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This work studies mode I crack growth in ceramic/metal functionally graded mate
(FGMs) using three-dimensional interface-cohesive elements based upon a new ph
enological cohesive fracture model. The local separation energies and peak traction
the metal and ceramic constituents govern the cohesive fracture process. The
formulation introduces two cohesive gradation parameters to control the transitio
fracture behavior between the constituents. Numerical values of volume fractions fo
constituents specified at nodes of the finite element model set the spatial gradat
material properties with standard isoparametric interpolations inside interface elem
and background solid elements to define pointwise material property values. The
describes applications of the cohesive fracture model and computational scheme to
lyze crack growth in compact tension, C(T), and single-edge notch bend, SE(B),
mens with material properties characteristic of a TiB/Ti FGM. Young’s modulus
Poisson’s ratio of the background solid material are determined using a self-consi
method (the background material remains linear elastic). The numerical studies de
strate that the load to cause crack extension in the FGM compares to that for the m
and that crack growth response varies strongly with values of the cohesive grad
parameter for the metal. These results suggest the potential to calibrate the value o
parameter by matching the predicted and measured crack growth response in sta
fracture mechanics specimens.@DOI: 10.1115/1.1467092#
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1 Introduction

Functionally graded materials~FGMs! provide promising can-
didates for advanced technological applications~@1–3#!. An FGM
comprises a multiphase material with volume fractions of the c
stituent materials varying in a pre-determined profile, thus giv
a nonuniform microstructure in the material with continuous
graded properties. In applications involving severe thermal gr
ents~e.g., thermal protection structures!, FGM systems exploit the
heat, oxidation, and corrosion resistance typical of ceramics,
the strength and toughness typical of metals.

Cohesive fracture models have been widely used to simu
and analyze crack growth in ductile and quasi-brittle materials
a cohesive fracture model, a narrow band termed a cohesive z
or process zone, exists ahead of the crack front. Material beha
in the cohesive zone follows a cohesive constitutive law wh
relates the cohesive traction to the relative displacements of
adjacent surfaces. Crack growth occurs by progressive decohe
of the cohesive surfaces. Dugdale@4# first proposed a cohesive
type model to study ductile fracture in a thin sheet of mild ste
The Dugdale model assumes that a cracked metal sheet def
elastically outside of the extended surfaces of the crack whe
narrow band~plastic zone! of idealized zero width deforms at th
constant yield stress of the material. Cohesive fracture mo

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June
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of Mechanical Engineering, University of Houston, Houston, TX 77204-4792,
will be accepted until four months after final publication of the paper itself in
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have been extended to study fracture processes in quasi-b
materials such as concrete~see, e.g.,@5,6#!, ductile metals~see,
e.g.,@7,8#!, and metal matrix composites~@9#!.

Though cohesive fracture models have been successfully
ployed to simulate failure processes in homogeneous mate
and conventional composites, few studies have extended the
cept to FGMs. The difficulty lies in the coexistence of differe
failure mechanisms in an FGM as explained in the next sect
Studies of crack growth through the whole FGM component
quire a new phenomenological model to simulate the fracture p
cess. Jin and Batra@10# studied crack growth in the ceramic-ric
region in a ceramic/metal FGM by using both a rule of mixtur
and a crack bridging model~essentially a cohesive-type model!.
Cai and Bao@11# investigated crack growth in a ceramic/met
graded coating by using a similar, but simpler crack bridgi
model. Simple applications of the rule of mixtures to an FG
significantly overestimate the fracture toughness compared to
timates from crack bridging models~@10#!. Thus, it appears inap
propriate to employ directly the conventional rule of mixtures
formulate the cohesive parameters of FGMs. The modificati
described here provide a more realistic approach to formula
cohesive model suitable for FGMs.

This work studies crack growth in ceramic/metal FGMs usi
three-dimensional interface-cohesive elements. While we are
considering the ductile deformation in the graded background
terial, the current study focuses on presentation of the cohe
zone model and does incorporate the ductile separation of
graded cohesive material in the analysis of crack growth. Inve
gations of crack growth in ceramic/metal FGMs considering pl
ticity in the background material are in progress. The pape
organized as follows. Section 2 proposes a new phenomeno
cal, cohesive fracture model developed specifically for ceram
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metal FGMs. In addition to the cohesive energy densities and
peak cohesive tractions of the metal and ceramic phases,
other parameters are introduced to account for the overall dam
and other micromechanical effects in FGMs. Section 3 descr
the three-dimensional finite element formulation with graded so
and interface-cohesive elements for applications to FGMs. Sec
4 discusses the method of determining the material paramete
FGMs. Section 5 presents results of a parametric study of c
growth analyses for a titanium/titanium monoboride~Ti/TiB !
FGM. Compact tension, C~T!, and single-edge notched ben
SE~B!, specimens are considered in the numerical simulatio
Section 6 provides some conclusions and outlines ongoing w
to extend the present study. The Appendix summarizes detai
the tangent modulus matrix for the cohesive constitutive rela
applicable to FGMs.

2 A Novel Cohesive Fracture Model
Generalization of the cohesive zone concept to model frac

in functionally graded materials~FGMs! represents a challengin
task in view of the different failure mechanisms present in
FGM. In a typical ceramic/metal FGM, the ceramic-rich regi
may be regarded as a metal particle reinforced ceramic ma
composite, whereas the metal-rich region may be treated
ceramic particle-reinforced metal matrix composite. Though m
els for the failure mechanisms of conventional composites ma
adopted to study the fracture processes in the ceramic-ric
metal-rich region, the failure mechanisms operative in the in
connecting region which has no distinct matrix and inclus
phases remain unknown. This section thus proposes a vol
fraction-based phenomenological cohesive fracture model suit
for engineering scale applications. The formulation first consid
tensile mode~mode I! fracture of FGMs, and is then extended
general three-dimensional fracture including both tensile
shear deformations. Such volume fraction-based formulas h
been used previously to calculate Young’s modulus and the pla
tangent modulus of FGMs~@12,13#!.

2.1 Mode I Fracture. Let s f gm denote the normal traction
across the surfaces of the cohesive zone necessary to mod
propagation of a macroscale crack. We propose that the cohe
tractions of a two-phase FGM~e.g., ceramic/metal FGM! can be
approximated by the following volume fraction-based formu
having a simple functional form

s fgm~x!5
Vmet~x!

Vmet~x!1bmet@12Vmet~x!#
smet

1
12Vmet~x!

12Vmet~x!1bcerVmet~x!
scer, (1)

wheresmet is the cohesive traction of the metal,scer the cohesive
traction of the ceramic,Vmet(x) denotes the volume fraction of th
metal,x5(x1 ,x2 ,x3), andbmet(>1) andbcer(>1) are two cohe-
sive gradation parameters. The motivation to choose~1! is that the
cohesive traction of the FGM will reduce to that of the me
whenVmet51, and to that of the ceramic whenVmet50, and the
two parametersbmet and bcer, together with the metal volume
fraction (Vmet), could describe the transition of the failure mech
nism from pure ceramic to pure metal~operative in the intercon-
necting region which has no distinct matrix and inclusion phas!.

The FGM cohesive fracture model, Eq.~1!, increases the num
ber of material-dependent parameters by two (bmet,bcer). Values
for the local separation energies and peak cohesive traction
lated to the pure ductile and brittle phases are obtained u
standard procedures for homogeneous materials~see@8#, for ex-
ample!. The material-dependent parametersbmet andbcer describe
approximately the overall effect of cohesive traction reduct
~from the level predicted by the rule of mixtures! and the transi-
tion between the fracture mechanisms of the metal and cera
phases. Our preliminary computations of crack growth in a TiB
Journal of Applied Mechanics
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FGM indicate thatbmet plays a far more significant role thanbcer,
which can be simply set to unity. We anticipate that the param
bmet may be experimentally calibrated by two different proc
dures. The first procedure determinesbmet by matching the pre-
dicted and measured crack growth responses in standard fra
mechanics specimens of FGMs. Instead of using FGM specim
the second procedure employs fracture specimens made
monolithic composite each with a fixed volume fraction of t
constitutents. This opens the potential to calibratebmet for each
volume fraction level of metal and ceramic, which comprise t
FGM specimens, i.e.,bmet can become a function ofVmet in the
present model. The second calibration procedure may be par
larly useful if a constantbmet fails to generate a match betwee
the predicted and experimentally measured crack growth
sponses. Experimental determination of thebmet parameter is
presently under investigation for zirconia/stainless steel FGM

For the metal phase, the cohesive traction may be derived f
a free-energy density function,fmet(d,q), in the form~@8,14–16#!

smet5
]fmet

]d
, (2)

where d is the normal displacement jump across the cohes
surfaces andq is an internal variable describing the irreversib
processes of decohesion. Because in general, the shape o
cohesive traction-separation curve~s2d! is not as significant as
the cohesive energy density and the maximum cohesive tractio
simulating fracture in ductile metals~@17#!, the free-energy poten
tial, fmet(d,q), may be chosen in a computationally convenie
exponential form~@8,14–16#!

fmet5esmet
c dmet

c F12S 11
d

dmet
c D expS 2

d

dmet
c D G . (3)

Under loading conditions governed byq, the cohesive traction of
the metal with the above energy potential is given by

smet5esmet
c S d

dmet
c D expS 2

d

dmet
c D , (4)

wheree5exp(1),smet
c the maximum cohesive traction, anddmet

c

the value ofd at smet5smet
c . Figure 1~a! shows a typical curve for

smet/smet
c versusd/dmet

c .
For quasi-brittle materials such as concrete and ceramics,

shape of the cohesive traction-separation curve may play a sig
cant role in determining the peak load~@18#!. In the present study
of ceramic/metal FGMs, however, the failure mechanism of me
phase plays a dominant role. Thus, for simplicity, this stu
adopts the same exponential form as Eq.~4! to describe the cohe
sive response of the ceramic material

scer5escer
c S d

dcer
c D expS 2

d

dcer
c D , (5)

wherescer
c is the maximum cohesive traction of the ceramic o

curring atd5dcer
c . The free-energy potential corresponding to E

~5! is

fcer5escer
c dcer

c F12S 11
d

dcer
c D expS 2

d

dcer
c D G . (6)

Figure 1~b! shows typical curvesscer/smet
c versusd/dmet

c for vari-
ous values ofdcer

c /dmet
c .

By substituting Eqs.~4! and ~5! into Eq. ~1!, we obtain the
cohesive traction of the FGM under loading conditions as
MAY 2002, Vol. 69 Õ 371
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s fgm~x!5
Vmet~x!

Vmet~x!1bmet@12Vmet~x!#
esmet

c S d

dmet
c D expS 2

d

dmet
c D

1
12Vmet~x!

12Vmet~x!1bcerVmet~x!
escer

c S d

dcer
c D expS 2

d

dcer
c D .

(7)

The free-energy density function corresponding to the above
hesive traction is

f fgm~x,d,q!5
Vmet~x!

Vmet~x!1bmet@12Vmet~x!#

3esmet
c dmet

c F12S 11
d

dmet
c D expS 2

d

dmet
c D G

1
12Vmet~x!

12Vmet~x!1bcerVmet~x!

3escer
c dcer

c F12S 11
d

dcer
c D expS 2

d

dcer
c D G . (8)

As often assumed for homogeneous materials, the cohesive
of the FGM also follows an irreversible path. The internal varia
describing the irreversible processes,q, is chosen asdmax, the
maximum opening displacement attained. For updating of the
hesive stresses, the loading condition is defined by

d5dmax and ḋ>0, (9)

Fig. 1 Normalized cohesive traction versus nondimensional
separation displacement; „a… for metal, smet Õsmet

c versus
dÕdmet

c ; „b… for ceramic, scer Õsmet
c versus dÕdmet

c
„where metal Õ

ceramic strength ratio, smet
c Õscer

c , is taken to be 3 …
372 Õ Vol. 69, MAY 2002
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where ḋ denotes the rate ofd. The unloading condition is then
described by

d,dmax or ḋ,0. (10)

Following the cohesive law for homogeneous materials, the
loading curve follows the linear relation

s f gm5S smax

dmax
D d, if d,dmax or ḋ,0, (11)

wheresmax is the value ofs f gm at d5dmax calculated from Eq.
~7!. We note that the irreversibility of the above cohesive law do
not influence the results reported in Section 5 since we have
studied crack growth under monotonic loading conditions.

2.2 Three-Dimensional Mixed Mode Fracture. For gen-
eral three-dimensional mixed mode fracture problems, an ef
tive opening displacement jump is introduced~@19#!

deff5Adn
21h2ds

2, (12)

wheredn andds are the normal and tangential displacement jum
across the cohesive surfaces. The parameterh assigns different
weights to the opening and sliding displacements~h is usually
taken as&!. Similarly, an effective cohesive traction may b
introduced~@19#!

seff5Asn
21h22ss

2, (13)

where sn and ss are the normal and shear tractions across
cohesive surfaces. Here we assume that resistance of the coh
surfaces to relative sliding is isotropic in the cohesive~tangent!
plane so that

ds5Ads1
2 1ds2

2 , (14)

ss5Ass1
2 1ss2

2 , (15)

where ds1 and ds2 are the two relative sliding displacemen
across the cohesive surfaces, andss1 and ss2 are the two shear
tractions.

With the introduction of the above effective traction and d
placement, a free-energy potential in three dimensions is assu
to exist in the same form as that for the mode I case~8!, i.e.,

f fgm~x,deff ,deff
max!5

Vmet~x!

Vmet~x!1bmet@12Vmet~x!#

3esmet
c dmet

c F12S 11
deff

dmet
c D expS 2

deff

dmet
c D G

1
12Vmet~x!

12Vmet~x!1bcerVmet~x!

3escer
c dcer

c F12S 11
deff

dcer
c D expS 2

deff

dcer
c D G ,

(16)

wheredeff
max is the maximum value ofdeff attained. The cohesive

law for general three-dimensional deformations is then formula
as follows:

sn5
]f fgm

]dn
5

]f fgm

]deff

]deff

]dn
5S seff

deff
D dn ,

(17)

ss5
]f fgm

]ds
5

]f fgm

]deff

]deff

]ds
5h2S seff

deff
D ds ,

where
Transactions of the ASME
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seff5
]f fgm

]deff
5

Vmet~x!

Vmet~x!1bmet@12Vmet~x!#
esmet

c S d

dmet
c D

3expS 2
d

dmet
c D 1

12Vmet~x!

12Vmet~x!1bcerVmet~x!

3escer
c S d

dcer
c D expS 2

d

dcer
c D ,

if deff5deff
max and ḋeff>0, (18)

for the loading case, and

seff5S seff
max

deff
maxD deff , if deff,deff

max or ḋeff,0, (19)

for the unloading case, whereseff
max is the value ofseff at deff

5deff
max calculated from Eq.~18!.

2.3 Cohesive Energy Density. The cohesive energy den
sity, or the work of separation per unit area of cohesive surfac
defined by

G fgm
c 5E

0

`

s~deff!ddeff . (20)

By substituting Eq.~18! into the above equation, we obtain

G fgm
c ~x!5

Vmet~x!

Vmet~x!1bmet@12Vmet~x!#
Gmet

c

1
12Vmet~x!

12Vmet~x!1bcerVmet~x!
Gcer

c , (21)

Fig. 2 Normalized cohesive energy density G fgm
c ÕGmet

c

„Gcer
c ÕGmet

c Ä0.05, Vmet„X…Ä„XÕb …n
…, „a… nÄ0.5; „b… nÄ1.0
Journal of Applied Mechanics
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whereGmet
c andGcer

c are the cohesive energy densities of the me
and ceramic phases, respectively,

Gmet
c 5esmet

c dmet
c , Gcer

c 5escer
c dcer

c . (22)

Equation~21! shows that the cohesive energy density follows t
same rule as that of the cohesive traction. Figure 2 shows
normalized cohesive energy densityG fgm

c /Gmet
c versus the nondi-

mensional coordinateX/b for a ceramic/metal FGM with meta
volume fractionVmet5(X/b)n, whereX is the gradation direction
andb is a geometrical parameter, e.g., the thickness of the FG
specimen. In these figures, the energy ratio,Gcer

c /Gmet
c is assumed

0.05 with bcer taken as 1.0. The cohesive energy of the FG
decreases markedly with increasingbmet.

3 Three-Dimensional Finite Element Modeling of
Functionally Graded Materials

This section describes the small-displacement formulation
both the three-dimensional solid element and the interfa
cohesive element with graded material properties. In the pres
study, the solid elements remain linearly elastic but the mate
properties~Young’s modulus and Poisson’s ratio! may vary within
the element and thus graded elements are employed~Kim and
Paulino @20#!. For the cohesive element, the material propert
follow the functionally graded cohesive law described in Secti
2. Figure 3 illustrates the three-dimensional interface-cohes
and solid elements used in the present work. The interfa
cohesive element consists of two four-node bilinear isoparame
surfaces. Nodes 1–4 lie on one surface of the element while no
5–8 lie on the opposite surface. The two surfaces initially occu
the same location. When the whole body deforms, the two s
faces undergo both normal and tangential displacements rela
to each other. The cohesive tractions corresponding to the rela
displacements follow the constitutive relations~17!–~19!, and
thus maintain the two surfaces in a ‘‘cohesive’’ state.

Now first consider the stiffness matrix of the isoparamet
solid element. Denote byNi(j,h,z)( i 51,2, . . . ,m) the standard
shape functions of the solid element~@21#!, wherem is the number
of the nodes of the element. The element stiffness matrix is gi
by

K5E
21

1 E
21

1 E
21

1

BTDBJ0djdhdz, (23)

whereB is the strain-displacement matrix,J0 is the usual Jacobian
of the transformation between parametric~j,h,z! and Cartesian
coordinates (x1 ,x2 ,x3), andD is the elastic stiffness matrix. Fo
functionally graded materials~FGMs!, the D matrix depends on

Fig. 3 Interface-cohesive and three-dimensional solid
elements
MAY 2002, Vol. 69 Õ 373
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spatial position. To calculate the Young’s modulus and the P
son’s ratio in the solid element, we use the following interpo
tion:

E5(
i 51

m

NiEi , n5(
i 51

m

Nin i , (24)

where Ei and n i( i 51,2, . . . ,m) are the values of the Young’
modulus and the Poisson’s ratio at nodal points, respectively.

Turning to the cohesive element, the tangent stiffness matr
given by ~@8#!,

KT5E
21

1 E
21

1

Bcoh
T DcohBcohJ0dhdz, (25)

where Bcoh extracts the relative displacement jumps within t
cohesive element from the nodal displacements~@8#!, J0 is
the Jacobian of the transformation between parametric~h,z! and
Cartesian coordinates (s1 ,s2) in the tangent plane of the cohesiv
element, andDcoh is the tangent modulus matrix of the cohesi
law ~17!–~19! which can be found in the Appendix. For FGM
Eq. ~18! and Eqs.~34! and ~35! in the Appendix show that the
Dcoh matrix depends on spatial position through the grad
volume fraction of the metal phase,Vmet, in a ceramic/metal
FGM. In this study,Vmet is also approximated by the standa
interpolation

Vmet5(
i 51

4

NiVmet
i , (26)

whereVmet
i ( i 51,2,3,4) are the values ofVmet at the nodal points

of the interface-cohesive elements. The present formulatio
fully isoparametric in which the same shape functions interpo
the displacements, the geometry and the material parame
Such a generalized isoparametric formulation has been prese
by Kim and Paulino@20#.

4 Functionally Graded Material Properties
This section describes the techniques adopted to obtain

properties for both the background functionally graded mater
~FGM! and cohesive FGM materials. One of the advantages of
present methodology is that each model is developed separ
for each material, as described below. This feature introduces
nificant flexibility in modeling the actual material behavior.

4.1 Background Material Properties. Consider an FGM
as a two-phase composite with graded volume fractions of
constituent phases. The effective properties of an FGM shoul
calculated from those of the constituent materials and the volu
fractions by means of a micromechanical model. Though suc
model is not available as yet for FGMs, some models for conv
tional homogeneous composite materials, for example, the
consistent scheme, may be used for FGMs with reasonable a
racy ~@22#!. In this study, we use the self-consistent scheme~@23#!
to calculate the effective elastic properties of the FGM. The sh
and bulk modulim fgm andK fgm of the FGM are thus calculated b
the following system of equations:

~m fgm2mmet!~m fgm2mcer!F VmetKmet

Kmet14m fgm/3
1

~12Vmet!Kcer

Kcer14m fgm/3
12G

15@Vmetmcer~m fgm2mmet!1~12Vmet!mmet~m fgm2mcer!#

50, (27)
374 Õ Vol. 69, MAY 2002
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K fgm52
4

3
m fgm

1
~Kmet14m fgm/3!~Kcer14m fgm/3!

Vmet~Kcer14m fgm/3!1~12Vmet!~Kmet14m fgm/3!
.

(28)

The Young’s modulusEfgm and the Poisson’s ration fgm of the
FGM are then determined from the following relations:

Efgm5
9m fgmK fgm

m fgm13K fgm
, (29)

n fgm5
3K fgm22m fgm

2~m fgm13K fgm!
. (30)

In the present study, the volume fraction of the metal ph
follows a simple power function, i.e.,

Vmet~X!5S X2Xmin

Xmax2Xmin
D n

, (31)

wheren is the power exponent,X is the gradation direction, and
the material properties are graded in the interval@Xmin ,Xmax#. Fig-
ure 4 shows the volume fraction of the metal phase for vari
values ofn.

The following numerical analysis of crack growth utilizes th
properties of a TiB/Ti FGM system. Table 1 lists the releva
material properties of TiB~titanium monoboride! and Ti~commer-
cially pure titanium!. The company CERCOM Inc. developed th
ceramic/metal FGM system in a layered structural form for arm
applications~@24#!.

4.2 Cohesive Material Properties. The functionally graded
cohesive constitutive model~7! or ~18! ~three-dimensional case!
has the following six independent parameters that characterize
fracture process in a ceramic/metal FGM:

Gmet
c : local work of separation of metal

Gcer
c : local work of separation of ceramic

smet
c : peak cohesive traction of metal

scer
c : peak cohesive traction of ceramic

Fig. 4 Volume fraction of metallic phase in a ceramic Õmetal
functionally graded material „FGM…

Table 1 Material Properties of Ti and TiB

Materials

Young’s
modulus
~GPa!

Poisson’s
ratio

Jc
~KJ/m2!

smet
c

~MPa!
dmet

c

~mm!
scer

c

~MPa!
dcer

c

~mm!

Ti 107 0.34 150 620 0.089
TiB 375 0.14 0.11 4.0 0.01
Transactions of the ASME
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bmet andbcer: cohesive gradation parameters.
The calibrated values ofGmet

c and smet
c are the Griffith energy

release rate~under small-scale yielding conditions! and the peak
cohesive stress of the metal phase, which generally lies betw
two to three times the uniaxial yield stress. The first equation
~22! yields the characteristic opening displacementdmet

c . We note
that ductile deformations are present in the background mat
when the cohesive characteristic parameters of the metal are
brated following the above procedure, however, such defor
tions are not considered in the present study. Nevertheless,
calibration procedure is used with emphasis on the presentatio
the cohesive model and the effects of gradation parameterbmet
and metal volume fractionVmet on the load versus crack growt
responses. For the ceramic phase, it is natural to assign the e
release rate toGcer

c . For this phenomenological model applicab
at engineering scales, the characteristic opening displacemendcer

c

is assumed to be approximately the average grain size of cer
particles in the ceramic/metal FGM. The peak cohesive trac
scer

c is therefore determined from the second equation of~22!. At
smaller length scales, the local nature of the failure mechan
contributes to the characteristic parameters of the cohesive
model, which may lead to different material parameters and
ferent simulation results of crack growth. Calibration of the oth
two parametersbmet andbcer follows by matching the predicted
with measured, fracture behavior. Table 1 lists the relevant co
sive properties for the TiB/Ti FGM, where the criticalJ values
(Jc , as the cohesive energy! for TiB and Ti are taken from refer-
ences@25,26#.

5 Crack Growth in TiB ÕTi Functionally Graded
Materials

5.1 Finite Element Models. We performed numerica
analyses of crack growth for both C~T! and SE~B! specimens, as
illustrated in Figs. 5–6 and Figs. 7–8, respectively. Table 2 su
marizes the geometric parameters of the C~T! specimen. The ab-
solute size for the specimen isW550 mm. The initial nondimen-
sional crack length isa0 /W50.4, the initial nondimensiona

Fig. 5 C „T… specimen geometry

Fig. 6 Typical mesh for analyses of C „T… specimen
Journal of Applied Mechanics
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ligament size is thenb0 /W50.6, and the thickness is 4.5 mm
Table 3 provides the geometric parameters for the SE~B! speci-
mens. A layered functionally graded material~FGM! version of
the SE~B! specimen has been recently tested in@25#. From a mod-
eling point of view, the functionally graded material~FGM! com-
position varies from 100 percent TiB at the cracked surface to
percent Ti at the uncracked surface. Thus the volume fraction
Ti varies from zero at the cracked surface to one at the uncrac
surface.

The finite element models consist of eight-node isoparame
solid elements and the eight-node interface-cohesive eleme
Due to symmetry considerations, we model only one-quarte
each specimen. Interface-cohesive elements are placed only
the initial uncracked ligament and have a uniform size of 0.25 m
for the C~T! specimen, and 0.1 mm for the SE~B! specimens. The
finite element model has eight uniform layers of elements over
half thickness for the C~T! specimen. For the thicker SE~B! speci-
mens, the model has ten uniform layers over the half thickn
Figure 6 shows the front view of the typical finite element me
for the C~T! specimen and Fig. 8 shows the front view of the fin
element mesh for the SE~B! specimens.

5.2 Finite Element Analysis. The FGM modeling features
described in this work have been implemented in the fract
mechanics research code WARP3D~@27#!. In addition to the con-
ventional solid and interface-cohesive elements for homogene
materials, this code also incorporates the solid element w

Fig. 7 SE „B… specimen geometry

Fig. 8 Typical mesh for analyses of SE „B… specimen

Table 2 Geometric parameters of C „T… specimen

Specimen W (mm) B (mm) a0 /W

C~T! 50 4.5 0.4

Table 3 Geometric parameters of SE „B… specimens

Specimen L (mm) W (mm) B (mm) a0 /W R (mm)

SE~B! 79.4 14.7 7.4 0.1, 0.3 10.2
MAY 2002, Vol. 69 Õ 375
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graded elastic properties and the interface-cohesive elem
coupled with the functionally graded cohesive constitutive mo
described in Sections 2 and 3.

WARP3D supports the conventional interface-cohesive elem
for crack growth with adaptive load control, element extincti
and other features. Such computational procedures~previously
used for homogeneous materials! also prove essential in analyse
of FGMs to track accurately the cohesive constitutive respon
For the cohesive fracture model proposed in Section 2, the a
tive load control parameter becomes the characteristic ope
displacementdmet

c of the metal. The analysis uses a limit o
Dd/dmet

c 50.2 per load step for adaptive load control, whereDd is
the largest change of effective opening displacementd experi-
enced by interface-cohesive elements in a given load step.
element extinction occurs when the average opening displace
d of the element reaches 5dmet

c , which corresponds to a cohesiv
traction less than 10 percent of the peak value of the metal m
tiplied by the metal volume fraction. Selection ofdmet

c ~of the
metal phase! as the controlling parameter for adaptive load cont
and element extinction follows from the analyses demonstra
that the metal phase largely controls fracture behavior of
FGM. The cohesive fracture energy of TiB, for example, is le
than 0.1 percent of that for Ti.

5.3 Crack Growth in C„T… Specimen. The specimen is
loaded by opening displacements applied uniformly through
thickness at the loading pin. Crack growth is taken to occur w
the interface-cohesive elements ahead of the crack front sa
the element extinction condition. Figure 9~a! shows the load ver-
sus crack extension curves for the C~T! specimen for various val-
ues of bmet. The power exponentn50.5 ~shape index of the
metal volume fraction! defines an overall metal rich specime
Because the cohesive traction of the ceramic phase is extre
small compared with that of the metal phase for the TiB/Ti FG
studied, the parameterbcer plays a negligible role in determining
the cohesive traction of the FGM. Consequently, we takebcer
51.0 in the current and all subsequent calculations. Figure~a!
shows that for a givenbmet, the load decreases steadily with cra
extension in the present analyses which do not include plast
in the background material. This contrasts with ductile fracture
metals which show load increases with crack extension du
initial growth followed by load reductions when strain hardeni
no longer accommodates the decreasing ligament~see@8# for ex-
amples!. The figure also shows that for a given crack extension
larger bmet lowers the load. This is consistent with the cohes
fracture model~7! where a largerbmet reduces the peak cohesiv
traction. Figure 9~b! and 9~c! show similar results for the sam
specimen forn51.0 ~a specimen with equal overall metal an
ceramic volume fractions! and n52.0 ~an overall metal lean
specimen!, respectively. Comparing the results in the three fi
ures, we observe that the load becomes lower for largern. The
result is expected since a largern corresponds to a lower meta
volume fraction, which results in a lower cohesive energy for
FGM.

Figure 10 shows the load versus crack extension curves for
same C~T! specimen studied in Fig. 9~a! with addition of the
crack growth responses for homogeneous metal~Ti! and ceramic
~TiB! specimens. These two additional configurations prov
bounding solutions for the FGM responses. The load for pure
remains larger than those for the TiB/Ti FGM with variousbmet.
The loads during crack extension for the pure TiB, however,
main vanishingly small compared to the FGM.

5.4 Crack Growth in SE„B… Specimen. As a final numeri-
cal example, we consider an SE~B! specimen loaded by openin
displacements applied uniformly through the thickness at
specimen center plane. A layered FGM version of the specim
has been recently tested~@25#!. The first layer of the tested spec
men consists of 15 percent Ti and 85 percent TiB, while the
layer ~seventh layer! consists of 100 percent Ti. Crack initiatio
376 Õ Vol. 69, MAY 2002
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occurred at a measured load of 920 Newtons~N!. The experimen-
tal results show that load increases with crack extension du
the initial growth and then decreases with further crack extens
The measured load corresponding to a crack growth of 5 mm
about 1200 N. Figure 11 shows the volume fraction of Ti in th
TiB/Ti specimen. The dotted~stepped! line shows the property
gradation in the experimentally tested specimen. A least-squ
approximation yields the power exponentn50.84 in the metal
volume fraction function of Eq.~31!. Figure 12 shows the numeri
cal results of the load versus crack extension responses for
SE~B! specimen withbmet516 and n50.84. For thebmet se-
lected, the crack initiation load agrees quite closely with the
perimentally measured value. Compared with the experime
observations after the crack initiation~@25#!, the discrepancy in
the trend of load versus crack extension response arises bec
the present analysis does not consider plasticity in the backgro

Fig. 9 Load-crack extension response for the C „T… TiÕTiB
specimen with a0 ÕWÄ0.4, BÄ4.5 mm; „a… nÄ0.5; „b… nÄ1.0;
„c… nÄ2.0
Transactions of the ASME
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material. When the plasticity effect is taken into account~work
underway by the authors!, we expect that the trend of the loa
versus crack extension will be more consistent with the exp
mental observations~the calibrated value ofbmet may be larger
than 16!. Figure 12 also shows the numerical results of the lo
versus crack extension for plane-strain and plane-stress mo
Though we have not found differences between the tw
dimensional and three-dimensional responses, we expect tha

Fig. 10 Load-crack extension response for the C „T… TiÕTiB
specimen with a0 ÕWÄ0.4, BÄ4.5 mm

Fig. 11 Volume fraction of Ti in the TiB ÕTi functional graded
material „FGM…

Fig. 12 Load-crack extension response for the SE „B… TiÕTiB
specimen with a0 ÕWÄ0.3, BÄ7.4 mm, nÄ0.84
Journal of Applied Mechanics
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nificant differences will develop with plasticity in the backgroun
material due to variations in crack front constraint and crack fr
tunneling.

Figure 13 shows the effect ofbmet and n on the load versus
crack extension responses for the SE~B! specimen. The power
exponentn ~shape index of the metal volume fraction! is 0.5 in
Fig. 13~a!, 1.0 in Fig. 13~b!, and 2.0 in Fig. 13~c!. Similar load
versus crack extension behavior to that for the C~T! specimen is
observed for the SE~B! specimen, i.e., for a givenbmet, the load
decreases steadily with crack extension; for a given crack ex
sion, a largerbmet reduces the load; and finally, the load becom
lower for largern. Becausebmet has a pronounced effect on th
load versus crack extension responses, we may expect to cali
the values ofbmet from experimental observations~see Section 2!.

Fig. 13 Load-crack extension response for the SE „B… TiÕTiB
specimen with a0 ÕWÄ0.3, BÄ7.4 mm; „a… nÄ0.5; „b… nÄ1.0;
„c… nÄ2.0
MAY 2002, Vol. 69 Õ 377
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Figure 14 shows the load versus crack extension curves for
SE~B! specimen with an initial nondimensional crack leng
a0 /W50.1. Similar results to that shown in Fig. 13~a! can be
observed. Therefore, without considering plasticity in the ba
ground material, the load decreases with crack extension du
the decreasing ligament for the laboratory crack size.

6 Concluding Remarks
This study presents a novel phenomenological cohesive frac

model for ceramic/metal functionally graded materials~FGMs!
and the corresponding implementation in a three-dimensiona
nite element method framework. The model has six independ
material parameters, i.e., the cohesive energy dens
(Gmet

c ,Gcer
c ), the peak cohesive tractions of the metal and cera

phases (smet
c ,scer

c ) and two cohesive gradation paramete
(bmet,bcer) to represent approximately the transition between
fracture mechanisms of metal and ceramic phases, respective
contrast to existing models that consider only tensile mode f
ture, the present model accommodates three-dimensional te
and shear fracture modes although the numerical examples
trate only mode I fracture behavior. Applications of the cohes
fracture model to the analysis of crack growth in both C~T! and
SE~B! specimens of TiB/Ti FGM show that the load to cau
crack extension in the FGM compares to that for a pure metal~Ti!
specimen. In the present study, the load decreases steadily
subsequent crack extension, which contrasts with ductile frac
behavior of metals~the present analyses do not admit plasticity
the background material!. The results obtained indicate that th
cohesive gradation parameter for the metal has a pronounce
fect on the load versus crack extension response. This sug
that the parameter may be reasonably calibrated by matching
predicted crack growth response with experimental observati
An extension of this work includes consideration of plasticity
the bulk FGM ~background!. In this case, we expect to dete
strong three-dimensional effects of crack front tunneling a
variations in crack front constraint. This investigation is curren
being pursued by the authors.
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Fig. 14 Load-crack extension response for the SE „B… TiÕTiB
specimen with a0 ÕWÄ0.1, BÄ7.4 mm; and nÄ0.5
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Appendix
In finite element analyses, the tangent modulus matrixDi j ( i , j

51,2,3) for the cohesive models~18! defined below is needed

ṡ i5Di j v̇ j , (32)

where (s1 ,s2 ,s3)5(ss1 ,ss2 ,sn), (v1 ,v2 ,v3)5(vs1 ,vs2 ,vn),
andDi j 5]s i /]v j . HereDi j are the components ofDcoh matrix in
Eq. ~25!. The detailed expression forDi j is given as follows. First
note that

Di j 5
]

]v j
S ]f fgm

]deff

]deff

]v i
D5seff

]2deff

]v i]v j
1

]seff

]deff

]deff

]v i

]deff

]v j
.

(33)

It is clear from the above equation thatDi j 5D ji . Use of Eqs~12!,
~14!, and~33! yields

D115h2
seff

deff
1

h4v1
2

deff
2 S ]seff

]deff
2

seff

deff
D ,

D225h2
seff

deff
1

h4v2
2

deff
2 S ]seff

]deff
2

seff

deff
D ,

D335
seff

deff
1

v3
2

deff
2 S ]seff

]deff
2

seff

deff
D ,

(34)

D125D215h4
v1v2

deff
2 S ]seff

]deff
2

seff

deff
D ,

D135D315h2
v1v3

deff
2 S ]seff

]deff
2

seff

deff
D ,

D235D325h2
v2v3

deff
2 S ]seff

]deff
2

seff

deff
D ,

whereseff is given by Eq.~18! and]seff /]deff is

]seff

]deff
5

Vmet~x!

Vmet~x!1bmet@12Vmet~x!#
eS smet

c

dmet
c D S 12

deff

dmet
c D

3expS 2
deff

dmet
c D 1

12Vmet~x!

12Vmet~x!1bcerVmet~x!

3eS scer
c

dcer
c D S 12

deff

dcer
c D expS 2

deff

dcer
c D , (35)

under loading conditions, and

seff5S seff
max

deff
maxD deff , (36)

]seff

]deff
5

seff
max

deff
max (37)

for the unloading case.
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