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Abstract

In this paper, a crack in a viscoelastic strip of a functionally graded material (FGM) is studied under tensile loading

conditions. The extensional relaxation modulus is assumed as E ¼ E0 expðby=hÞf ðtÞ, where h is a scale length and f ðtÞ is
a nondimensional function of time t either having the form f ðtÞ ¼ E1=E0 þ ð1� E1=E0Þ expð�t=t0Þ for a linear stan-

dard solid or f ðtÞ ¼ ðt0=tÞq for a power law material model, where E0, E1, b, t0 and q are material constants. An ex-

tensional relaxation function in the form E ¼ E0 expðby=hÞ½t0 expðdy=hÞ=t�q is also considered, in which the relaxation

time depends on the Cartesian coordinate y exponentially with d being a material constant describing the gradation of

the relaxation time. The Poisson’s ratio is assumed to have the form m ¼ m0ð1þ cy=hÞ expðby=hÞgðtÞ, where m0 and c are

material constants, and gðtÞ is a nondimensional function of time t. An elastic FGM crack problem is first solved and

the ‘‘correspondence principle’’ is used to obtain both mode I and mode II stress intensity factors, and the crack

opening/sliding displacements for the viscoelastic FGM considering various material models.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Materials exhibit creep and relaxation behavior at elevated temperatures. Upon such conditions, de-
formation creep occurs under constant stress state, while stress relaxation takes place under constant strain
state. In the framework of linear continuum theory, such behavior can be studied by viscoelasticity.
Generally speaking, the viscoelastic response may be obtained from the elastic solution via the corre-
spondence principle [1], or the analogy between the Laplace transform of the viscoelastic solution and the
corresponding elastic solution. Fracture behavior of homogeneous materials has been investigated by
Broberg [2] who has given some examples of stress intensity factors (SIFs) for stationary cracks in visco-
elastic solids. Atkinson and Chen [3,4] have investigated cracks in layered viscoelastic materials. Crack
growth problems have been studied, for example, by Knauss [5] and Shapery [6–8].
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Functionally graded materials (FGMs) are an alternative to homogeneous materials or layered com-
posites, and are promising candidates for future advanced technological applications [9,10]. The material
properties of FGMs are continuously graded with gradual change in microstructural details over pre-
determined geometrical orientations and distances, such as composition, morphology, and crystal structure
[11,12]. In applications involving severe thermal gradients (e.g. thermal protection systems), FGM systems
take advantage of heat and corrosion resistance typical of ceramics, and mechanical strength and toughness
typical of metals. Several aspects of fracture mechanics of FGMs have been studied, for example, basic
theory and review [13], crack tip fields [14,15], crack growth resistance curve [16], crack deflection [17],
conservation laws [18], strain gradient theory [19], fracture testing [20], and statistical models [21].

Under elevated temperature conditions, FGMs also exhibit creep and relaxation behavior. For polymer-
based FGMs (see, for example, [22–24]), their creep and relaxation behavior may be studied by visco-
elasticity. However, in general, the correspondence principle, does not hold for FGMs. To avoid this
problem, Paulino and Jin [25] have shown that the correspondence principle can still be used to obtain the
viscoelastic solution for a class of FGMs exhibiting relaxation (or creep) functions with separable kernels in
space and time. By using such revisited correspondence principle for FGMs, they have subsequently studied
crack problems of FGM strips subjected to antiplane shear conditions [26,27]. Other studies on crack
problems of nonhomogeneous viscoelastic materials directly solve the viscoelastic governing equations.
For example, Schovanec and co-workers have considered stationary cracks [28], quasi-static crack prop-
agation [29] and dynamic crack propagation [30] in nonhomogeneous viscoelastic media under anti-
plane shear conditions. Schovanec and Walton also considered quasi-static propagation of a plane strain
mode I crack in a power-law inhomogeneous linearly viscoelastic body [31] and calculated the corre-
sponding energy release rate [32]. Although a separable form for the relaxation functions was employed in
Refs. [28–32], no use of the correspondence principle was made. Recently, Yang [33] performed stress
analysis in FGM cylinders where steady-state creep conditions are considered only for the homogeneous
material.

In the present study, a stationary crack in a viscoelastic FGM strip is investigated under tensile loading
conditions. The extensional relaxation function of the material is assumed as

E ¼ E0 expðby=hÞf ðtÞ;

where h is a scale length and f ðtÞ is a nondimensional function of time t either having the form

f ðtÞ ¼ E1=E0 þ ð1� E1=E0Þ expð�t=t0Þ : linear standard solid

or

f ðtÞ ¼ ðt0=tÞq : power law material:

We also consider the following variant form of the power law material model

E ¼ E0 expðby=hÞ½t0 expðdy=hÞ=t�q;

in which the relaxation time depends on y exponentially. In the above expressions, the parameters E0, E1, b,
t0; d, q are material constants. The Poisson’s ratio is assumed to take the form (also separable in space and
time)

m ¼ m0ð1þ cy=hÞ expðby=hÞgðtÞ:

where m0 and c are material constants, and gðtÞ is a nondimensional function of time t. The material models
considered above may be suitable, for example, for two phase polymeric/polymeric FGMs with their basic
constitutents having different Young’s moduli and Poisson’s ratios but having approximately the same
viscoelastic relaxation behavior. Since an FGM is a special composite of its constitutents, the viscoelastic
relaxation behavior may remain unchanged if its constitutents have the same relaxation behavior. Thus, the
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relaxation moduli of the FGM would have separable forms in space and time. Further, the independent
material constants b and c describe the spatial gradation in Young’s modulus and Poisson’s ratio.

According to the correspondence principle, we first consider a crack in an elastic strip of an FGM with
the following properties:

E ¼ E0 expðby=hÞ; m ¼ m0ð1þ cy=hÞ expðby=hÞ:

The Laplace transform of the viscoelastic solution is directly obtained from the elastic solution. For the
traction boundary value problem, the stress intensity factors are the same as those for the nonhomogeneous
elastic strip. The crack opening/sliding displacements, however, are functions of time.

The remainder of this paper is organized as follows. The basic equations of viscoelasticity are provided
in the next section and some viscoelastic constitutive models for FGMs are discussed in Section 3. The
boundary value problem of a crack in a viscoelastic FGM strip is presented in Section 4. SIFs and crack
opening/sliding displacements are discussed in Sections 5 and 6, respectively. Relevant numerical aspects
for solving the governing system of integral equations are given in Section 7. Numerical results of SIFs and
crack opening/sliding displacements are given in Section 8. Finally, some concluding remarks and exten-
sions are given in Section 9. Appendix A, containing the explicit form of the Fredholm kernels in the in-
tegral equations, supplements the paper.

2. Basic equations

The basic equations of quasi-static viscoelasticity of FGMs are the equilibrium equation (in the absence
of body forces)

rij;j ¼ 0; ð1Þ

the strain–displacement relationship

eij ¼ 1
2
ðui;j þ uj;iÞ; ð2Þ

and the viscoelastic constitutive law

eij ¼
Z t

0

J1ðx; t � sÞ dsij
ds

ds; ekk ¼
Z t

0

J2ðx; t � sÞ drkk

ds
ds ð3Þ

with

sij ¼ rij �
1

3
rkkdij; eij ¼ eij �

1

3
ekkdij; ð4Þ

where rij are stresses, eij are strains, sij and eij are deviatoric components of the stress and strain tensors,
respectively, ui are displacements, dij is the Kronecker delta, x ¼ ðx1; x2; x3Þ, J1ðx; tÞ and J2ðx; tÞ are the creep
functions, t denotes time, and the Latin indices have the range 1–3 with repeated indices implying the
summation convention. Note that for FGMs the creep functions also depend on spatial positions, whereas in
homogeneous viscoelasticity, they are only functions of time, i.e. J1 	 J1ðtÞ and J2 	 J2ðtÞ [1].

The creep functions J1ðx; tÞ and J2ðx; tÞ are related to the relaxation function in extension, Eðx; tÞ, and
the relaxation function in Poisson’s ratio, mðx; tÞ, by the following equations [1]:

J 1 ¼
1þ p�mm
p2E

; J 2 ¼
1� 2p�mm
p2E

; ð5Þ

where a bar over a variable means the Laplace transform, and p is the Laplace transform variable.
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Under plane stress conditions, the Laplace transforms of the basic equations (1)–(3) are reduced to

o�rrxx

ox
þ o�rrxy

oy
¼ 0;

o�rrxy

ox
þ o�rryy

oy
¼ 0; ð6Þ

���xx ¼
o�uu
ox

; ���yy ¼
o�vv
oy

; ���xy ¼
1

2

o�uu
oy

 
þ o�vv
ox

!
; ð7Þ

���xx ¼
1

pE
�rrxx

�
� p�mm�rryy

�
; ���yy ¼

1

pE
�rryy

�
� p�mm�rrxx

�
; ���xy ¼

2ð1þ p�mmÞ
pE

�rrxy ; ð8Þ

where x 	 x1, y 	 x2, and u and v are displacements in the x and y directions, respectively.

3. Viscoelastic models for FGMs

This section describes three viscoelastic material models considered in this investigation. The first is a
standard linear solid with constant relaxation time

E ¼ E0 expðby=hÞ
E1

E0

�
þ 1

�
� E1

E0

�
exp

�
� t
t0

�	
; ð9Þ

where b, E0, E1 and t0 are material constants and h is a scale length (e.g., the strip thickness). The second
model is a power law material with constant relaxation time

E ¼ E0 expðby=hÞ
t0
t

� �q
; 0 < q < 1; ð10Þ

where q is a material constant. The third model is still a power law material, but with position-dependent
relaxation time

E ¼ E0 expðby=hÞ
t0 expðdy=hÞ

t

� 	q
¼ E0 exp½ðb þ dqÞy=h� t0

t

� �q
; ð11Þ

where d is a material constant. For all three models, the Poisson’s ratio is assumed as

m ¼ m0ð1þ cy=hÞ expðby=hÞgðtÞ; ð12Þ
where m0 and c are material constants, and gðtÞ is a nondimensional function of time t. The spatial position
dependent part of the Possion ratio (12) was first proposed by Delale and Erdogan [34] to study non-
homogeneous elastic crack problems. Noda and Jin [35] later used it to investigate thermal crack problems
in nonhomogeneous solids. The Poisson’s ratio given by Eq. (12) is subjected to the condition that
�1 
 m 
 0:5 [36].

With the assumptions (9)–(12) on the relaxation modulus and the Poisson’s ratio, the correspondence
principle for viscoelastic FGMs [25] can be used to study crack problems, i.e. the Laplace transformed
viscoelastic FGM solution can be obtained directly from the solution of the corresponding elastic FGM solution
by replacing E0 and m0 with pE0

�ff ðpÞ and pm0�ggðpÞ, respectively. The final solution is realized upon inverting the
transformed solution, where �ff ðpÞ and �ggðpÞ are the Laplace transforms of f ðtÞ and gðtÞ, respectively. For the
standard linear solid (9), f ðtÞ is given by

f ðtÞ ¼ E1

E0

�
þ 1

�
� E1

E0

�
exp

�
� t
t0

�	
: ð13Þ
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For the power law material (10) or (11), f ðtÞ is

f ðtÞ ¼ t0
t

� �q
: ð14Þ

Since the function gðtÞ does not affect the final governing equations and boundary conditions considered
(see Section 4), no specific functional form is required.

It can be clearly seen from (9) to (12) that the relaxation moduli and the Poisson’s ratio are separable
functions in space and time. This is a necessary condition for applying the revisited correspondence principle
[25]. This kind of relaxation functions may be appropriate for an FGM with its constituent materials
having different Young’s moduli and Poisson’s ratios but having approximately the same viscoelastic re-
laxation behavior. Since the FGM is a special composite of its constitutents, the viscoelastic relaxation
behavior may remain unchanged if its constitutents have the same relaxation behavior. Thus, the relaxation
moduli of the FGM would have separable forms in space and time. Further, the material constants b and c
describe the spatial gradation in Young’s modulus and Poisson’s ratio. For model (9), the separable form of
the extensional relaxation modulus means that the constituents should have the same ratio E1=E0 and
relaxation time t0. For model (10), this implies that the constituents should have the same relaxation time t0
and parameter q. For model (11), however, it is only required that the constituents have the same parameter
q. The constituents may have different relaxation times. Potentially, this kind of FGMs may include some
polymeric/polymeric materials such as propylene-homopolymer/Acetal-copolymer. The relaxation behav-
ior of propylene homopolymer and Acetal copolymer are found to be similar––see Figs. 7.5 and 10.3,
respectively, of Ogorkiewicz [37].

4. A crack in a viscoelastic FGM strip

Consider an infinite nonhomogeneous viscoelastic strip containing a crack of length 2a, as shown in Fig.
1. The strip is subjected to a uniform tension r0RðtÞ in the y-direction along both the lower boundary
ðy ¼ �h1Þ and the upper boundary ðy ¼ h2Þ, where r0 is a constant and RðtÞ is a nondimensional function of
time t. It is assumed that the crack lies on the x-axis, from �a to a. The crack surfaces remain traction free.
The boundary conditions of the crack problem, therefore, are

rxy ¼ 0; ryy ¼ r0RðtÞ; y ¼ �h1; jxj < 1; ð15Þ

rxy ¼ 0; ryy ¼ r0RðtÞ; y ¼ h2; jxj < 1; ð16Þ

 
Fig. 1. A viscoelastic FGM strip occupying the region jxj < 1 and �h1 6 y6 h2 with a crack at jxj6 a and y ¼ 0. The boundaries of the

strip (y ¼ �h1; h2) are subjected to uniform traction r0RðtÞ.
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rxy ¼ ryy ¼ 0; y ¼ 0; jxj 
 a; ð17Þ

rxyðx; 0þÞ ¼ rxyðx; 0�Þ; a < jxj < 1; ð18Þ

ryyðx; 0þÞ ¼ ryyðx; 0�Þ; a < jxj < 1; ð19Þ

uðx; 0þÞ ¼ uðx; 0�Þ; a < jxj < 1; ð20Þ

vðx; 0þÞ ¼ vðx; 0�Þ; a < jxj < 1: ð21Þ

According to the correspondence principle described in Ref. [25] and the previous section, one can first
consider a nonhomogeneous elastic material with Young’s modulus and Poisson’s ratio

E ¼ E0 expðby=hÞ; m ¼ m0ð1þ cy=hÞ expðby=hÞ; ð22Þ

respectively, and the viscoelastic solutions for models (9) and (10) may be obtained by the correspondence
principle. Note that for material model (11) the viscoelastic solution can still be obtained by the corre-
spondence principle provided that the corresponding elastic material has the following Young’s modulus
and Poisson’s ratio:

E ¼ E0 exp½ðb þ qdÞy=h�; m ¼ m0ð1þ cy=hÞ exp½ðb þ qdÞy=h�: ð23Þ

For the elastic crack problem, the solution consists of a regular solution (for an uncracked strip) and a
purturbed solution by the crack. The stresses for the regular solution are

rxx ¼ mðyÞr0RðtÞ þ EðyÞðC1y þ C2Þ; ð24Þ

ryy ¼ r0RðtÞ; ð25Þ

rxy ¼ 0; ð26Þ

where C1 and C2 are constants which can be determined by the displacement constraint conditions. These
constants do not influence the final stress intensity factor and crack opening/sliding displacement results.

For the perturbed problem by the crack, the following boundary conditions need to be satisfied

rxy ¼ 0; ryy ¼ 0; y ¼ �h1; jxj < 1; ð27Þ

rxy ¼ 0; ryy ¼ 0; y ¼ h2; jxj < 1; ð28Þ

rxy ¼ 0; y ¼ 0; jxj6 a; ð29Þ

ryy ¼ �r0RðtÞ; y ¼ 0; jxj6 a; ð30Þ

rxyðx; 0þÞ ¼ rxyðx; 0�Þ; a < jxj < 1; ð31Þ

ryyðx; 0þÞ ¼ ryyðx; 0�Þ; a < jxj < 1; ð32Þ

uðx; 0þÞ ¼ uðx; 0�Þ; a < jxj < 1; ð33Þ

vðx; 0þÞ ¼ vðx; 0�Þ; a < jxj < 1: ð34Þ

The governing differential equation in terms of the Airy stress function Uðx; yÞ for the nonhomogeneous
elastic material (22) is [34]
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r2r2U � 2
b
h

� �
oðr2UÞ

oy
þ b

h

� �2
o2U
oy2

¼ 0: ð35Þ

The stresses can be expressed in terms of U as

rxx ¼
o2U
oy2

; ryy ¼
o2U
ox2

; rxy ¼ � o2U
oxoy

: ð36Þ

The displacements are related to U by the constitutive relationship

ou
ox

¼ 1

E0

expð



�by=hÞrxx � m0ð1þ cy=hÞryy

�
; ð37Þ

ov
oy

¼ 1

E0

expð



�by=hÞryy � m0ð1þ cy=hÞrxx

�
; ð38Þ

ou
oy

þ ov
ox

¼ 2½expð�by=hÞ þ m0ð1þ cy=hÞ�
E0

rxy : ð39Þ

By using the Fourier transform method (see, for example, Ref. [38]), the boundary value problem de-
scribed by Eqs. (27)–(39) can be reduced to the following system of singular integral equations:Z 1

�1

u1ðsÞ
s� r

�
þ k11ðr; s; bÞu1ðsÞ þ k12ðr; s; bÞu2ðsÞ

	
ds ¼ 0; jrj6 1;

Z 1

�1

u2ðsÞ
s� r

�
þ k21ðr; s; bÞu1ðsÞ þ k22ðr; s; bÞu2ðsÞ

	
ds ¼ �2p

r0RðtÞ
E0

; jrj6 1;

ð40Þ

where the unknown density functions u1ðrÞ and u2ðrÞ are defined by

u1ðxÞ ¼
o

ox
½uðx; 0þÞ � uðx; 0�Þ�;

u2ðxÞ ¼
o

ox
½vðx; 0þÞ � vðx; 0�Þ�;

ð41Þ

the nondimensional coordinate r is

r ¼ x=a; ð42Þ

and the Fredholm kernels kijðr; s; bÞ (i; j ¼ 1, 2) can be found in Ref. [35] and are compiled in the Appendix
A for completeness.

The functions u1ðrÞ and u2ðrÞ satisfy the following uniqueness conditionZ 1

�1

uiðrÞdr ¼ 0; ði ¼ 1; 2Þ; ð43Þ

They can be further expressed as

uiðrÞ ¼ wiðrÞ=
ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
; ði ¼ 1; 2Þ; ð44Þ

where wiðrÞ (i ¼ 1, 2) are continuous for r 2 ½�1; 1�. When uiðrÞ are normalized by r0RðtÞ=E0, the elastic
Mode I and mode II SIFs, Ke

I and Ke
II, are obtained as

Ke
I ¼ �1

2
w2ð1; bÞr0RðtÞ

ffiffiffiffiffiffi
pa

p
;

Ke
II ¼ �1

2
w1ð1; bÞr0RðtÞ

ffiffiffiffiffiffi
pa

p
:

ð45Þ
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Here, the notation wið1; bÞ ði ¼ 1; 2Þ is adopted to emphasize the dependence of w1ð1Þ and w2ð1Þ on the
material parameter b.

5. Stress intensity factors

The SIFs for the viscoelastic FGMs (9)–(11) with the Poisson ratio (12) can be obtained by using the
correspondence principle between the elastic and the Laplace transformed viscoelastic equations. Since no
other material parameters appear in the SIFs (45), except for the nondimensional parameter b, the SIFs for
the viscoelastic FGMs are also given by Eq. (45) by means of the correspondence principle, i.e.

KI ¼ �1
2
w2ð1; bÞr0RðtÞ

ffiffiffiffiffiffi
pa

p
¼ Ke

I ;

KII ¼ �1
2
w1ð1; bÞr0RðtÞ

ffiffiffiffiffiffi
pa

p
¼ Ke

II:

For the power law material with position-dependent relaxation time (11), the SIFs are

KI ¼ �1
2
w2ð1; b þ qdÞr0RðtÞ

ffiffiffiffiffiffi
pa

p
;

KII ¼ �1
2
w1ð1; b þ qdÞr0RðtÞ

ffiffiffiffiffiffi
pa

p
:

ð46Þ

It is seen that q and d (parameters describing the position dependence of the relaxation time) affect the SIFs
only through the combined parameter ðb þ qdÞ.

6. Crack opening/sliding displacements

Crack opening/sliding displacements are important parameters in assessing fracture behavior. For the
crack problem considered here, those displacements will also evolve with time. Thus, the crack opening/
sliding displacements are first given for general time-dependent loading by using the correspondence
principle. Two special loading conditions, i.e. Heaviside step loading and exponential loading are subse-
quently considered.

It follows from Eqs. (41) and (44), and the correspondence principle, that the Laplace transforms of the
crack opening/sliding displacements under time-dependent loading, r0RðtÞ, can be expressed by the density
functions u1ðxÞ and u2ðxÞ, or w1ðrÞ and w2ðrÞ (normalized by r0RðtÞ=E0), as follows:

�½½u� ¼ �uuðx; 0þÞ � �uuðx; 0�Þ ¼ r0
�RRðpÞ

pE0
�ff ðpÞ

Z x

�a
u1ðx0Þdx0 ¼

ar0
�RRðpÞ

pE0
�ff ðpÞ

Z r

�1

w1ðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ds;

�½½v� ¼ �vvðx; 0þÞ � �vvðx; 0�Þ ¼ r0
�RRðpÞ

pE0
�ff ðpÞ

Z x

�a
u2ðx0Þdx0 ¼

ar0
�RRðpÞ

pE0
�ff ðpÞ

Z r

�1

w2ðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ds;

ð47Þ

where �RRðpÞ is the Laplace transform of RðtÞ and �ff ðpÞ is the Laplace transform of f ðtÞ which is given in Eqs.
(13) and (14).

The crack opening/sliding displacements are then obtained as follows:

½u� ¼ uðx; 0þÞ � uðx; 0�Þ ¼ ar0

E0

� �
F ðtÞ

Z r

�1

w1ðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ds;

½v� ¼ vðx; 0þÞ � vðx; 0�Þ ¼ ar0

E0

� �
F ðtÞ

Z r

�1

w2ðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ds;
ð48Þ
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where

F ðtÞ ¼ L�1 RðpÞ
p�ff ðpÞ

" #
; ð49Þ

in which L�1 represents the inverse Laplace transform.

6.1. Heaviside step loading

For the Heaviside step loading,

RðtÞ ¼ HðtÞ ! RðpÞ ¼ 1=p; ð50Þ
where HðtÞ is the Heaviside step function. Thus the function F ðtÞ in Eqs. (48) and (49) becomes

F ðtÞ ¼ E0

E1
� E0

E1

�
� 1

�
exp

�
� E1t
E0t0

�
; ð51Þ

for the standard linear solid, and

F ðtÞ ¼ ðt=t0Þq

Cð1� qÞCð1þ qÞ ; ð52Þ

for the power law material, where Cð�Þ is the Gamma function.

6.2. Exponential loading

Now consider the exponential loading [2] as another example

RðtÞ ¼ expð�t=tLÞ ! RðpÞ ¼ 1=ðp þ 1=tLÞ; ð53Þ
where tL is a positive constant (load relaxation time). The function F ðtÞ is then given by

F ðtÞ ¼ 1

E1=E0 � t0=tL
1

��
� t0
tL

�
exp

�
� t
tL

�
� 1

�
� E1

E0

�
exp

�
� E1t
E0t0

�	
ð54Þ

for the standard linear solid, and

F ðtÞ ¼ 1

Cð1� qÞCðqÞt0

Z t

0

s
t0

� �q�1

exp

�
� t � s

tL

�
ds; ð55Þ

for the power law material.

7. Numerical solution of the governing system of integral equations

To obtain the numerical solution of the system of governing integral equations (40), the density func-
tions, wiðrÞ (i ¼ 1, 2), are expanded into series of Chebyshev polynomials of the first kind. By noting the
symmetric properties of the density functions (41), uiðrÞ (i ¼ 1, 2), they are expressed as follows:

u1ðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

X1
n¼1

bnT2nðrÞ; jrj6 1;

u2ðrÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

X1
n¼1

anT2n�1ðrÞ; jrj6 1;

ð56Þ
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where TnðrÞ are Chebyshev polynomials of the first kind, and an and bn are unknown constants. It is noted
that uiðrÞ given by Eq. (56) already satisfy the condition (43).

By substituting the above equations into integral equation (40), we have

X1
n¼1

pU2n�1ðrÞan
�

þ H 11
n ðrÞan þ H 12

n ðrÞbn
�
¼ 0; jrj6 1;

X1
n¼1

pU2n�2ðrÞbn
�

þ H 21
n ðrÞan þ H 22

n ðrÞbn
�
¼ �2p

r0RðtÞ
E0

; jrj6 1;

ð57Þ

where UnðrÞ are Chebyshev polynomials of the second kind and Hij
n ðrÞ (i; j ¼ 1; 2) are given by

H 11
n ðrÞ ¼

Z 1

�1

k11ðr; s; bÞ
T2nðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ds;

H 12
n ðrÞ ¼

Z 1

�1

k12ðr; s; bÞ
T2n�1ðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ds;

H 21
n ðrÞ ¼

Z 1

�1

k21ðr; s; bÞ
T2nðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ds;

H 22
n ðrÞ ¼

Z 1

�1

k22ðr; s; bÞ
T2n�1ðsÞffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

p ds:

ð58Þ

To solve the functional equations (57), the series on the left hand side are first truncated at the Nth term.
A collocation technique [38] is then used and the collocation points, ri, are chosen as the roots of the
Chebyshev polynomials of the first kind

ri ¼ cos
ð2i� 1Þp

2N
; i ¼ 1; 2; . . . ;N : ð59Þ

The functional equations (57) are then reduced to a linear algebraic equation system

XN
n¼1

pU2n�1ðriÞan
�

þ H 11
n ðriÞan þ H 12

n ðriÞbn
�
¼ 0;

XN
n¼1

pU2n�2ðriÞbn
�

þ H 21
n ðriÞan þ H 22

n ðriÞbn
�
¼ �2p

r0RðtÞ
E0

; i ¼ 1; 2; . . . ;N :

ð60Þ

After an and bn (n ¼ 1; 2; . . ., N) are determined, the nondimensional SIFs, K�
I and K�

II, are computed as
follows:

K�
I ¼ � 1

2
w2ð1; bÞ ¼ � 1

2

XN
n¼1

bn; ð61Þ

K�
II ¼ � 1

2
w1ð1; bÞ ¼ � 1

2

XN
n¼1

an: ð62Þ

In the following numerical calculations, it is found that 20 collocation points lead to a convergent SIF
result.
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8. Numerical results

Numerical results for SIFs are first calculated for a homogeneous elastic strip with a central crack (see
Fig. 1). Table 1 shows the SIFs of the present calculations and those reported in the handbook by Tada
et al. [39]. It is seen from the table that the SIFs are in good agreement. Another example considered is a
semi-infinite homogeneous plane with a sub-surface crack, which was studied by Erdogan et al. [38]. The
geometry is modeled by a cracked strip with the ratio h1=h ¼ 0:01 in this study (see Fig. 1). The SIFs from
the present calculations and Ref. [38] are listed in Table 2. Again, it is observed that the SIFs are in good
agreement. It should be noted that the existing results in Refs. [38,39] are also approximate solutions.

Fig. 2 shows normalized SIFs (see (61) and (62)), K�
I and K�

II, versus the nondimensional crack length
2a=h considering various nonhomogeneous parameter b for the linear standard solid and the power law
model with constant relaxation time (see Eqs. (9) and (10)). As noted in Section 5, the SIFs are identical for
both models. The crack is located in the middle of the strip, i.e. h2 ¼ 0:5h. Fig. 2(a) is the result for the mode
I SIF. It is seen that the mode I SIF increases with increasing ratio 2a=h for all b values considered here.
The SIF is higher than that of the corresponding homogeneous material (b ¼ 0). The mode I SIF is an even
function of b. However, this symmetry is valid only for the crack located in the center of the strip. Fig. 2(b)
shows the result of mode II SIF. The mode II SIF is asymmetric about b ¼ 0 (again, this anti-symmetry is
valid only for the crack located in the center of the strip). The absolute value of the mode II SIF increases
with increasing 2a=h. As expected, the mode II SIF is zero for this crack geometry for a homogeneous strip
(b ¼ 0).

For the crack problem considered here, the SIFs for the FGM are, in general, higher than those for the
corresponding homogeneous material (see Fig. 2 and the following figures). The higher SIFs do not nec-
essarily mean that the FGM is inferior to the homogeneous materials. In fact, ceramic/metal FGMs usually
have higher fracture toughness than monolithic ceramics. Therefore they can withstand higher SIFs. For
example, Jin and Batra [16] have theoretically predicted that an alumina/nickel FGM may have a fracture
toughness up to 30 times higher than that of alumina.

Fig. 3(a) and (b) shows the SIF results for a crack located at a distance of h2 ¼ 0:1h from the upper edge
of the strip (see Fig. 1). It is seen from Fig. 3(a) that in general, the mode I SIF is not symmetric about
b ¼ 0. This is anticipated since the geometry is not symmetrical about the crack line. The mode I SIF for
negative b is slightly larger than that for the corresponding positive b with the same absolute value. For

Table 1

Mode I SIFs for a homogeneous strip with a central crack

2a=h SIF (this study) SIF (Ref. [39])

0.1 1.01 1.01

0.67 1.42 1.42

1.0 1.82 1.88

2.0 3.29 3.42

Table 2

Modes I and II SIFs for a semi-infinite homogeneous plane with a sub-surface crack

2a=h1 Mode I SIF (this

study)

Model I SIF (Ref.

[38])

Mode II SIF (this

study)

Model II SIF (Ref.

[38])

0.67 1.0779 1.0778 0.0124 0.0123

1.0 1.1633 1.1621 0.0368 0.0367

2.0 1.5111 1.4860 0.1849 0.1796
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very small nondimensional crack length 2a=h2, however, the mode I SIF is still approximately symmetric
about b ¼ 0. This is because the crack seems located in an infinite plate. It is observed from Fig. 3(b) that
the magnitude of the mode II SIF increases with increasing 2a=h2 for b < 0. For b > 0, however, the
magnitude of the mode II SIF may decrease or increase with increasing 2a=h2 depending on the value of b
and the range of 2a=h2.

Fig. 4 shows normalized SIFs versus the nondimensional crack length 2a=h for b ¼ 2 and various values
of d for the power law material with position-dependent relaxation time (see Eq. (11)). The crack is located
in the middle of the strip. The effect of spatial position dependence of the relaxation time on the SIFs is
reflected through the parameter d. The parameter q is taken as 0.4 in all calculations. Thus the curves for
d ¼ �1 may be obtained from the curve d ¼ 0 by shifting this curve by b ¼ �0:4. It is clear from Fig. 4 that
with respect to the corresponding model with constant relaxation time (i.e. d ¼ 0), a positive d increases
SIFs when b > 0.

Fig. 2. Normalized SIFs versus nondimensional crack length, 2a=h, for various material nonhomogeneous parameter b considering the

linear standard solid and the power law material with constant relaxation time (h2 ¼ 0:5h), (a) mode I SIF; (b) mode II SIF.
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Fig. 5 shows normalized SIFs versus the nondimensional crack length 2a=h for b ¼ �2 and various
values of d for the power law material with position-dependent relaxation time (see Eq. (11)). The crack is
located in the middle of the strip. In contrast with the result in Fig. 4, a negative d increases the magnitudes
of SIFs when b < 0.

Special attention needs to be paid when jbj is relatively small compared with jqdj. In this case, the
variation of SIFs with d follows different paths depending on the value of b þ qd. For example, Fig. 6 shows
normalized SIFs versus the nondimensional crack length 2a=h for b ¼ 0:1 and various values of d for the
power law material with position-dependent relaxation time (see Eq. (11)). The crack is again located in the
middle of the strip. It is observed that the mode I SIF increases with an increase in the absolute value of d
(Fig. 6(a)). The magnitude of the mode II SIF also increases with an increase in the absolute value of d (Fig.
6(b)).

Fig. 3. Normalized SIFs versus nondimensional crack length, 2a=h2, for various material nonhomogeneous parameter b considering

the linear standard solid and the power law material with constant relaxation time (h2 ¼ 0:1h), (a) mode I SIF; (b) mode II SIF.
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Fig. 7 shows the SIF results for b ¼ 2 and various values of d for the power law material with position-
dependent relaxation time (see Eq. (11)). The crack is located at a distance of h2 ¼ 0:1h from the upper edge
of the strip (see Fig. 1). The SIFs are found to follow a similar trend to that for a central crack except that
the magnitude of mode II SIF decreases with increasing 2a=h2.

Fig. 8 shows the SIF results for b ¼ �2 and various values of d for the power law material with position-
dependent relaxation time (see Eq. (11)). The crack is again located at a distance of h2 ¼ 0:1h from the
upper edge of the strip (see Fig. 1). The mixed mode SIFs follow a similar trend to that for a central crack
(cf. Fig. 5).

Fig. 9(a) shows the crack opening displacement for the standard linear solid and the power law material
with constant relaxation time (see Eq. (48)). The crack is located in the middle of the strip with 2a=h ¼ 1.

Fig. 4. Normalized SIFs versus nondimensional crack length, 2a=h, for various material nonhomogeneous parameter d considering the

power law material with position-dependent relaxation time (b ¼ 2:0, q ¼ 0:4, h2 ¼ 0:5h), (a) mode I SIF; (b) mode II SIF.
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For this special configuration, the crack opening displacement is symmetric about b ¼ 0 (i.e. the same crack
opening displacement is obtained for �b). It is seen from the figure that the crack opening displacement
increases with increasing b. Fig. 9(b) depicts the crack sliding displacement for the same viscoelastic models.
It is clear that the absolute value of the crack sliding displacement increases with increasing b. The crack
sliding displacement vanishes for b ¼ 0. This is anticipated because when the crack is located in the middle
of a homogeneous strip, there is no mode II deformation.

Fig. 10 shows the crack opening/sliding displacements for a crack located in the middle of the strip of
power law material with graded relaxation time. Three d values are considered and b is taken as 2.0. As in
the case of SIFs, with respect to the corresponding power law model with constant relaxation time (i.e.
d ¼ 0), a positive d increases the crack opening displacement when b > 0. A negative d would increase the
crack opening displacement when b < 0, and increase the absolute value of the crack sliding displacement.
This observation is consistent with the SIF investigation (see Fig. 4).

Fig. 5. Normalized SIFs versus nondimensional crack length, 2a=h, for various material nonhomogeneous parameter d considering the

power law material with position-dependent relaxation time (b ¼ �2:0, q ¼ 0:4, h2 ¼ 0:5h), (a) mode I SIF; (b) mode II SIF.
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9. Concluding remarks and extensions

The correspondence principle is used to study the SIFs and crack opening/sliding displacements for
a crack in a viscoelastic FGM strip with relaxation functions having separable forms in space and
time. Three viscoelastic models are considered, i.e. standard linear solid, power law material with con-
stant relaxation time, and power law material with position-dependent relaxation time. Under traction
boundary conditions, the SIFs for the models with constant relaxation times are the same as those for the
corresponding nonhomogeneous elastic materials, while for the power law material with graded relax-
ation time, the SIFs are influenced by the gradation of the relaxation time. The crack opening/sliding
displacements evolve with time reflecting the creep behavior of the material under traction boundary
conditions.

Fig. 6. Normalized SIFs versus nondimensional crack length, 2a=h, for various material nonhomogeneous parameter d considering the

power law material with position-dependent relaxation time (b ¼ 0:1, q ¼ 0:4, h2 ¼ 0:5h), (a) mode I SIF; (b) mode II SIF.
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Natural extensions of this work include investigation of displacement (rather than traction) boundary
conditions, crack propagation, and experimental verification. The solution of crack boundary value prob-
lems with displacement boundary conditions on the outer boundaries of the FGM strip may follow the
methodology presented in this paper. The crack propagation modeling in viscoelastic FGMs can be
thought as an extension of the techniques proposed by Wnuk [40], Knauss [5], and Shapery [6–8]. The
experimental verification can be done by adapting the basic setup for fabricating large scale polymeric
FGMs by Lambros et al. [23] to creep/relaxation and/or viscoelastic fracture testing. These topics are
presently under consideration by the authors.
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Fig. 7. Normalized SIFs versus nondimensional crack length, 2a=h2, for various material nonhomogeneous parameter d considering

the power law material with position-dependent relaxation time (b ¼ 2:0, h2 ¼ 0:1h), (a) mode I SIF; (b) mode II SIF.
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Appendix A

The Fredholm kernels kij ðr; s; bÞ (i; j ¼ 1; 2) in the system of integral equations (40) are given below [35]:

k11ðr; s; bÞ ¼
Z 1

0

½1þ 4nf11ðnÞ� sinðr � sÞndn;

k12ðr; s; bÞ ¼
Z 1

0

4nf12ðnÞ cosðr � sÞndn;

k21ðr; s; bÞ ¼ �
Z 1

0

4n2f21ðnÞ cosðr � sÞndn;

k22ðr; s; bÞ ¼
Z 1

0

½1þ 4n2f22ðnÞ� sinðr � sÞndn:

Fig. 8. Normalized SIFs versus nondimensional crack length, 2a=h2, for various material nonhomogeneous parameter d considering

the power law material with position-dependent relaxation time (b ¼ �2:0, h2 ¼ 0:1h), (a) mode I SIF; (b) mode II SIF.
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The functions fijðnÞ (i; j ¼ 1; 2) in the above equations are given by

f11ðnÞ ¼ ½�bH11 þ s2ðs1 � s2ÞH12�=ðs1 � s2Þ3;

f12ðnÞ ¼ ½�2nH11 � nðs1 � s2ÞH12�=ðs1 � s2Þ3;

f21ðnÞ ¼ ½�bH21 þ s2ðs1 � s2ÞH22�=ðs1 � s2Þ3;

f22ðnÞ ¼ ½�2nH21 � nðs1 � s2ÞH22�=ðs1 � s2Þ3;

in which

s1 ¼ �s� b=2; s2 ¼ s� b=2; s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ b2=4

q
;

Fig. 9. Crack opening/sliding displacements for three b values, standard linear solid and power law material with constant relaxation

time (h2 ¼ 0:5h, 2a=h ¼ 1:0), (a) mode I case; (b) mode II case.
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and

H11ðnÞ ¼ ðh11d11 þ h12d21Þ=DA;

H12ðnÞ ¼ ðh11d12 þ h12d22Þ=DA;

H21ðnÞ ¼ ðh21d11 þ h22d21Þ=DA;

H12ðnÞ ¼ ðh21d12 þ h22d22Þ=DA:

In the above expressions, the functions hijðnÞ (i; j ¼ 1; 2) are given by

h11ðnÞ ¼ �s1 þ expð�2sh1Þðs1 þ 2h1ss2Þ;
h12ðnÞ ¼ 1� expð�2sh1Þ½1� 2h1sð1� h1s2Þ�;
h21ðnÞ ¼ 1� expð�2sh1Þð1þ 2sh1Þ;
h22ðnÞ ¼ 2h21s expð�2sh1Þ;

Fig. 10. Crack opening/sliding displacements for three d values, power law material with position dependent relaxation time (b ¼ 2:0,
h2 ¼ 0:5h, 2a=h ¼ 1:0), (a) mode I case; (b) mode II case.
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the functions dijðnÞ (i; j ¼ 1; 2) are

d11ðnÞ ¼ expð�2hsÞ½1� 2shð1� 2h1sÞ � ð1� 2h1sþ 4h21s
2Þ þ expð�2sh2Þ�

þ expð�2sh2Þð1þ 2h2sþ 4h22s
2Þ � 1;

d12ðnÞ ¼ 2s expð�2hsÞ½hðh1 � h2 � 2h1h2sÞ � h21 expð�2sh2Þ� þ 2h22s expð�2sh2Þ;
d21ðnÞ ¼ 4s2 expð�2hsÞ½h� h1 expð�2sh2Þ� � 4h22s expð�2sh2Þ;
d22ðnÞ ¼ expð�2hsÞ½ð1þ 2h1sÞð1þ 2h2s� expð�2sh2Þ þ 4h22s

2Þ� þ ð1� 2h2sÞ expð�2sh2Þ � 1;

and DAðnÞ is

DAðnÞ ¼ 1� 2ð1þ 2h2s2Þ expð�2hsÞ þ expð�4hsÞ:
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