ∑
I=1
�I (Q)ûI −

NP∑
I=1
�I (P)ûI − u; k(P)(xk(Q)− xk(P))

]
dSQ (39)

0 =
Nc∑
i=1

∫
@Bi

@G(P;Q)
@n(P)

[
NQ∑
I=1
�I (Q)�̂I −

NP∑
I=1
�I (P)�̂I

]

− u; k(P)
∫
@Bi

@G(P;Q)
@n(P)

(nk(Q)− nk(P)) dSQ

−
∫
@Bi

@F(P;Q)
@n(P)

[
NQ∑
I=1
�I (Q)ûI −

NP∑
I=1
�I (P)ûI − u; k(P)(xk(Q)− xk(P))

]
dSQ (40)

respectively, where �I (P) and �I (Q) are the contributions from the I th node to the collocation
point P and �eld point Q, respectively, with NP and NQ nodes in their respective domains
of dependence. Of course, the gradient of u from Equation (38) is used in Equations (39)
and (40).
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7.2. Linear elasticity

As mentioned before, the procedure for obtaining uk;m in the elasticity equations (34) and
(37), from the tangential derivatives and tractions, is described in Reference [51]. Once this
is done, discretized versions of Equations (34) and (37) are readily obtained as:

0 =
Nc∑
l=1

∫
@Bl

Dijk(P;Q)

[
NQ∑
I=1
�I (Q)�̂kI −

NP∑
I=1
�I (P)�̂kI

]
dSQ

−�km(P)
∫
@Bl

Dijk(P;Q)(nm(Q)− nm(P)) dSQ

−
∫
@Bl

Sijk(P;Q)

[
NQ∑
I=1
�I (Q)ûkI −

NP∑
I=1
�I (P)ûkI − uk;m(P)(ym(Q)− ym(P))

]
dSQ (41)

and

0 =
Nc∑
l=1

∫
@Bl

Dijk(P;Q)nj(P)

[
NQ∑
I=1
�I (Q)�̂kI −

NP∑
I=1
�I (P)�̂kI

]
dSQ

−�km(P)
∫
@Bl

Dijk(P;Q)nj(P)(nm(Q)− nm(P)) dSQ −
∫
@Bl

Sijk(P;Q)nj(P)

×
[
NQ∑
I=1
�I (Q)ûkI −

NP∑
I=1
�I (P)ûkI − uk;m(P)(ym(Q)− ym(P))

]
dSQ (42)

Remark 1. Please note that Equations (39) and (40) are the HBNM equations for po-
tential theory, and Equations (41) and (42) are the HBNM equations for linear elasticity.
Equation (39) is used to obtain the hypersingular residual in the gradient of the potential,
and Equation (28) or (40) is used to solve boundary value problems in potential theory. Sim-
ilarly, Equation (41) is used to obtain the hypersingular residual in the stress and Equation
(29) or (42) is used to solve boundary value problems in linear elasticity.

7.3. Discretization

The procedure followed for discretization of Equations (40) and (42) is quite analogous to
the BNM case described before in Section 5.3. These equations are fully regularized and
contain either non-singular or weakly singular integrands. Non-singular integrals are evaluated
using the usual Gauss quadrature over surface cells, while the weakly singular integrals are
evaluated using the procedure outlined in References [28; 56]. The discretized version of either
Equation (40) or (42) has the generic form shown in Equation (30).
Numerical results from the BNM, for 3D potential theory and linear elasticity, are available

in References [28; 29], respectively, while corresponding numerical results from the HBNM
are available in Reference [51].
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8. HYPERSINGULAR AND SINGULAR RESIDUALS

The idea of using hypersingular or singular residuals, to obtain local error estimates in the
BEM, was �rst proposed by Paulino [33] and Paulino et al. [45]. This concept has been
applied to the collocation BEM (see References [33; 45; 47; 48]), to the boundary contour
method (BCM) (Mukherjee and Mukherjee) [58], and to the symmetric-Galerkin BEM (see
Reference [46]). In this work, it is extended to the BNM setting. The main idea is as follows.

8.1. The hypersingular residual

8.1.1. Potential theory. Let the BIE (Equation (28)) for potential theory be written in
operator form as

LBNM(u; �)=0 (43)

and its numerical solution be (u∗; �∗). Also, the HBIE (Equation (39)) is written in operator
form as:

LHBNM(u; �)=0 (44)

The hypersingular residual in the potential gradient u; j is de�ned as,

rj ≡ residual(u; j)=LHBNM(u∗; �∗) (45)

and is calculated from Equation (39).

8.1.2. Linear elasticity. Similarly, for elasticity problems, the BIE (Equation (29)) can be
written in operator form as

LBNM(uk ; �k)=0; k=1; 2; 3 (46)

with the numerical solution (u∗k ; �∗k ). Also, the HBIE (Equation (41)) is written in operator
form as

LHBNM(uk ; tk)=0; k=1; 2; 3 (47)

This time, the stress residual is de�ned from the stress HBIE (Equation (41)) as

rij ≡ residual(�ij)=LHBNM(u∗k ; t∗k ); k=1; 2; 3 (48)

This idea is illustrated in Figure 3(a).

Remark 2. It has been proved by Menon et al. [48] that, under certain conditions, real
positive constants c1 and c2 exist such that

c1r6�6c2r (49)

where r is a scalar measure of a residual (see Section 9 on ‘error estimation and adaptive
strategy’) and � is a scalar measure of the exact local error. Thus, the residual is expected to
provide an estimate of the local error on a boundary element. It should be mentioned here
that the de�nitions of the residuals used in Reference [48] are analogous to, but di�erent in
detail from, the ones proposed in this paper.
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Figure 3. Interchange of BIE and HBIE: (a) hypersingular residual; (b) singular residual.

8.2. The singular residual

The argument for using the residuals as error estimates is symmetric (see References [33; 45]).
Therefore, one can reverse the above procedure to de�ne singular residuals by �rst solving
the HBIE and then iterating with the BIE.

8.2.1. Potential theory. In this case, for potential theory, one gets from Equation (40):

LHBNM(uo; �o)=0 (50)

and from Equation (28)

r≡ residual(u)= |LBNM(uo; �o)| (51)

8.2.2. Linear elasticity. Similarly, for elasticity, one has from Equation (42)

LHBNM(uok ; �
o
k)=0; k=1; 2; 3 (52)

and from Equation (29)

ri≡ residual(ui)=LBNM(uok ; �
o
k); k=1; 2; 3 (53)

This idea is illustrated in Figure 3(b).

Remark 3. The above formulation for singular and hypersingular residuals is a generaliza-
tion of the earlier work by Menon et al. [48] in the sense that Dirichlet, Neumann and mixed
problems require separate prescriptions in Reference [48], while the current work presents a
uni�ed residual formulation.
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9. ERROR ESTIMATION AND ADAPTIVE STRATEGY

There are similarities between adaptive techniques (e.g. h-version) for mesh-based methods
(see References [59; 60]) and meshless methods, however, the latter set of methods provides
substantially more exibility in the (re-)discretization process than the former ones.
The h-version iterative self-adaptive procedure employed in this work is presented in the

owchart of Figure 4. The goal is to e�ciently develop a �nal cell con�guration which leads
to a reliable numerical solution, in as simple a manner as possible.

9.1. Local residuals and errors—hypersingular residual approach

Potential theory: For potential theory problems (see Equation (45)),

rj=residual(u; j) (54)

A scalar residual measure is de�ned as

r= rjrj (55)

The exact local error in the gradient, u; j, is de�ned as:

�j= u
(exact)
; j − u(numerical); j (56)

and the corresponding scalar measure is de�ned as

�= �j�j (57)

Equations (55) and (57) are used to calculate the hypersingular residual and exact error,
respectively, in the gradient u; j, at each node, for problems in potential theory.

Figure 4. Typical self-adaptive iterative BNM algorithm (h-version) according to the scheme of Figure
3(a). The BNM equations used for solving the BVP are (28) and (29), and the HBNM equations used
for residual computation are (39) and (41) for potential theory and linear elasticity, respectively.
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Linear elasticity: Similarly, for elasticity problems (see Equation (48)):

rij=residual(�ij) (58)

A scalar residual measure is de�ned as

r= rijrij (59)

The exact local error in stress is de�ned as

�ij=�
(exact)
ij − �(numerical)ij (60)

and the corresponding scalar measure is de�ned as

�= �ij�ij (61)

Equations (59) and (61) are used to compute the hypersingular residual and exact error,
respectively, in the stress �ij, at each node, for problems in linear elasticity. These equations
are presented here for the sake of completeness.

9.2. Local residuals and errors—singular residual approach

Potential Theory: The singular residual is de�ned in an analogous fashion. For potential
problems (see Equation (51)),

r=residual(u) (62)

and the exact local error in u is de�ned as

�= |u(exact) − u(numerical)| (63)

Here, r and � are themselves scalar measures of the residual and exact error, respectively.
Equations (51) and (63) are used to obtain the singular residual and exact error, respec-
tively, in the potential u, at each node, for problems in potential theory. These equations
are presented here for the sake of completeness.
Linear elasticity: For elasticity problems (see Equation (53)):

ri=residual(ui) (64)

so that a scalar residual measure is

r= riri (65)

The exact local error in ui is de�ned as

�i= u
(exact)
i − u(numerical)i (66)

with a corresponding scalar measure

�= �i�i (67)

Equations (65) and (67) are used to obtain the singular residual and exact error,
respectively, in the displacement ui, at each node, for elasticity problems.
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Figure 5. Cell re�nement for quadrilateral and triangular cells with one node per cell.

Remark 4. The local error measure (Equation (63)) is also used for @u=@n at points on
the surface of a cube (see examples of Section 11). This quantity is de�ned as

e
(
@u
@n

)
=

∣∣∣∣∣@u@n
(exact)

− @u
@n

(numerical)
∣∣∣∣∣ (68)

This error measure is used only for the colour plots presented in Plate 1 of this paper. The
scalar residual measures, de�ned above, evaluated at nodes, are used as error estimators. In
all the adaptivity examples presented in this paper, one node is used for each cell and is
placed at its centroid. The scalar residual measure at this centroidal node is used as an error
estimator for that cell. A comparison of the residual (r) and exact error (�) demonstrates the
e�ectiveness of residuals as error estimates.

9.3. Cell re�nement criterion

A simple criterion for cell re�nement consists of subdividing the cells for which the error
indicator is larger than a certain reference value. In this work, the reference quantity is taken
as the average value of the error indicator (here the average residual) given by

�r=
1
Nn

Nn∑
i=1
r(i) (69)

where Nn is the total number of nodes. If the inequality,

r¿ �r (70)

is satis�ed, then the cell is subdivided into four pieces (see Figure 5). The parameter 
in Equation (70) is a weighting coe�cient that controls the ‘cell re�nement velocity’. The
standard procedure consists of using =1:0. If ¿1:0, then the number of cells to be re�ned
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is less than with =1:0. According to Figure 4, the numerical solution of the next iterative
step is expected to be more accurate than that of the current step; however, the increase on
the total number of cells is comparatively small when ¿1:0.
If ¡1:0, then the number of cells to be re�ned is larger than that with =1:0. The advan-

tage in this case is that the re�nement rate increases, however, the computational e�ciency
may decrease owing to likely generation of an excessive number of cells. An alternative
procedure, for a ONE-step re�nement, is presented in Section 12 of this paper.

9.4. Global error estimation and stopping criterion

Global L2 error: A global L2 error, on a panel, or over the whole boundary @B, is de�ned as

��(�)=

∫
A
(�(exact) − �(numerical))2 dA∫

A
(�(exact))2 dA

100% (71)

where � is a variable of interest and A is the area of a panel or of the whole surface @B.
These global errors are used in many of the tables that are presented later in this paper.
An indication of overall convergence may be obtained by evaluating either �r (Equation

(69)) or �� from Equation (71). Of course, Equation (71) is only useful for test examples in
which the exact solution is known.
Stopping criterion: For generic problems where the exact solution is not available (e.g.

most engineering problems), cell re�nement (see Figure 5) can be stopped when

�r6rglobal (72)

where rglobal has a preset value, which depends on the overall level of accuracy desired. The
goal of the adaptive procedure is to obtain well-distributed (i.e. near optimal) cell con�gura-
tions. Ideally, as the iterative cell re�nement progresses, the error estimates should decrease
both locally and globally.

10. PARALLEL COMPUTING

An important aspect of any new numerical method is its computational cost. It has been
observed that although meshless methods have NO connectivity requirements on the underlying
cell structure, they are nonetheless computer intensive. This aspect is addressed in this work
by means of a simple parallel implementation of the BNM=HBNM and the adaptive procedure.
Here, only the assembly of the system matrix and the residual computation are parallelized,
as illustrated by the ow-charts in Figures 6 and 7, respectively. Parallelization of the solution
phase is a separate and challenging problem that has not been implemented in this work.
The parallel code uses the message passing interface (MPI) standard and accesses multiple

processors of the IBM SP2 (R6000 architecture, 120MHz P2SC Processor). However, similar
concepts are also applicable to the parallel virtual machine (PVM) standard operating on a
cluster of engineering workstations (see for example, References [61–63]).
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Figure 6. Flow-chart for parallel BNM or
HBNM code.

Figure 7. Flow-chart for parallel meshless
adaptive code.

11. PROGRESSIVELY ADAPTIVE SOLUTIONS

The adaptive process illustrated by Figure 4 is applied to two representative examples:

• Dirichlet problem on a cube. Laplace’s equation is solved using the BNM, and the
(hypersingular) residuals are obtained using the HBNM, according to Figure 3(a).

• Stretching of an elastic cylindrical rod clamped at one end. This time, the role of the BIE
and HBIE is reversed, i.e. the HBNM is employed for solving the boundary value problem,
and the (singular) residuals are calculated from the BNM, according to Figure 3(b).

This set of problems permit assessment of various parameters of the adaptive strategy
for meshless methods based on BIE techniques. Several aspects are investigated such as
the quality of the adaptive solution obtained for scalar (potential theory) and vector �eld
(elasticity theory) problems, performance of the method on problems with either pure or
mixed boundary conditions, evaluation of the quality of error estimates obtained by means
of hypersingular or singular residuals, sensitivity of the ‘�nal’ solution with respect to the
starting cell con�guration (initial condition of the self-adaptive problem), and convergence
properties.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:2233–2269



Copyright © 2001 John Wiley & Sons, Ltd.   Int. J. Numer. Meth. Engng., 50 (2001) 

Plate 1. Error in ∂u/∂n (e(∂u/∂n)) on the face y= –1 of the cube: (a) initial configuration #2 (96 surface cells); (b) first
adapted step (168 cells); (c) second step (456 cells); and (d) third step (1164 cells).
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Figure 8. Cell con�gurations on the surface of a cube: (a) initial con�guration # 1: 54 surface cells.
(b) �rst adapted step: 126 cells; obtained with =1.

11.1. Dirichlet problem on a cube

The following exact solution, which satis�es the 3D Laplace’s equation, is used in this
example:

u= sinh
(�x
2

)
sin

(
�y
2
√
2

)
sin

(
�z
2
√
2

)
(73)

Note that the solution is symmetric with respect to y and z but that its dependence on x
is di�erent from its dependence on y or z. The appropriate value of u is prescribed on @B
(Dirichlet problem) and @u=@n is computed on @B. Because the exact solution cannot be
represented in terms of polynomials, this is a proper test of the meshless method and the
adaptivity procedure. A quadratic basis is used for the construction of the MLS interpolating
functions, i.e. m = 6 (see Equation (2)). The idea behind the adaptive procedure is to start with
a rather crude cell con�guration and carry out cell re�nement in the region where the residual
is large according to a certain criterion. Hence, the adaptivity results in this section have
been obtained starting with two relatively coarse initial cell con�gurations. This comparative
procedure tests the sensitivity of the adaptive scheme with respect to the initial conditions.

11.1.1. Initial cell con�guration # 1. Figure 8(a) shows a discretization consisting of 54
rectangular cells with one (centroidal) node per cell. The boundary value problem is solved
using the BNM (Equation (28)). Then the results are used in the HBNM (Equation (39))
to obtain the hypersingular residual. Figure 9 shows a comparison between the hypersingular
residual (from Equations (45) and (55)) and the exact local error � in u; j (from Equations
(56) and (57)) computed for the initial con�guration # 1 (Figure 8(a)) at each node on the
surface. It can be clearly seen that the hypersingular residual tracks the exact error perfectly.
Cell re�nement is carried out using =1:0 in Equation (70), and the resulting re�ned cell

con�guration consisting of 126 cells is shown in Figure 8(b). It can be seen from Figure
8(b) that the cell re�nement occurs only at the corners where the exact error is the largest.
This is an indication that the procedure for error estimation and adaptivity is moving in the
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Figure 9. Comparison of hypersingular residual and exact local error � in u; j for the initial con�guration
# 1 (54 cells, one node per cell). These quantities have been normalized by their respective maximum

values, where rmax = 0:5197× 10−1 and �max = 0:2051.

Table I. ��(@u=@n) and residuals �r; rmax for the initial cell con�gu-
ration (Figure 8(a))and the con�guration obtained at the end of the
�rst step of the adaptivity process using =1:0 (Figure 8(b)).

Output parameters Initial Final

Number of cells 54 126
x= ± 1 1.4209% 0.0238%
y= ± 1 7.6911% 0.2773%
z= ± 1 7.6911% 0.2578%
All faces 2.1450% 0.0519%
Average residual ( �r) 0.2366E−01 0.7605E−02
Maximum residual rmax 0.5197E−01 0.3068E−01

right direction. Now, the boundary value problem is solved again using the BNM. Table I
summarizes the various output parameters of the adaptivity procedure. It can be seen from
Table I that excellent numerical results are obtained in a single step of the adaptivity process
and hence the adaptive procedure is not continued further.

11.1.2. Initial cell con�guration # 2. The initial con�guration # 2 is for the same physi-
cal cube with 16 uniform cells on each face with, as always, one node at the centroid of
each cell. As before, the boundary value problem is solved using the BNM (Equation (28)),
and the results obtained are used in the HBNM (Equation (39)). Figure 10 shows a com-
parison between the hypersingular residual (from Equations (45) and (55)) and the exact
local error � in u; j (from Equations (56) and (57)), computed for the initial con�guration
# 2 (Figure 11(a)). It can be clearly seen that the hypersingular residual tracks the exact
error very accurately. In fact, the results for the �ner cell con�guration # 2 are very similar
to those shown in Figure 9 for the coarser initial cell con�guration # 1.
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Figure 10. Comparison between hypersingular residual and exact local error � in u; j for the initial
con�guration # 2 (96 cells, one node per cell). These quantities have been normalized by their respective

maximum values, where rmax = 0:1829× 10−1 and �max = 0:6223× 10−1.

Adaptivity Results: In order to obtain a better understanding of the adaptivity procedure,
the local error e in @u=@n (from Equation (68)) is calculated on each of the faces of the cube.
The iterative cell design cycle of Figure 4 is repeated three times using =0:5 in Equation
(70) and starting from the initial con�guration # 2 given in Figure 11(a). The resulting re�ned
cell con�gurations are shown in Figures 11(b), 11(c) and 11(d), respectively. It is noted that
the cell re�nement should begin at the corners of the cube where the error in @u=@n is the
largest.
Plate 1 shows colour contour plots of the exact local error e in @u=@n on the y=−1 face

of the cube. The underlying cell structure on the face is also shown in the colour plots.
The resolution of these and subsequent contour plots is much �ner than the corresponding
cell discretization because the error is actually evaluated at a large number of points on the
boundary (panels) of the body. These results con�rm the observation made at the end of
the previous paragraph regarding regions of large errors which demand a �ner discretization.
Thus, re�nement occurs close to the edges and corners where the error in @u=@n is largest.
Other relevant comments are in order. For the �rst step of the adaptive procedure (see

Figure 11(b)), selected results are shown in Figure 12 which provides a comparison between
the hypersingular residual (from Equations (45) and (55)) and the exact local error � (from
Equations (56) and (57)). The results are shown on the x=−1 and z=1 faces as a repre-
sentative sample of the results over the 168 nodes. It can be seen from Figure 12 that the
hypersingular residual tracks the exact error reasonably well.
Plate 1(b) shows a contour plot for the exact local error e in @u=@n on the y=−1 face

of the cube for adapted cell con�guration of Figure 11(b). Note that, due to the re�nement
procedure, the error in @u=@n has reduced substantially, especially at the corners (cf. Plate
1(a) and 1(b)).
Plate 1(c) and 1(d) show the exact local error e in @u=@n on the y=−1 face of the cube for

the adapted cell con�gurations consisting of 456 cells and 1164 cells, respectively (see Figures
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Figure 11. Cell con�gurations on the surface of a cube: (a) initial con�guration # 2 (96 surface cells);
(b) �rst adapted step (168 cells); (c) second step (456 cells); (d) third step (1164 cells).

11(c) and 11(d)). Comparing the contour plots of Plate 1(a)–(d), one can readily verify that
the error in @u=@n decreases substantially during the adaptive process. It is interesting to
note that the absolute value of the exact solution (Equation (73)) has the same functional
dependence on the y=−1 and z=1 faces and di�erent on the x=−1 face of the cube. Step
1 (Figure 11(b)) is not sensitive to this fact, however, Steps 2 (Figure 11(c)) and 3 (Figure
11(d)) of the adaptive procedure are. This is a tribute to the quality of residuals as error
estimates.
Table II summarizes the results of the adaptive process for the cube problem starting

with the initial cell con�guration consisting of 96 cells (Figure 11(a)). Note that, on the
faces x= ± 1; ��(@u=@n) increases from the initial con�guration to Step 1, and from Step
1 to Step 2. However, ��(@u=@n) �nally decreases from Steps 2 to 3 and reaches its lowest
value at this step, which has the sophisticated cell pattern of Figure 11(d). On the faces
y= ± 1 and z= ± 1; ��(@u=@n) monotonically decreases as the number of adaptive cycles
increases. Moreover, as expected, the global ��(@u=@n) for ‘all faces’, as well as the average
and maximum residuals, decrease as the adaptive process progresses.
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Figure 12. Comparison of hypersingular residual and exact local error � in u; j on the faces x=−1
and z=1 of the cube of Figure 11(b) (�rst step of the adaptive procedure). The quantities have been
normalized by their respective maximum values, where rmax = 0:1567× 10−1 and �max = 0:3645× 10−1.

Table II. L2 error in @u=@n ( ��(@u=@n)) and residuals �r; rmax for the various steps of the adaptivity
process starting with the initial cell con�guration consisting of 96 cells with one node per cell (Figure

11(a)). Here =0:5 is used for the cell re�nement of the cube.

Output parameters Initial Step 1 Step 2 Step 3

Number of cells 96 168 456 1164
x= ± 1 0.0759% 0.1062% 0.1135% 0.0438%
y= ± 1 1.0654% 0.2785% 0.2089% 0.0551%
z= ± 1 1.0696% 0.2781% 0.2091% 0.0551%
All faces 0.1899% 0.1269% 0.1247% 0.0451%
Average residual �r 0.4963E−02 0.3661E−02 0.5643E−03 0.1811E−03
Maximum residual rmax 0.1829E−01 0.1567E−01 0.3579E−02 0.2537E−02

Parallel computation. An important aspect of any new numerical method is the computa-
tional burden associated with it. Thus the parallel implementation described in Section 10, and
illustrated in Figures 6 and 7, is employed here and compared with the serial implementation.
The running times for di�erent cell con�gurations are shown in Table III. It can be seen that
order of magnitude gains in wall-clock times are possible by using a parallel version of the
serial program. The last line in Table III, where the ‘Total time’ is listed, is the total time
taken for the entire adaptive procedure, starting from the initial con�guration (Figure 11(a))
to the �nal adapted con�guration in Step 3 (Figure 11(d)).

11.2. Adaptivity on a cylindrical elastic rod

The adaptive procedure is described in this section for a problem in linear elasticity. A
schematic of the physical problem under consideration is shown in Figure 13(a). In this case
(for variety) the boundary value problem is solved using the HBNM (Equation (42)) and the
singular residual is obtained using the standard BNM (Equation (29)).
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Table III. Comparison of wall-clock times on the IBM SP2 for the various steps of the
adaptive process (=0:5) starting with the initial cell con�guration of 96 cells with one

node per cell on the cube.

Parallel BNM and adaptivity (MPI)

Con�guration Serial 4 Procs 16 Procs 64 Procs

96 cells 3min 6.3 s 1min 3.3 s 14.7 s 5.6 s
168 cells 10min 15.1 s 3min 27.4 s 46.4 s 13.7 s
456 cells 1 h 38min 32min 18.4 s 6min 43.7 s 1min 52.4 s
1168 cells 16 h 5 h 16min 1 h 4min 16min 51.2 s
Total time 17 h 51min 5 h 53min 1 h 12min 19min 2.9 s

Figure 13. Stretching of a short clamped cylindrical rod by an uniform tensile load: (a) Physical
situation: L=2:0; D=4:0; �=0:25; E=1:0; �0 = 1:0; (b) and (c) Initial cell con�guration with
144 cells (one node per cell)—(b) clamped and loaded faces; (c) curved surface of the cylindrical

rod mapped onto the (z; �) plane.

Initial cell con�guration: The geometric and material parameters chosen are: E=1:0;�=0:25;
�0 = 1:0; L=2:0, and D=4:0. Figures 13(b) and 13(c) show the initial cell con�guration on
the clamped and loaded faces and on the curved surface of the rod. The boundary value prob-
lem is solved by prescribing tractions on the top face of the cylinder, with the bottom surface
completely clamped, and the curved surface traction free. Upon obtaining the solution to the
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Figure 14. Singular residual for the initial con�guration of 144 cells on the cylindrical
rod of Figure 13(b) and (c). The residual has been normalized with respect to its

maximum value, rmax = 0:2419× 10−2.

boundary value problem, the singular residual is obtained at each node. Figure 14 shows the
singular residual (from Equations (42), (53), and (65)) obtained for the initial cell con�g-
uration (144 cells). It can be seen that the residual is considerably higher on the clamped
face and on the curved surface near the clamped face, than on the loaded face. This is to be
expected considering the physical nature of the problem at hand which has a singularity on
the bounding circle of the clamped face.
Adaptivity results: The adaptive strategy is carried out according to the ow chart of

Figure 4. However, the boxes for the ‘BNM simulation’ and ‘HBNM residuals’ are replaced
by ‘HBNM simulation’ and ‘BNM residuals’, according to the scheme of Figure 3(b). Since
the singular residual is higher on the clamped and curved faces, most of the subdivision of
cells occur on those faces. The curved surface of the cylinder near the clamped surface is
re�ned due to the singularity at the edge of the clamped face. However, the top face (the
loaded face) is NOT re�ned at all and so the cell structure on that face remains as shown in
Figure 13(b).
Three steps of adaptivity are pursued using =1:25 in Equation (70) and starting from

the initial con�guration of Figures 13(b) and 13(c). The resulting re�ned cell con�gurations
are shown in Figures 15–17. As expected, Figures 15(a), 16(a) and 17(a) show that the
loaded face is not re�ned at all and remains as in the initial con�guration (Figure 13(b)). On
the clamped face, a comparison of Figures 13(b), 15(b), 16(b), and 17(b) indicates that cell
re�nement only takes place near the edge of the face, which is the region where gradients in
stresses are largest.
Figures 13(c), 15(c), 16(c), and 17(c) show the progressive re�nement on the curved

surface of the cylinder. One can observe that re�nement primarily occurs along the curved
surface near the clamped edge of the cylindrical rod. Note that, for the initial con�guration
(Figures 13(b) and 13(c)), the number of subdivisions along the edge of the top and bot-
tom faces is the same as the number of subdivisions along the edge of the curved surface
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Figure 15. Short clamped cylindrical rod Step 1: Adapted con�guration consisting of 228 cells obtained
with =1:25: (a) loaded face; (b) clamped face; (c) curved surface of the rod.

(12 subdivisions). However, when adaptivity is carried out, a signi�cant mismatch in the num-
ber of subdivisions is created at every adaptive step. This does not present any problem for
the meshless method, and such freedom in modeling is expected to be especially advantageous
in analysing problems with complicated geometry.

12. MULTILEVEL (ONE-STEP) ADAPTIVE CELL REFINEMENT

The previous section has dealt with an iterative adaptive technique for cell re�nement
(h-version). Here the interest is on developing a simple ONE-step algorithm for cell
re�nement in the meshless BNM setting. The owchart of Figure 18 illustrates this idea
which is based on the concept of re�nement level (RL) employed by Krishnamoorthy and
Umesh [64] and Mosalam and Paulino [65].
Re�nement strategy. Figures 19(a) and 19(b) show that di�erent degrees of re�nement

are carried out for di�erent values of the re�nement level. From these �gures, the expression
relating the �nal cell size hf to the re�nement level RL is

hf =
hi
2RL

(74)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:2233–2269



BOUNDARY NODE METHODS—APPLICATIONS TO ERROR ESTIMATION AND ADAPTIVITY 2261

Figure 16. Short clamped cylindrical rod Step 2: Adapted con�guration consisting of 324 cells obtained
with =1:25: (a) loaded face; (b) clamped face; (c) curved surface of the rod.

where hi denotes the initial cell size. Assuming that the rate of convergence of the error is
O(hp), where h is a characteristic cell size in the area covered by the cells, which are of
order p, and setting the error estimate equal to �= r=( �r) (see Equations (69) and (70)), one
obtains

hf =
hi
�1=p

(75)

From Equations (74) and (75), the RL is given by

RL=




log �
p log 2

for �¿1

0 for �¡1
(76)

where p is order of the interpolating function. For the interpolation procedure used in this
work, p=m. The second condition in Equation (76) is enforced because cell structure coars-
ening is not considered in this work. This idea of ONE-step re�nement is applied to the
cube problem of Section 12.1 and the elastic cylindrical rod problem of Section 12.2. On
the cube problem, the errors are estimated by means of hypersingular residuals, and on the
cylinder problem the errors are estimated by means of singular residuals.
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Figure 17. Short clamped cylindrical rod Step 3: Adapted con�guration consisting of 576 cells obtained
with =1:25: (a) loaded face; (b) clamped face: (c) curved surface of rod.

Figure 18. ONE-step adaptive BEM algorithm based on multilevel cell re�nement.

12.1. Multilevel re�nement on a cube with Dirichlet BCs

TheDirichlet problem for the cube solved in Section 11.1 bymeans of an iterative adaptive solution
is reconsidered here with the ONE-step multilevel re�nement scheme. The two initial cell con-
�gurations of Figures 8(a) and 11(a) are investigated again because this study permits evaluation
of the sensitivity of the multilevel re�nement scheme with respect to the initial conditions.
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Figure 19. Re�nement level RL using: (a) rectangular; and (b) triangular cells. The bold lines illustrate
the idea of cell structure embedding.

Figure 20. ONE-step multilevel cell re�nement for the cube problem: (a) initial con�guration # 1 with
54 cells; (b) adapted con�guration with 438 cells using  = 0:15

12.1.1. Initial cell con�guration # 1.
Adaptivity Results: The multilevel strategy is implemented on the cube of Figure 20(a),

which consists of 54 cells with one node per cell. The boundary value problem is solved
using the BNM (Equation (28)) by imposing the exact solution in Equation (73) as Dirichlet
boundary conditions. The hypersingular residual (from Equations (39 and (55)) is obtained
and then the multilevel re�nement procedure is carried out using =0:15. The cell structure
obtained in ONE-step is shown in Figure 20(b), which consists of 438 cells with one node per
cell. Table IV shows a comparison of the results from the ONE-step multilevel re�nement
scheme starting with the con�guration of Figure 20(a) and ending with the con�guration
of Figure 20(b). This table shows that ��(@u=@n) and the residual consistently decrease with
re�nement.
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Table IV. ��(@u=@n) and residuals �r; rmax for the initial con�gu-
ration (Figure 20(a)), and the �nal con�guration (Figure 20(b))
obtained by the multilevel re�nement strategy with  = 0:15.

Output parameters Initial Final

Number of cells 54 438
x=±1 1.4209% 0.0411%
y=±1 7.6911% 0.0339%
z=±1 7.6911% 0.0343%
All faces 2.1450% 0.0403%
Average residual �r 0.2366E-01 0.4615E-03
Maximum residual rmax 0.5197E-01 0.2618E-01

Table V. Comparison of wall-clock times on the IBM SP2 considering the multilevel
re�nement strategy for the cube problem of Figure 20 with  = 0:15.

Parallel BNM and adaptivity (MPI)

Con�guration Serial 4 Procs 8 Procs 16 Procs

54 cells 33.1 s 12.9 s 6.9 s 4.6 s
438 cells 1 h 30min 29min 44.5 s 12min 57.8 s 6min 17.6 s
Total time 1 h 30min 29min 57.4 s 13min 4.7 s 6min 22.2 s

Parallel computation: As mentioned earlier, an important aspect of meshless methods is
the computational cost. To address this problem, Table V shows a comparison of computing
times for serial and parallel simulations using 4, 8, and 16 processors, respectively. The
timing results show the superiority of parallel over serial computations. Thus, the parallel
computing technique is also advantageous in the multilevel re�nement scheme. Qualitatively,
the conclusions regarding Table III (cube problem with iterative adaptive scheme) also hold
for Table V.

12.1.2. Initial cell con�guration # 2. The BNM (Equation (28)) is used to solve the boundary
value problem using Equation (73) as the exact solution, and the hypersingular residual is
obtained by means of Equations (39) and (55). Multilevel re�nement is carried out using
 = 0:15. The cell structure obtained in ONE-step is shown in Figure 21(b), which consists
of 1764 cells with one node per cell.
Table VI summarizes the results for ��(@u=@n) and the residual for the multilevel re�nement

strategy starting from the initial con�guration # 2 of 96 cells (see Figure 21(a)). Qualitatively,
these results are analogous to those of Table II for the progressive adaptive re�nement, which
includes the peculiarity observed on the x=±1 faces of the cube. Moreover, the remarks
concerning Table II also hold for explaining the results of Table VI. Therefore, for further
explanations, the reader is referred to Section 11.1.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:2233–2269



BOUNDARY NODE METHODS—APPLICATIONS TO ERROR ESTIMATION AND ADAPTIVITY 2265

Figure 21. ONE-step multilevel cell re�nement for the cube problem: (a) initial con�guration # 2 with
96 cells; (b) adapted con�guration with 1764 cells using  = 0:15.

Table VI. ��(@u=@n) and residual for the initial con�guration (Fig-
ure 21(a)), and the �nal con�guration (Figure 21(b)) obtained

by the multilevel re�nement strategy with =0:15.

Output parameters Initial Final

Number of cells 96 1764
x=±1 0.0759% 0.1034%
y=±1 1.0654% 0.2400%
z=±1 1.0696% 0.2400%
All faces 0.1899% 0.1169%
Average residual (�r) 0.4963E−02 0.3370E−03
Maximum residual (rmax) 0.1829E−01 0.1535E−01

12.2. Multilevel re�nement on a cylindrical elastic rod

The multilevel re�nement procedure is demonstrated here for the physical problem of stretch-
ing of a cylinder with one end clamped. The initial con�guration is the same as that of
Figures 13(b) and 13(c). The present study also employs singular residuals (Equation (29))
for error estimation (see Section 11.2) rather than hypersingular residuals (Equation (41)).
This is similar to the study carried out for the same problem by means of iterative adaptive
cell re�nement. The results for the multilevel re�nement for the original problem of Figures
13(a) and 13(b) are given in Figure 22. Comparing these results with the ones of Section
11.2 (Figures 15–17), one veri�es that the overall trends are quite similar in both situations.
However, two main di�erences are noticeable. First, the loaded face is re�ned (a little) here
(cf. Figures 13(b) and 22(a)), while it is not re�ned at all in the adapted con�gurations shown
in Figures 15(a), 16(a) and 17(a). Second, as expected, the multilevel cell re�nement does
not allow the smooth cell gradation which occurs in progressively adapted cell con�gurations
(cf. Figures 17 and 22). Nevertheless, such gradation, which is essential for mesh-based
methods, is not required at all in the present meshless methods (BNM and HBNM).
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Figure 22. ONE-step multilevel cell re�nement for short clamped cylinder: (a)
loaded face; (b) clamped face; and (c) curved surface of cylinder. The initial cell

con�guration is shown in Figures 13(b) and 13(c).

13. CONCLUDING REMARKS

This paper presents several new research results related to meshless methods:

• A hypersingular boundary node method (HBNM) is developed for 3D problems in potential
theory and linear elasticity.

• A uni�ed residual formulation is developed for potential theory and linear elasticity.
• The concept of hypersingular and singular residuals is developed for a posteriori error
estimation for the BNM and the HBNM.

• An h-adaptive cell re�nement strategy is developed based on residual error estimates. It is
remarkable that, in this approach, only surface cells need to be subdivided for 3D problems
(a property inherited from the BEM) and a given cell can be subdivided without a�ecting
its neighbours in any way (a consequence of decoupling interpolation from integration).

• Two adaptive criteria are presented: iterative and multilevel. In general, the iterative crite-
rion leads to a cell structure with selective local re�nement embedded within the primary
cell con�guration. However, being an iterative method, it is computer intensive. The mul-
tilevel criterion is a simple ONE-step procedure which circumvents the computational cost
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of the iterative criterion; however, it does not allow the local selective cell control typically
found in the iterative scheme.

• A new algorithm for obtaining accurate displacements and stresses at internal points close
to the boundary, has been developed, and successfully implemented.

• A preliminary parallel implementation of the BNM=HBNM and the adaptive procedure has
been presented. In this implementation, only the assembly of the system matrix and the
residual computation are parallelized. Future investigation will involve development of a
parallel version of the solution phase, which can be accomplished by means of software
packages speci�cally designed to solve linear algebra problems on distributed memory
computers, e.g. ScaLAPACK (parallel version of LAPACK), parallel basic linear algebra
subprograms (PBLAS), and basic linear algebra communications subprograms (BLACS)
(see Reference [66]). This matter is currently under investigation by the authors. The BNM
is slower than the conventional BEM (collocation-based) by about an order of magnitude.
Thus further research in parallel algorithms and other numerical linear algebra techniques
are needed to make the method more e�cient.

• A study of the various aspects of the above methods=technique are carried out by means of
3D numerical examples, e.g. a cube (Dirichlet) problem in potential theory, and a clamped-
stretched cylinder in linear elasticity.

Overall, the frontiers of the boundary node method (BNM) and the hypersingular boundary
node method (HBNM) have been extended to solve problems of engineering interest. Due to
its considerable exibility and relative ease of use, this method has potential for e�ciently
solving a wide range of industrial problems. The initial study presented in this paper holds
signi�cant possibilities for the future of adaptive numerical analysis.
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