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Abstract

A finite element methodology is developed for fracture analysis of orthotropic functionally graded materials (FGMs)

where cracks are arbitrarily oriented with respect to the principal axes of material orthotropy. The graded and or-

thotropic material properties are smooth functions of spatial coordinates, which are integrated into the element stiffness

matrix using the isoparametric concept and special graded finite elements. Stress intensity factors (SIFs) for mode I and

mixed-mode two-dimensional problems are evaluated and compared by means of the modified crack closure (MCC)

and the displacement correlation technique (DCT) especially tailored for orthotropic FGMs. An accurate technique to

evaluate SIFs by means of the MCC is presented using a simple two-step (predictor–corrector) process in which the

SIFs are first predicted (e.g. by the DCT) and then corrected by Newton iterations. The effects of boundary conditions,

crack tip mesh discretization and material properties on fracture behavior are investigated in detail. Many numerical

examples are given to validate the proposed methodology. The accuracy of results is discussed by comparison with

available (semi-) analytical or numerical solutions.

� 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Functionally graded material; Stress intensity factor; Modified crack closure; Displacement correlation technique; Finite

element method

1. Introduction

Functionally graded materials (FGMs) are special composites in which the volume fraction of constituent
materials vary gradually, giving a non-uniform microstructure with continuously graded macroproperties
[1]. Functional gradation opens new possibilities for optimizing both material and component structures to
achieve high performance and material efficiency. However, at the same time, it also poses challenging
mechanics problems including the understanding of damage and fracture behavior of such materials,
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especially when preferential directions of orthotropy develop due to the material processing technique
utilized, as discussed below. Thus the goal of this investigation is to develop a general-purpose finite ele-
ment framework for fracture of orthotropic FGMs.
With the introduction of the FGM concept, extensive research on various aspects of fracture of isotropic

FGMs under mechanical [2–4] or thermal [5–11] loads has been conducted. Mode I [12,13] and mixed-mode
[14,15] crack problems have been investigated by means of the finite element method (FEM) and the path-
independent J �k -integral, which includes an extra term for the explicit derivative of strain energy density to
account for the material variation. Recently, a simplified method has been proposed in the limit of very
small integration domains so that the extra term may be neglected [16]. Multiple cracking [17] and del-
amination cracking and buckling [18] in isotropic functionally graded ceramic/metal coatings have also
been investigated under mechanical and thermal loads using the FEM.
On the other hand, the nature of processing techniques of ceramic–metal FGMs may lead to loss of

isotropy. For example, graded materials processed by a plasma spray technique generally have a lamellar
structure [19]. Flattened splats and relatively weak splat boundaries create an oriented material with higher
stiffness and weak cleavage planes parallel to the boundary. Furthermore, graded materials processed by
the electron beam physical vapor deposition technique could have a columnar structure [20], which result in a
higher stiffness in the thickness direction and weak fracture planes perpendicular to the boundary. Thus,
such materials would not be isotropic, but orthotropic with material directions that can be considered
perpendicular to each other as an initial approximation. Gu and Asaro [21] performed theoretical studies in
a four point bending specimen consisting of orthotropic FGMs with varying Poisson’s ratio. Ozturk and
Erdogan [22,23] used integral equations to investigate Mode I and mixed-mode crack problems in an in-
finite non-homogeneous orthotropic medium with a crack aligned with one of the material directions
considering constant Poisson’s ratio. One of the goals of this study is to compare the numerical results
(FEM) for stress intensity factors (SIFs) in FGMs with the semi-analytical solutions by Ozturk and Er-
dogan [22,23].

This paper presents numerical techniques to evaluate SIFs in orthotropic FGMs by means of the FEM. To
this end, the modified crack closure (MCC) and the displacement correlation technique (DCT) are specifically
tailored for orthotropic FGMs. A general-purpose implementation is presented which is able to handle multiple,
interacting, arbitrarily shaped and oriented cracks. The remainder of this paper is organized as follows.
Section 2 reviews crack tip fields in orthotropic FGMs. Section 3 presents the DCT, and Section 4 addresses
the MCC. Section 5 discusses some aspects of the FEM implementation. In order to assess and validate the
above development, Section 6 presents several numerical results which are compared to available numerical
and/or semi-analytical solutions. Finally, Section 7 concludes the present investigation.

2. Crack tip fields in orthotropic functionally graded materials

The most general anisotropic form of linear elastic stress–strain relations is given by

eij ¼ Sijklrkl ði; j; k; l ¼ 1; 2; 3Þ; ð1Þ

where rij is the linear stress tensor, eij is the linear strain tensor, and Sijkl is the fourth-order compliance
tensor. The compliance tensor has 81 independent components, but, because of the symmetry of rij and eij,
the number of independent components reduces to 36. Furthermore, the existence of a strain energy
function provides a reduction of the number of independent components to 21 ðSijkl ¼ SklijÞ. In order to
represent Sijkl in compact form, a contracted notation aij may be introduced as follows:

ei ¼ aijrj; aij ¼ aji ði; j ¼ 1; 2; . . . ; 6Þ; ð2Þ
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where the compliance coefficients, aij, are related to the elastic properties of the material and

e1 ¼ e11; e2 ¼ e22; e3 ¼ e33; e4 ¼ 2e23; e5 ¼ 2e13; e6 ¼ 2e12
r1 ¼ r11; r2 ¼ r22; r3 ¼ r33; r4 ¼ r23; r5 ¼ r13; r6 ¼ r12: ð3Þ

For the special case of plane stress or plane strain problems in transversely isotropic materials (where at
each point through the thickness there is a plane of material symmetry parallel to the plane of the problem),
Eq. (2) can be reduced to depend upon six independent elastic parameters for plane stress:

aij ði; j ¼ 1; 2; 6Þ ð4Þ

and a set of corresponding constants for plane strain:

bij ¼ aij �
ai3aj3
a33

ði; j ¼ 1; 2; 6Þ: ð5Þ

Fig. 1 shows a crack tip referred to the Cartesian coordinate systems in orthotropic FGMs. Two dimen-
sional anisotropic elasticity problems can be formulated in terms of the analytic functions, /kðzkÞ, of the
complex variable, zk ¼ xk þ iyk ðk ¼ 1; 2Þ, where

xk ¼ xþ aky; yk ¼ bky ðk ¼ 1; 2Þ: ð6Þ
The parameters ak and bk are the real and imaginary parts of lk ¼ ak þ ibk, which can be determined from
[24]

a11l4 � 2a16l3 þ ð2a12 þ a66Þl2 � 2a26lþ a22 ¼ 0: ð7Þ
The roots lk are always complex or purely imaginary in conjugate pairs as l1, �ll1, l2, �ll2, of which l1 and l2
must be calculated at the location of a crack tip for FGMs.

Fig. 1. Coordinate systems at the crack tip in orthotropic FGMs.
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For pure mode I, the stresses in the vicinity of the crack tip are

r11 ¼
KIffiffiffiffiffiffiffi
2pr
p Re

ltip1 ltip2
ltip1 � ltip2

ltip2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ ltip2 sin h

q
8><
>:

2
64 � ltip1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ ltip1 sin h
q

9>=
>;
3
75

r22 ¼
KIffiffiffiffiffiffiffi
2pr
p Re

1

ltip1 � ltip2

ltip1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ ltip2 sin h

q
8><
>:

2
64 � ltip2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ ltip1 sin h
q

9>=
>;
3
75

r12 ¼
KIffiffiffiffiffiffiffi
2pr
p Re

ltip1 ltip2
ltip1 � ltip2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ ltip1 sin h

q
8><
>:

2
64 � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ ltip2 sin h
q

9>=
>;
3
75

ð8Þ

and the displacements are

u1 ¼ KI
ffiffiffiffiffi
2r
p

r
Re

1

ltip1 � ltip2
ltip1 p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ ltip2 sin h

q�"
� ltip2 p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ ltip1 sin h

q �#

u2 ¼ KI
ffiffiffiffiffi
2r
p

r
Re

1

ltip1 � ltip2
ltip1 q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ ltip2 sin h

q�"
� ltip2 q1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ ltip1 sin h

q �#
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ð9Þ

Similarly, for pure mode II, the stresses in the vicinity of the crack tip are

r11 ¼
KIIffiffiffiffiffiffiffi
2pr
p Re

1

ltip1 � ltip2

ðltip2 Þ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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2
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and the displacements are

u1 ¼ KII
ffiffiffiffiffi
2r
p

r
Re
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In the above equations, ltip1 and ltip2 denote the crack tip parameters calculated as the roots of Eq. (7), which
are taken such that bk > 0 (k ¼ 1, 2) and pk and qk are given by

pk ¼ a11ðltipk Þ
2 þ a12 � a16ltipk

qk ¼ a12ltipk þ
a22
ltipk
� a26:

ð12Þ

Moreover, KI and KII denote the mode I and mode II SIFs, respectively.
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3. Displacement correlation technique for orthotropic functionally graded materials

The DCT is one of the simplest methods to evaluate SIFs. It consists of correlating numerical results for
displacement at specific locations on the crack with available analytical solutions. For quarter point sin-
gular elements, the crack opening displacement (COD) and crack sliding displacement (CSD) at x ¼ �r are
given by [25]

CODð�rÞ ¼ ð4u2;i�1 � u2;i�2Þ
ffiffiffiffiffiffi
r

Da

r
; ð13Þ

CSDð�rÞ ¼ ð4u1;i�1 � u1;i�2Þ
ffiffiffiffiffiffi
r

Da

r
; ð14Þ

respectively, where u1;i�1, u1;i�2, u2;i�1, and u2;i�2 are the relative displacements with respect to the crack tip in
the xi ði ¼ 1; 2Þ direction at locations ði� 1Þ and ði� 2Þ, r is the distance from the crack tip along the local
x1 direction, and Da is the characteristic length of the crack tip elements (see Fig. 2).
For h ¼ 180�, by combination of the two modes, Eqs. (9) and (11) reduce to

u1 ¼ KI
ffiffiffiffiffi
2r
p

r
Re

i

ltip1 � ltip2
ðltip1 q2

"
� ltip2 q1Þ

#
þ KII

ffiffiffiffiffi
2r
p

r
Re

i

ltip1 � ltip2
ðq2

"
� q1Þ

#
; ð15Þ

u2 ¼ KI
ffiffiffiffiffi
2r
p

r
Re

i

ltip1 � ltip2
ðltip1 p2

"
� ltip2 p1Þ

#
þ KII

ffiffiffiffiffi
2r
p

r
Re

i

ltip1 � ltip2
ðp2

"
� p1Þ

#
: ð16Þ

Equating Eq. (13) with Eq. (16), and Eq. (14) with Eq. (15), one obtains

KI ¼
1

4

ffiffiffiffiffiffi
2p
Da

r
Dð4u1;i�1 � u1;i�2Þ � Bð4u2;i�1 � u2;i�2Þ

AD� BC ; ð17Þ

KII ¼
1

4

ffiffiffiffiffiffi
2p
Da

r
Að4u2;i�1 � u2;i�2Þ � Cð4u1;i�1 � u1;i�2Þ

AD� BC ; ð18Þ

Fig. 2. Crack tip rosette of singular quarter-point (first ring) and regular (second ring) finite elements.
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where

A ¼ Re i

ltip1 � ltip2
ðl1p2

"
� l2p1Þ

#

B ¼ Re i

ltip1 � ltip2
ðp2

"
� p1Þ

#

C ¼ Re i

ltip1 � ltip2
ðl1q2

"
� l2q1Þ

#

D ¼ Re i

ltip1 � ltip2
ðq2

"
� q1Þ

#
;

ð19Þ

in which all the material parameters and related coefficients must be considered at the crack tip location for
FGMs.

4. Modified crack closure integral for orthotropic functionally graded materials

The MCC integral method is based on Irwin’s virtual crack closure approach [26], which uses the stresses
ahead of the crack tip and the displacements behind the crack tip. Rybicki and Kanninen [27] used this
method to obtain a formula for strain energy release rate with four-node quadrilateral non-singular ele-
ments, and Raju [28] extended the method to a set of quarter-point singular elements and provided a
modified formulation for the case of crack faces loaded with uniform pressure.
Because no assumption of isotropy or homogeneity around the crack is made, the method is ideally

suited for orthotropic FGMs. The energy release rate is estimated only in terms of the work done by the
stresses (or equivalent nodal forces) over the displacements behind the crack tip produced by a virtual crack
extension.
The expression for GI (strain energy release rate for mode I) and GII (strain energy release rate for mode

II) may be obtained according to Irwin as

GI ¼ lim
da!0

2

da

Z x1¼da

x1¼0

1
2
r22ðr ¼ x1; h ¼ 0; aÞu2ðr ¼ da� x1; h ¼ p; aþ daÞdx1; ð20Þ

GII ¼ lim
da!0

2

da

Z x1¼da

x1¼0

1
2
r12ðr ¼ x1; h ¼ 0; aÞu1ðr ¼ da� x1; h ¼ p; aþ daÞdx1; ð21Þ

where r12 	 rxy and r22 	 ryy are shear and normal stresses ahead of the crack tip, and u1 	 ux and u2 	 uy
are the relative displacements with respect to the crack tip coordinates, respectively. Fig. 3 illustrates a self-
similar virtual crack extension da and the distribution of normal stress ahead of the crack tip.
For the particular case in which the material is orthotropic with the crack on a plane of material

symmetry, the following relationships are obtained [29]:

GI ¼ K2I
ffiffiffiffiffiffiffiffiffiffiffiffi
a11a22
2

r ffiffiffiffiffiffi
a22
a11

r�
þ 2a12 þ a66

2a11

�1=2

GII ¼ K2II
a11ffiffiffi
2
p

ffiffiffiffiffiffi
a22
a11

r�
þ 2a12 þ a66

2a11

�1=2
;

ð22Þ

where KI and KII are uncoupled.
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For the general case of mixed-mode fracture in orthotropic materials where the crack is arbitrarily
oriented with respect to the principal material directions, the SIFs are related to the values of the potential
energy release rates through the following expressions [29]:

GI ¼ �
KI
2
a22Im

KIðltip1 þ ltip2 Þ þ KII
ltip1 ltip2

" #

GII ¼
KII
2
a11Im KIIðltip1

h
þ ltip2 Þ þ KIl

tip
1 ltip2

i
:

ð23Þ

For this case, the SIFs are coupled and they may be solved by means of the Newton iteration algorithm
summarized below. Define a system of non-linear equations as follows:

FðKÞ ¼ ðF1ðKÞ; F2ðKÞÞ

F1ðKÞ ¼ GI þ
KI
2
a22Im

KIðltip1 þ ltip2 Þ þ KII
ltip1 ltip2

" #

F2ðKÞ ¼ GII �
KII
2
a11Im KIIðltip1

h
þ ltip2 Þ þ KIl

tip
1 ltip2

i
;

ð24Þ

where F is a vector-valued function of F1 and F2, and K is a vector of the unknowns ðKI;KIIÞ.

Determination of (KI ,KII) using Newton iteration method:

1. Select K ð0ÞðKI;KIIÞ and initialize counter i ¼ 0.
2. Compute gradient: rFðKÞ
3. Perform iteration:

K ðiþ1Þ ¼ K ðiÞ � FðK ðiÞÞ
rFðK ðiÞÞ

4. Check convergence: If jFðK ðiÞÞj > TOL, then i iþ 1, and GOTO Step 1.

For the initial values of K ð0ÞðKI;KIIÞ in Step 1, we may use the SIFs obtained by the DCT because it
provides physically reasonable SIF values and accelerates the iterative procedure. Essentially, this procedure

Fig. 3. Self-similiar crack extension and normal stress distribution.

J.-H. Kim, G.H. Paulino / Engineering Fracture Mechanics 69 (2002) 1557–1586 1563



is a two-step (predictor–corrector) process in which the SIFs are predicted by the DCT and corrected by
Newton iterations for the MCC. However, any judicious choice for the initial values of K ð0ÞðKI;KIIÞmay also
be acceptable, as discussed subsequently in Section 6.
Ramamurthy et al. [30], and Raju [28] have shown that the values of GI and GII can be written in terms of

the equivalent nodal forces F2 	 Fy and F1 	 Fx, and the relative nodal displacements u2 and u1 when
employing quarter-point singular elements around the crack tip (see Fig. 2). For mixed-mode problems, the
general expressions for GI and GII are given by [28]

GI ¼
1

2Da
F2;iðt11u2;i�2½ þ t12u2;i�1Þ þ F2;iþ1ðt21u2;i�2 þ t22u2;i�1Þ þ F T2;iþ2ðt31�uu2;i�2 þ t32�uu2;i�1Þ

þ F B2;iþ2ðt31ûu2;i�2 þ t32ûu2;i�1Þ�

GII ¼
1

2Da
F1;iðt11u1;i�2½ þ t12u1;i�1Þ þ F1;iþ1ðt21u1;i�2 þ t22u1;i�1Þ þ F T1;iþ2ðt31�uu1;i�2 þ t32�uu1;i�1Þ

þ F B1;iþ2ðt31ûu1;i�2 þ t32ûu1;i�1Þ�;

ð25Þ

where the first subscript in F or u refers to the Cartesian coordinate ðx1 	 x or x2 	 yÞ, the second subscript
refers to the nodal point, the parameters tkl ðk ¼ 1; 2; 3; l ¼ 1; 2Þ are given by

t11 ¼ 14�
33p
8

; t12 ¼ �52�
33p
2

;

t21 ¼ �
7

2
þ 21p
16

; t22 ¼ 17�
21p
4

;

t31 ¼ 8�
21p
8

; t32 ¼ �32þ
21p
2

ð26Þ

and Da is the characteristic length of singular elements around the crack tip which are six-node quarter-
point triangular elements as illustrated in Fig. 2. The superscripts T and B indicate the top and bottom
regions of the crack with respect to x1-axis, and thus F T and F B indicate the forces at the top and bottom
surfaces, respectively. The fields �uu and ûu represent the relative displacement of the top and bottom surfaces
with respect to the crack tip. For example, at location ði� 1Þ in Fig. 2, �vvy;i�1 ¼ vTy;i�1 � vy;i and v̂vy;i�1 ¼
vBy;i�1 � vy;i where v represent absolute displacements.
Eq. (25) is valid for calculating strain energy release rates for self-similar crack growth when the

crack faces are traction free. When the crack faces are pressure loaded, Eq. (25) must be modified. Fig. 4(a)
shows a crack tip under a uniform crack face pressure loading, denoted by p, and Fig. 4(b) shows the
idea of superposition of computed nodal forces and equivalent nodal forces corresponding to the opposite
of the applied pressure when six-node triangular quarter-point (T6qp) singular elements are used.
The closure of the crack faces from aþ Da to a can be decomposed into two parts. In the first part, the
applied pressure is ‘‘erased’’ and, in the second part, the stress free crack faces between aþ Da and a
are ‘‘closed’’. In the FEM, the first part is equivalent to addition of nodal forces corresponding to the
opposite of the applied pressure at all nodes between aþ Da and a. For the second part, the general
procedure described earlier for the MCC method is used. Thus, the resulting forces at nodes i, iþ 1, and
iþ 2 are

Fy;i ¼ F cy;i; Fy;iþ1 ¼ F cy;iþ1 �
2p
3

Da; Fy;iþ2 ¼ F cy;iþ2 �
p
3
Da: ð27Þ

The corrected nodal forces are used to calculate the strain energy release rates.
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5. Finite element implementation

Graded elements (rather than homogeneous elements) need to be introduced to discretize FGM prop-
erties [15,31]. The material properties at Gauss quadrature points are interpolated from the nodal material
properties via isoparametric interpolation functions, as illustrated by Fig. 5. The behavior of such graded
elements in fracture mechanics of isotropic FGMs has been studied by Paulino and Kim [32]. In order to
develop the orthotropic graded elements and perform fracture analyses, the public domain FEM code
FRANC2D (FRacture ANalysis Code 2D) [33,34] has been used as the basis for implementing fracture
capabilities in FGMs. The source code of FRANC2D is fully accessible and thus it is well-suited for re-
search and for new developments. The code with extended fracture capabilities for FGMs is called
I_FRANC2D (Illinois FRacture ANalysis Code 2D). The extensions include special techniques to evaluate

Fig. 4. Modification of nodal forces for uniform crack face pressure loading: (a) crack face pressure loading; (b) superposition of total

computed forces and forces needed to account for the pressure loading.

Fig. 5. Generalized isoparametric formulation [15,31] using graded finite elements. The above figure illustrates a graded Q8 element

and PðxÞ denotes a generic material property. The Gauss point properties are obtained as PGP ¼
P
NiPi where N are element shape

functions.
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SIFs in both isotropic and orthotropic FGMs such as the MCC and DCT, and creation of many sectors
and rings around a crack tip. At the crack tip, six-node triangular quarter-point (T6qp) singular elements
are used. Eight-node serendipity elements (Q8) are used away from the crack(s), and regular triangular
quadratic elements (T6) are used in the transition region between T6qp and Q8 elements. Thus the code
allows a careful design of the mesh around the crack tip region, as illustrated by the examples given in the
next section.

6. Computational results

This paper examines the elastic stress analysis of orthotropic FGMs and the performance of the MCC
and DCT on computing SIFs using the FEM. In order to ascertain the performance of the two methods,
the following examples are considered:

(1) Plate with a slanted crack.
(2) Plate with a crack parallel to the material gradation.
(3) Plate with a crack perpendicular to the material gradation.
(4) Two interacting offset cracks.

This set of problems assesses the FEM code and performance of the methods for evaluation of SIFs in
orthotropic FGMs. The examples have either numerical (e.g. finite element), semi-analytical (e.g. integral
equation) or experimental results available. Thus, the solutions obtained with the I_FRANC2D code are
compared with those available results. Moreover, the present solutions can also be verified against other
methods for evaluating SIFs in FGMs, e.g. the J �k ––integral formulation of Kim and Paulino [35].
For the sake of comparison with the semi-analytical solutions by Ozturk and Erdogan [22,23], the

following average parameters (originally proposed by Krenk [36]) are used in the second and third ex-
amples, as illustrated by Fig. 6(a) and (b), respectively. The independent engineering constants Eii, Gij and
mij (ðmij=EiiÞ ¼ ðmji=EjjÞ) ði; j ¼ 1; 2; 3Þ can be replaced by the averaged Young’s modulus E, the effective
Poisson’s ratio m, the stiffness ratio d4 and the shear parameter j0 [36] defined by

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E11E22
p

; m ¼ ffiffiffiffiffiffiffiffiffiffiffi
m12m21
p

; d4 ¼ E11
E22
¼ m12

m21
; j0 ¼

E
2G12

� m ð28Þ

for generalized plane stress and

Fig. 6. Geometry and notation for crack problems in an orthotropic non-homogeneous medium: (a) Mode I [22]; (b) mixed-mode [23].
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E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E11E22
ð1� m13m31Þð1� m23m32Þ

s
; m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm12 þ m13m32Þðm21 þ m23m31Þ
ð1� m13m31Þð1� m23m32Þ

s
;

d4 ¼ E11ð1� m23m32Þ
E22ð1� m13m31Þ

; j0 ¼
E
2G12

� m

ð29Þ

for plane strain.
It is worth mentioning that the SIF normalization factor used by Ozturk and Erdogan [22,23] is

k0 ¼ r
ffiffiffi
a
p

(or k0 ¼ s
ffiffiffi
a
p
) while in this paper K0 ¼ r

ffiffiffiffiffiffi
pa
p

(or K0 ¼ s
ffiffiffiffiffiffi
pa
p

). However, the ratios KI=K0 or KI=k0
(and KII=K0 or KII=k0) are comparable quantities in both pieces of work (i.e. Refs. [22,23] and here) because
the

ffiffiffi
p
p

factor cancels out.

6.1. Plate with a slanted crack

Fig. 7(a) shows a slanted crack of length 2a located in a finite two-dimensional plate under constant
applied tension and Fig. 7(b) shows the complete finite element mesh configuration. Fig. 7(c) shows a detail
of the mesh with 4 rings (R4) and 16 sectors (S16) around the crack tips. The mesh has 879 Q8, 430 T6, and
32 T6qp crack tip elements with a total of 1341 elements and 3694 nodes. All the elements are graded
and orthotropic [31]. The applied load corresponds to r22ð�106 x16 10;�20Þ ¼ �r ¼ �1:0 along the top
and bottom edges. The displacement boundary condition is prescribed such that u1 ¼ u2 ¼ 0 for the node in
the middle of the left edge and u2 ¼ 0 for the node in the middle of the right edge.
With reference to the example of Fig. 7, the following data were used for the FEM analysis:

2a ¼ 2
ffiffiffi
2
p

; L=W ¼ 2:0;
E11ðx1Þ ¼ E011eax1 ; E22ðx1Þ ¼ E022ebx1 ; G12ðx1Þ ¼ G012ecx1 ;
E011 ¼ 3:5� 106; E022 ¼ 12� 106; G012 ¼ 3� 106; m12 ¼ 0:204
generalized plane stress; 2� 2 Gauss quadrature:

This example is investigated with respect to three different material variations for E11, E22 and G12, which
are assumed to be exponential functions; while the Poisson’s ratio m12 is assumed to be constant. The cases
examined are the following:

(1) Homogeneous orthotropic material: ða; b; cÞ ¼ ð0; 0; 0Þ.
(2) Orthotropic FGM with proportional material variation: ða; b; cÞ ¼ ð0:2; 0:2; 0:2Þ.
(3) Orthotropic FGM with non-proportional material variation: ða; b; cÞ ¼ ð0:5; 0:4; 0:3Þ.

In the first case, the solutions obtained are compared with those available in the literature. However, for
the other two cases, there are no other solutions available for comparison.
For the homogeneous orthotropic material case with ða; b; cÞ ¼ ð0; 0; 0Þ, Table 1 shows the SIFs using

the MCC and DCT in comparison with the reference solutions given by Sih et al. [29] (complex variable
approach), Atluri et al. [37] (FEM–hybrid displacement model), and Wang et al. [38] (FEM–M integral).
The MCC and DCT estimate the SIFs to within 1.3% and 2.2% errors, respectively, with respect to the
reference solution by Sih et al. [29].
The orthotropic FGM case with proportional material variation is investigated considering

ða; b; cÞ ¼ ð0:2; 0:2; 0:2Þ. The importance of the initial values for SIFs ðKI;KIIÞ are elaborated in this ex-
ample. Fig. 8 shows four possible solutions (four intersection points) for SIFs at the right crack tip, i.e.
ðKIðþaÞ;KIIðþaÞÞ:

ð1:762; 1:439Þ; ð1:3959;�0:9565Þ; ð�1:762;�1:439Þ; ð�1:3959; 0:9565Þ:
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Initial values for SIFs must be carefully chosen for this problem because there are two sets of admissible
solutions for this problem (the first two results above). If we use initial values from the SIFs obtained by the
DCT, i.e. ðKI;KIIÞ ¼ ð1:769; 1:419Þ, the final SIFs ðKI;KIIÞ ¼ ð1:762; 1:439Þ are obtained after two itera-
tions, and are indicated in bold above. However, initial guesses other than the one provided by the DCT
may also lead to the correct solution. For instance, we have tried the following initial guesses
ðKð0ÞI ðþaÞ;K

ð0Þ
II ðþaÞÞ:

ð1; 1Þ; ð0:7; 0:2Þ; ð0:5; 0:5Þ and ð0:2; 0:7Þ

and after four, seven, six, and eight iterations, respectively, all of them conducted to the correct solution, i.e.
ðKIðþaÞ;KIIðþaÞÞ ¼ ð1:762; 1:439Þ. The SIF results for this case are also summarized in Table 1.

Fig. 7. Plate with a slanted crack: (a) geometry and BCs under remote tension; (b) complete finite element mesh; (c) mesh detail using 4

rings (R4) and 16 sectors (S16) around crack tips.
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The situation depicted by Fig. 8 can change significantly depending on the selection of the material
parameters. For instance, if ða; b; cÞ ¼ ð1:0; 1:0; 1:0Þ, the plot in Fig. 9 is obtained, which shows that the
roots can be quite close to each other. If we use the SIFs provided by the DCT as initial estimates, i.e.
ðKIðþaÞ;KIIðþaÞÞ ¼ ð0:7274; 0:1553Þ, then the final SIFs ðKIðþaÞ;KIIðþaÞÞ ¼ ð0:7387; 0:1611Þ are obtained
after two iterations.
Finally, the orthotropic FGM case with non-proportional material variation is investigated considering

ða; b; cÞ ¼ ð0:5; 0:4; 0:3Þ. The SIF results are also summarized in Table 1. Notice that both MCC and DCT
provide symmetric SIF responses at the left and right tips for the homogeneous case, while such symmetry
is lost for the FGM case (as expected).

6.2. Plate with a crack parallel to material gradation

Ozturk and Erdogan [22] have investigated the Mode I crack problem for an infinite non-homogeneous
orthotropic medium as illustrated by Fig. 6(a). Here the infinite medium is approximated by a square plate

Table 1

SIFs in a non-homogeneous orthotropic plate with a slanted crack under uniform remote tension loading (see Fig. 7)

Material Method KþI ðaÞ KþII ðaÞ K�I ðaÞ K�II ðaÞ
Homogeneous ða; b; cÞ ¼ ð0; 0; 0Þ Sih et al. [29] 1.0539 1.0539 1.0539 1.0539

Atluri et al. [37] 1.0195 1.0795 1.0195 1.0795

Wang et al. [38] 1.023 1.049 1.023 1.049

MCC 1.067 1.044 1.067 1.044

DCT 1.077 1.035 1.077 1.035

FGM (proportional) ða;b; cÞ ¼ ð0:2; 0:2; 0:2Þ MCC 1.762 1.439 1.403 1.288

DCT 1.769 1.419 1.419 1.284

FGM (non-proportional) ða;b; cÞ ¼ ð0:5; 0:4; 0:3Þ MCC 2.384 1.581 1.437 1.225

DCT 2.387 1.553 1.456 1.229

Fig. 8. SIF solutions of non-linear system of equations by Newton’s iteration method considering ða;b; cÞ ¼ ð0:2; 0:2; 0:2Þ (see Fig. 7).
The circle around the bullet indicates the converged solution.

J.-H. Kim, G.H. Paulino / Engineering Fracture Mechanics 69 (2002) 1557–1586 1569



Fig. 9. SIF solutions of non-linear system of equations by Newton’s iteration method considering ða; b; cÞ ¼ ð1:0; 1:0; 1:0Þ (see Fig. 7).
The circle around the bullet indicates the converged solution.

Fig. 10. Plate with a center crack parallel to the material gradation: (a) geometry and BCs under crack face loading; (b) complete finite

element mesh; (c) mesh detail using 4 rings (R4) and 16 sectors (S16) around crack tips.
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where the ratio of the plate edge length over the crack length is equal to 10. Fig. 10(a) shows a crack of
length 2a located in a finite two-dimensional plate under uniform crack pressure loading, and Fig. 10(b)
shows the corresponding mesh configuration. Notice that the crack is parallel to the material gradation as
the average Young’s modulus E 	 Eðx1Þ ¼ E0ebx1 where E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E011E

0
22

p
. Fig. 10(c) shows a detail with 4

rings (R4) and 16 sectors (S16) around the crack tips. The displacement boundary condition is prescribed
such that u1 ¼ u2 ¼ 0 for the node in the middle of the left edge and u2 ¼ 0 for the node in the middle of the
right edge. The applied load corresponds to r22ð�16 x16 1;�0Þ ¼ �r ¼ �1:0 along the crack faces, as
illustrated by Fig. 10(a).
As illustrated by Fig. 10(a), the variations of E11, E22, and G12 are assumed to be exponential functions of

x1 and proportional to one another, while the Poisson’s ratio m12 is constant. The mesh has 1666 Q8, 303 T6,
and 32 T6qp singular elements with a total of 2001 elements and 5851 nodes. The following data were used
for the FEM analysis:

a=W ¼ 0:1; L=W ¼ 1:0;
E11ðx1Þ ¼ E011ebx1 ; E22ðx1Þ ¼ E022ebx1 ; G12ðx1Þ ¼ G012ebx1 ;
ba ¼ ð0:0–1:0Þ; j0 ¼ ð�0:25; 5:0Þ; m ¼ 0:3
generalized plane stress; 2� 2 Gauss quadrature:

The average modulus indicated above can be rewritten as E ¼ E0eðbaÞðx1=aÞ, and thus the non-homogeneity
parameter b enters the analysis through the dimensionless constant ba. Table 2 reports the normalized SIFs
using the MCC and DCT in an orthotropic plate under crack face pressure loading for various ba and for
two different values of the shear parameter j0, which are compared with the results reported by Ozturk and
Erdogan [22]. Both the MCC and the DCT estimate the SIFs within 4% of the results by Ozturk and
Erdogan [22]. The influence of j0 on KI (and u2) appears to be less significant than that of ba. Notice that, in
Table 2, the SIFs on the stiffer side of the plate are always greater than those on the less stiff side. Although
this result may seem counter intuitive, it can be explained by comparing the displacement profiles of the
non-homogeneous medium with those of the homogeneous medium [22]. Fig. 11 plots the crack opening
displacements in a non-homogeneous medium with Eðx1Þ ¼ E0ex1=a and also in homogeneous materials
with Eð�aÞ ¼ E0e�1:0, E ¼ E0, and EðaÞ ¼ E0e1:0. When comparing the solution of a non-homogeneous
medium with that of a homogeneous medium with the same material properties at the right crack tip
ðx1 ¼ aÞ, one can observe that because the crack opening displacement in the non-homogeneous medium
is greater than that in the corresponding homogeneous medium ðEðaÞ ¼ E0e1:0Þ, the SIF ðKIÞ in the
non-homogeneous medium is greater than that in the homogeneous medium. Similarly, for the same
material properties at the left crack tip ðx1 ¼ �aÞ, the SIF ðKIÞ in the non-homogeneous medium is lower
than that in the corresponding homogeneous medium ðEð�aÞ ¼ E0e�1:0Þ. In Fig. 11, the crack opening
displacement considering E ¼ E0 serves as a reference curve between those curves for E ¼ E0e1:0 and
E ¼ E0e�1:0.

6.3. Plate with a crack perpendicular to material gradation

Ozturk and Erdogan [23] have also investigated the mixed-mode crack problem for an infinite non-
homogeneous orthotropic medium (see Fig. 6(b)). Similarly to the previous example, the infinite medium
is approximated by a square plate where the ratio of the plate edge length over the crack length is equal
to 10. The material parameters E11ðxÞ, E22ðxÞ and G12ðxÞ are exponentially graded as functions of x2
and proportional, while the Poisson’s ratio m12 is constant. The following data were used for the FEM
analysis:
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Fig. 11. COD u2 in a non-homogeneous orthotropic medium under uniform crack face pressure loading where v0 ¼ ðs1 þ s2Þard=E0

with s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j0 þ j1
p

, s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j0 � j1
p

, j1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j20 � 1

p
, j0 ¼ 0:5, m ¼ 0:3, and ba ¼ 1:0. The COD for the crack in the FGM is indicated by

a thicker line.

Table 2

The normalized SIFs in a non-homogeneous orthotropic plate under uniform crack face loading for mode I problem ðK0 ¼ r
ffiffiffiffiffiffi
pa
p
Þ

Method ba j0 ¼ �0:25 j0 ¼ 5:0
KþI ðaÞ=K0 K�I ðaÞ=K0 KþI ðaÞ=K0 K�I ðaÞ=K0

Ozturk and Erdogan [23] 0.0 1.0 1.0 1.0 1.0

0.01 1.0025 0.9975 1.0025 0.9975

0.1 1.0246 0.9747 1.0231 0.9733

0.25 1.0604 0.9364 1.0531 0.9306

0.50 1.1177 0.8740 1.0946 0.8594

0.75 1.1720 0.8154 1.1281 0.7932

1.00 1.2235 0.7616 1.1556 0.7339

1.50 1.3184 0.6701 1.1979 0.6367

2.00 1.4043 0.5979 1.2290 0.5636

MCC S16, Da ¼ a=24 0.0 1.005 1.005 1.012 1.012

0.01 1.007 1.003 1.015 1.009

0.1 1.034 0.9816 1.041 0.9873

0.25 1.081 0.9467 1.082 0.9484

0.50 1.1390 0.8761 1.1255 0.8688

0.75 1.1819 0.8073 1.1486 0.792

1.00 1.2293 0.7503 1.1706 0.7278

1.50 1.3275 0.6572 1.2135 0.6268

2.00 1.4206 0.5839 1.2496 0.5524

DCT S16, Da ¼ a=24 0.0 0.9895 0.9895 1.020 1.020

0.01 0.9918 0.9873 1.022 1.017

0.1 1.015 0.9685 1.046 0.9978

0.25 1.057 0.9372 1.084 0.9613

0.50 1.107 0.8720 1.120 0.8869

0.75 1.1419 0.8105 1.1362 0.8141

1.00 1.1808 0.7577 1.1501 0.7533

1.50 1.3444 0.6979 1.2017 0.6606

2.00 1.4307 0.6262 1.2259 0.5884
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a=W ¼ 0:1; L=W ¼ 1:0;
E11ðx2Þ ¼ E011ebx2 ; E22ðx2Þ ¼ E022ebx2 ; G12ðx2Þ ¼ G012ebx2 ;
dimensionless non-homogeneity parameter: ba ¼ ð0:0–2:0Þ;
d4 ¼ E11=E22 ¼ ð0:25; 0:5; 1:0; 3:0; 10:0Þ;
j0 ¼ ð�0:25; 0:0; 0:5; 1:0; 2:0; 5:0Þ; m ¼ 0:15; 0:30; 0:45;
generalized plane stress; 2� 2 Gauss quadrature:

Notice that the average Young’s modulus indicated above can be rewritten as E ¼ E0eðbaÞðx2=aÞ, and thus
the non-homogeneity parameter b enters the analysis through the dimensionless constant ba. Therefore
1=b is the length scale of non-homogeneity. This problem (i.e. crack perpendicular to material gradation)
will be investigated for two different boundary conditions (BCs) (see Fig. 12(a) and (b)) and two loading
cases. For the first set of BCs (Fig. 12(a)), ba ¼ ð0:0–2:0Þ and for the second set of BCs (Fig. 12(b)), ba ¼
ð0:0–1:0Þ.

Fig. 12. Plate with a center crack perpendicular to the material gradation: (a) first set of BCs; (b) second set of BCs; (c) complete finite

element mesh; (d) mesh detail using 4 rings (R4) and 16 sectors (S16) around crack tips.
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6.3.1. Remote tension loading
Fig. 12(a) and (b) show a crack of length 2a located in a finite two-dimensional plate under remote

uniform tension loading for two different boundary conditions. The complete mesh used in both cases is
shown in Fig. 12(c), which is the same as that used for the example for a plate with a crack parallel to the
material gradation (see Section 6.2 and Fig. 10(b)). Fig. 12(d) shows a detail with 4 rings (R4) and 16
sectors (S16) around the crack tips. The boundary conditions are prescribed such that, for Fig. 12(a), u1 ¼ 0
along the left and right edges and, in addition, u2 ¼ 0 for the node in the middle of the left edge, while for
Fig. 12(b), u2 ¼ 0 along the bottom edge and in addition, u1 ¼ 0 at the left corner node of the bottom
edge. The mesh has 1666 Q8, 303 T6, and 32 T6qp singular elements with a total of 2001 elements and
5851 nodes. The applied load corresponds to r22ðx1;�10Þ ¼ �r ¼ �1:0 for the BCs in Fig. 12(a) and
r22ðx1; 10Þ ¼ r ¼ 1:0 for the BCs in Fig. 12(b).
Some representative results for the strain energy release rate, calculated from Eq. (25), for a non-

homogeneous orthotropic plate under uniform tension considering two different BCs (cf. Fig. 12(a) and (b))
are plotted in Figs. 13–19. Notice in these figures that the normalized strain energy release rate
G0 ¼ pr2a=E0 corresponds to a homogeneous isotropic medium ðba ¼ 0, j0 ¼ 1, d4 ¼ 1Þ.
Fig. 13 compares the FEM results for two different BCs and a fixed stiffness ratio d4 ¼ 10 with varying

material non-homogeneity ba and shear parameter j0. Notice that the BCs and the Poisson’s ratio ðm12Þ (see
Fig. 12(a) and (b)) have much influence on the strain energy release rates and, consequently, SIFs. The BCs
of Fig. 12(a) prohibits the Poisson’s effect of contraction in the x1 direction. For these BCs (see Fig. 12(a)),
the FEM results agree with the strain energy release rate ðGÞ obtained by Ozturk and Erdogan [23], which is
a monotonically increasing function of j0 and ba. However, for the other BCs (see Fig. 12(b)), the results
(dashed lines in Fig. 13) differ significantly from the previous ones (solid lines in Fig. 13). Notice that, for
the case illustrated by Fig. 12(b), although G is still an increasing function of j0, it is a decreasing function
of ba.
Figs. 14 and 15 show plots of the FEM results with varying ba and d4 for a fixed j0 ¼ 1 considering the

two BCs of Fig. 12(a) and (b), respectively. For the BCs of Fig. 12(a), Fig. 14 shows that G is an increasing
function of d4 for 06 ba6 � 1:5 and loses such behavior for baP � 1:5, which agrees well with the results
by Ozturk and Erdogan [23]. Moreover, G is a monotonically increasing function of ba. However, for the

Fig. 13. Normalized strain energy release rate versus the non-homogeneity parameter ba and the shear parameter j0 considering
uniformly applied tension (r22ðx1;�LÞ ¼ �r for the left side BC and r22ðx1;LÞ ¼ r for the right side BC) and d4 ¼ E11=E22 ¼ 10:0,
m ¼ 0:3, G0 ¼ pr2a=E0. The solid lines correspond to the first set of BCs (see Fig. 12(a)) and the dashed lines correspond to the second
set of BCs (see Fig. 12(b)).
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BCs of Fig. 12(b), the overall behavior is quite different as shown by Fig. 15, which indicates a change in the
overall trends for ba � 0:5. The energy release rate G increases with d4 to the left of this point and it de-
creases to the right of this point. Note that G is a monotonically increasing function of ba for d4 ¼ 0:25 and
a monotonically decreasing function of ba for d4 ¼ 10.
Figs. 16 and 17 show the FEM results with varying ba and d4 for the two BCs of Fig. 12(a) and (b),

respectively. For the BCs of Fig. 12(a), Fig. 16 shows that G is an increasing function of ba, which matches
well with the results by Ozturk and Erdogan [23], while for the BCs of Fig. 12(b), G loses such trends for ba
as illustrated by Fig. 17.
Figs. 18 and 19 show the variation of G with ba and j0 for fixed d4 ¼ 9 considering the two BCs of Fig.

12(a) and (b), respectively. For the BCs of Fig. 12(a), Fig. 18 shows that G is an increasing function of
ba and j0, which agrees with the results by Ozturk and Erdogan [23]. However, for the BCs of Fig. 12(b),

Fig. 14. Normalized strain energy release rate versus the non-homogeneity parameter ba and the stiffness parameter d4 considering
uniformly applied tension with BCs of Fig. 12(a) and r22ðx1;�LÞ ¼ �r, j0 ¼ 1, m ¼ 0:3, G0 ¼ pr2a=E0.

Fig. 15. Normalized strain energy release rate versus the non-homogeneity parameter ba and the stiffness parameter d4 considering
uniformly applied tension with BCs of Fig. 12(b) and r22ðx1;LÞ ¼ r, j0 ¼ 1, m ¼ 0:3, G0 ¼ pr2a=E0.
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Fig. 19 shows that G is a decreasing function of ba and increasing function of j0. Moreover, consider the
vertical line j0 ¼ 1 in Fig. 19, and note that for increasing G, the values of ba are ð1:0; 0:5; 0:0Þ. This is
consistent with the results of Fig. 17 (see vertical line in the graph).

6.3.2. Crack face loading
Fig. 20(a) shows a crack of length 2a located in a finite two-dimensional plate under either uniform crack

face pressure (normal) loading or crack face shear loading. For uniform crack face pressure loading, the
applied load corresponds to

r22ð�16 x16 1;�0Þ ¼ �r ¼ �1:0;
and for uniform crack face shear loading, the applied load corresponds to

r12ð�16 x16 1;�0Þ ¼ �s ¼ �1:0:

Fig. 16. Normalized strain energy release rate versus the stiffness parameter d4 ¼ E11=E22 and the non-homogeneity parameter ba
considering uniformly applied tension with BCs of Fig. 12(a) and r22ðx1;�LÞ ¼ �r, j0 ¼ 1, m ¼ 0:3, G0 ¼ pr2a=E0.

Fig. 17. Normalized strain energy release rate versus the stiffness parameter d4 ¼ E11=E22 and the non-homogeneity parameter ba
considering uniformly applied tension with BCs of Fig. 12(b) and r22ðx1;LÞ ¼ r, j0 ¼ 1, m ¼ 0:3, G0 ¼ pr2a=E0.
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The displacement boundary condition is prescribed such that u1 ¼ u2 ¼ 0 for the node in the middle of the
left edge, and u2 ¼ 0 for the node in the middle of right edge. To address the influence of the crack tip
discretization, two mesh configurations are used: one has 5 rings and 8 sectors (S8) around the crack tips
(Fig. 20(b)) and the other has 4 rings (R4) and 16 sectors (S16) around the crack tips (Fig. 20(c)). The latter
configuration is the same as those shown in Figs. 10(c) and 12(d). The results for this example are sum-
marized in Figs. 21–25 and Tables 3–6.
Fig. 21 shows the increase in KIðaÞ with increasing ba and j0 under crack face pressure loading, which

agrees with the results by Ozturk and Erdogan [23]. The influence of mesh discretization on fracture be-
havior is shown in Figs. 22 and 23, which illustrate the variation of SIFs with the non-homogeneity pa-
rameter ba and the shear parameter j0 under uniform crack face loading. Fig. 22 refers to the discretization
with 8 sectors (S8) and Fig. 23 refers to the discretization with 16 sectors (S16) around the crack tips.
Comparing Figs. 22 and 23, one notices that the results for j0 ¼ 1:0, 1.5 and 5.0 are similar in both figures,

Fig. 18. Normalized strain energy release rate versus the shear parameter j0 and the non-homogeneity parameter ba considering
uniformly applied tension with BCs of Fig. 12(a) and r22ðx1;�LÞ ¼ �r, d4 ¼ 9, m ¼ 0:3, G0 ¼ pr2a=E0.

Fig. 19. Normalized strain energy release rate versus the shear parameter j0 and the non-homogeneity parameter ba considering
uniformly applied tension with BCs of Fig. 12(b) and r22ðx1;LÞ ¼ r, d4 ¼ 9, m ¼ 0:3, G0 ¼ pr2a=E0.
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Fig. 20. Plate with a center crack perpendicular to the material gradation: (a) geometry and BCs; (b) mesh detail using 5 rings (R5) and

8 sectors (S8) around crack tips; (c) mesh detail using 4 rings (R4) and 16 sectors (S16) around crack tips.

Fig. 21. Normalized strain energy release rate versus the non-homogeneity parameter ba and the shear parameter j0 under uniform
crack face pressure loading, r22ð�a6 x16 a;�0Þ ¼ �r, d4 ¼ 0:25, m ¼ 0:3, K0 ¼ r

ffiffiffiffiffiffi
pa
p

.
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but not the results for j0 ¼ 0:5. In fact, the results in Fig. 23 (finer discretization: S16) are more reliable
than those in Fig. 22 (coarser discretization: S8) and also agree with the results by Ozturk and Erdogan [23].
It is observed in Figs. 21–23 that KI and KII approach K0 ¼ r

ffiffiffiffiffiffi
pa
p

and K0 ¼ s
ffiffiffiffiffiffi
pa
p

, respectively, as ba tends
to zero, while exact solutions are obtained by Ozturk and Erdogan [23]. This is due to numerical errors in
the FEM which are absent in the integral equation method. However this type of method (i.e. based on
integral equations) is much less general than the FEM. Fig. 24 shows a comparison of CODs by the FEM
with those by Ozturk and Erdogan [23] for m ¼ 0:3, j0 ¼ 0:5, and d4 ¼ 10. Both results agree quite well. Fig.
25 shows the CSDs obtained by the FEM. It is interesting to observe that CSDs by the FEM are almost two
times those by Ozturk and Erdogan [23]. The excellent agreement of the CODs and the factor of 2 for the
CSDs seem to suggest a typo in the CSD results of reference [23]. The crack profiles in Fig. 25 are sig-
nificantly influenced by the mesh discretization. A finer discretization along the crack surfaces (away from
the tips) leads to a smoother profile (cf. Fig. 20(c)).

Fig. 22. Variation of the normalized SIFs versus the non-homogeneity parameter ba and the shear parameter j0 under uniform crack
face shear loading, r12ð�a6 x16 a;�0Þ ¼ �s, d4 ¼ 0:25, m ¼ 0:3, K0 ¼ s

ffiffiffiffiffiffi
pa
p

using 8 sectors (S8) around the crack tip.

Fig. 23. Variation of the normalized SIFs versus the non-homogeneity parameter ba and the shear parameter j0 under uniform crack
face shear loading, r12ð�a6 x16 a;�0Þ ¼ �s, d4 ¼ 0:25, m ¼ 0:3, K0 ¼ s

ffiffiffiffiffiffi
pa
p

using 16 sectors (S16) around the crack tip.
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Several SIF results are presented in Tables 3–6 and are also compared with the results obtained by
Ozturk and Erdogan [23]. Table 3 shows the effect of loading conditions and the non-homogeneity pa-
rameter ba on the normalized SIFs for uniform crack face pressure loading and for uniform crack face
shear loading using both the MCC and DCT. Tables 4 and 5 show the effect of the Poisson’s ratio on the
normalized SIFs in a non-homogeneous orthotropic plate with the uniform crack face pressure loading and
shear loading, respectively. To show the influence of mesh discretization on the SIFs, Table 6 presents
mixed-mode SIFs in a non-homogeneous orthotropic plate with crack face pressure loading considering
b ¼ 0:5, j0 ¼ 5:0, and d4 ¼ 10. Notice that the mesh with 16 sectors (S16) leads to results that are closer to

Fig. 24. Influence of the non-homogeneity parameter ba on the COD considering uniform crack face pressure loading,

r22ð�a6 x16 a;�0Þ ¼ �r, d4 ¼ 10:0, m ¼ 0:3, j0 ¼ 0:5, V ¼ ðu2ðx1;þ0Þ � u2ðx1;�0ÞÞ=v0, v0 ¼ ar=E2, (E2 ¼ E0d=ð2
ffiffiffi
2
p
ðd2 þ ðE11=

2G12 � m12ÞÞ1=2Þ). The dotted lines represent the Ozturk and Erdogan’s [23] analytical results and the solid lines show the FEM results.

Fig. 25. Influence of the non-homogeneity parameter ba on the CSD considering uniform crack face pressure loading,

r22ð�a6 x16 a;�0Þ ¼ �r, d4 ¼ 10:0, m ¼ 0:3, j0 ¼ 0:5, U ¼ ðu1ðx1;þ0Þ � u1ðx1;�0ÞÞ=u0, u0 ¼ ar=E1, (E1 ¼ E0d2=ð2
ffiffiffi
2
p
ðd2 þ ðE11=

2G12 � m12ÞÞ1=2Þ).

1580 J.-H. Kim, G.H. Paulino / Engineering Fracture Mechanics 69 (2002) 1557–1586



those by Ozturk and Erdogan [23] than the mesh with 8 sectors (S8), which confirms the need for careful
crack tip mesh discretization in order to obtain satisfactory SIF results by the FEM. In summary, for this
example, the MCC and DCT give accurate SIF results in comparison with those by Ozturk and Erdogan
[23].

Table 3

The effect of the loading conditions on the normalized SIFs in a non-homogeneous orthotropic plate for the mixed-mode problem

considering j0 ¼ 0:5 (K0 ¼ r
ffiffiffiffiffiffi
pa
p

for uniform crack face pressure loading and K0 ¼ s
ffiffiffiffiffiffi
pa
p

for uniform crack face shear loading)

Method ba r s

KIðaÞ=K0 KIIðaÞ=K0 KIðaÞ=K0 KIIðaÞ=K0
Ozturk and Erdogan [23] 0.0 1.0 0.0 0.0 1.0

0.1 1.0115 0.0250 �0.0494 0.9989

0.25 1.0489 0.0627 �0.1191 0.9968

0.50 1.1351 0.1263 �0.2217 0.9965

1.0 1.3494 0.2587 �0.3682 1.0071

2.0 1.8580 0.5529 �0.5725 1.0499

MCC S16, Da ¼ a=24 0.0 1.021 0.0 0.0 0.992

0.1 1.0273 0.0246 �0.0484 0.9907

0.25 1.0550 0.0601 �0.1150 0.9850

0.50 1.1351 0.1204 �0.2126 0.9788

1.0 1.3495 0.2458 �0.3685 0.9884

2.0 1.8663 0.5226 �0.5940 1.0350

DCT S16, Da ¼ a=24 0.0 1.0302 0.0 0.0 0.9811

0.1 1.0352 0.0242 �0.0492 0.9799

0.25 1.0618 0.0609 �0.1196 0.9749

0.50 1.1390 0.1227 �0.2219 0.9687

1.0 1.3444 0.2515 �0.3857 0.9777

2.0 1.8240 0.5377 �0.6245 1.0189

Table 4

The effect of the Poisson’s ratio on the normalized SIFs in a non-homogeneous orthotropic plate with crack face (normal) pressure

loading for the mixed-mode problem (j0 ¼ 5:0; K0 ¼ r
ffiffiffiffiffiffi
pa
p

)

Method ba d4 0.25 10.0

m 0.15 0.30 0.45 0.15 0.30 0.45

Ozturk and Erdogan [23] 0.5 KIðaÞ=K0 1.2516 1.2596 1.2674 1.0748 1.0776 1.0804

KIIðaÞ=K0 0.1259 0.1259 0.1259 0.1252 0.1252 0.1251

1.0 KIðaÞ=K0 1.5589 1.5739 1.5884 1.1892 1.1955 1.2017

KIIðaÞ=K0 0.2555 0.2557 0.2558 0.2511 0.2512 0.2512

MCC S16, Da ¼ a=24 0.5 KIðaÞ=K0 1.2536 1.2615 1.2694 1.073 1.076 1.079

KIIðaÞ=K0 0.1196 0.1196 0.1196 0.1297 0.1297 0.1298

1.0 KIðaÞ=K0 1.5611 1.5763 1.5910 1.1881 1.1949 1.2011

KIIðaÞ=K0 0.2402 0.2403 0.2404 0.2415 0.2415 0.2414

DCT S16, Da ¼ a=24 0.5 KIðaÞ=K0 1.267 1.275 1.282 1.082 1.084 1.086

KIIðaÞ=K0 0.1166 0.1167 0.1169 0.1143 0.1144 0.1144

1.0 KIðaÞ=K0 1.563 1.578 1.591 1.1960 1.1994 1.2051

KIIðaÞ=K0 0.2363 0.2366 0.2370 0.2273 0.2274 0.2274
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6.4. Two interacting offset cracks

This example is based on the experiments for SIFs for interacting cracks conducted by Mehdi-Soozani
et al. [39]. They have used polycarbonate PSM1 (Product of Measurements Group, Inc.), which is a
photoelastic material free of time-edge effects and exhibits very little creep at room temperature. The
configuration that they [39] tested and analyzed is illustrated by Fig. 26(a), which shows two interacting
offset cracks of length 2a located with angles h ¼ 0� and h ¼ 45� in a finite two-dimensional plate under
uniform remote tension. Fig. 26(b) shows the complete finite element mesh configuration, and Fig. 26(c)
shows the mesh detail with 16 sectors (S16) around the four crack tips. The applied load corresponds to
r22 ¼ �r ¼ �1:22 MPa along the top and bottom edges. The displacement boundary condition is pre-
scribed such that u1 ¼ u2 ¼ 0 for the node in the middle of the left edge and u2 ¼ 0 for the node in the
middle of the right edge. For the isotropic case, we consider the plate as homogeneous. For the orthotropic
case, the variations of E11ðxÞ, E22ðxÞ, and G12ðxÞ are assumed to be exponential and non-proportional
functions, while the Poisson’s ratio is constant. The mesh has 2621 Q8, 574 T6, and 64 T6qp elements with a
total of 3259 elements and 9460 nodes. The following data were used for the FEM analysis:

L ¼ 381 mm; W ¼ 114:3 mm; t ¼ 3:17 mm; 2a ¼ 20:32 mm
For isotropic homogeneous case:
E ¼ 2390 MPa; m ¼ 0:38;

Table 6

Effect of crack tip mesh discretization on the SIFs in a non-homogeneous orthotropic plate with crack face pressure loading for the

mixed-mode problem considering m ¼ ð0:15; 0:30; 0:45Þ and ba ¼ 0:5, j0 ¼ 5:0, d4 ¼ 10, K0 ¼ r
ffiffiffiffiffiffi
pa
p

Method m 0.15 0.30 0.45

Ozturk and Erdogan [23] KIðaÞ=K0 1.0748 1.0776 1.0804

KIIðaÞ=K0 0.1252 0.1252 0.1251

MCC S8, Da ¼ a=32 KIðaÞ=K0 1.070 1.074 1.076

KIIðaÞ=K0 0.1639 0.1646 0.1653

MCC S16, Da ¼ a=24 KIðaÞ=K0 1.073 1.076 1.079

KIIðaÞ=K0 0.1297 0.1297 0.1298

Table 5

The effect of the Poisson’s ratio on the normalized SIFs in a non-homogeneous orthotropic plate with crack face shear loading for the

mixed-mode problem (j0 ¼ 5:0; K0 ¼ s
ffiffiffiffiffiffi
pa
p

)

Method ba d4 0.25 10.0

m 0.15 0.3 0.45 0.15 0.3 0.45

Ozturk and Erdogan [23] 0.5 KIðaÞ=K0 �0.1980 �0.1971 �0.1963 �0.0366 �0.0365 �0.0365
KIIðaÞ=K0 0.9898 0.9915 0.9931 0.9956 0.9961 0.9965

1.0 KIðaÞ=K0 �0.3203 �0.3186 �0.3169 �0.0660 �0.0657 �0.0654
KIIðaÞ=K0 0.9888 0.9921 0.9953 0.9913 0.9925 0.9938

MCC S16, Da ¼ a=24 0.5 KIðaÞ=K0 �0.1883 �0.1872 �0.1861 �0.0340 �0.0341 �0.0339
KIIðaÞ=K0 0.9529 0.9546 0.9359 0.9168 0.9173 0.9179

1.0 KIðaÞ=K0 �0.3034 �0.3012 �0.2991 �0.0598 �0.0595 �0.0591
KIIðaÞ=K0 0.9495 0.9529 0.9557 0.9117 0.9134 0.9145

DCT S16, Da ¼ a=24 0.5 KIðaÞ=K0 �0.2009 �0.1997 �0.1987 �0.0349 �0.0344 �0.0343
KIIðaÞ=K0 0.9224 0.9241 0.9252 0.8507 0.8519 0.8919

1.0 KIðaÞ=K0 �0.3264 �0.3242 �0.3221 �0.0638 �0.0620 �0.0615
KIIðaÞ=K0 0.9185 0.9213 0.9241 0.8445 0.8479 0.8496
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For orthotropic FGM case:

E11ðx1Þ ¼ E011eax1 ; E22ðx1Þ ¼ E022ebx1 ; G12ðx1Þ ¼ G012ecx1 ;
E011 ¼ 2390 MPa; E022 ¼ 1195 MPa; G012 ¼ 688:7 MPa; m12 ¼ 0:38;
ða; b; cÞ ¼ ð0:01970; 0:01576; 0:01183Þ; generalized plane stress; 2� 2 Gauss quadrature:

Fig. 26. Two interacting offset cracks in a finite plate; (a) geometry and BCs; (b) complete finite element mesh; (c) mesh detail showing 6

rings (R6) and 16 sectors (S16) around crack tips. (Units: N, mm).
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Table 7 shows FEM results for SIFs using the MCC and DCT for the isotropic homogeneous case in
comparison with experimental results and numerical results using the boundary element method (BEM) by
Mehdi-Soozani et al. [39]. The present results for the isotropic homogeneous case show good agreement
with the experimental and BEM results. Notice that the MCC results are closer to the experimental results
than the BEM. Table 7 also shows FEM results for SIFs in orthotropic FGM with non-proportional
material gradation using the MCC and DCT for which there are no available reference solutions.

7. Conclusions and extensions

FGMs feature an intentional material property grading, whereas the property orientation or orthotropy
is usually a result of material processing/manufacturing. Due to the need to understand the mechanics of
such materials, this paper presents a general purpose finite element formulation and implementation for
elasticity and mixed-mode fracture analysis of orthotropic FGMs where cracks are arbitrarily oriented with
respect to the principal axes of orthotropy. The DCT and the MCC method are assessed by using carefully
designed singular and transition elements around the crack tips in orthotropic FGMs. From extensive
numerical results presented, the following conclusions are made. The MCC and DCT provide very accurate
SIFs for mixed-mode crack problems in orthotropic FGMs with cracks either aligned with the principal
directions of orthotropy or arbitrarily oriented. Moreover, in contrast to homogeneous materials, Poisson’s
ratio and boundary conditions are found to have significant influence on the energy release rates and,
consequently, SIFs in mixed-mode crack problems in orthotropic FGMs. Thus, special attention is required
in defining Poisson’s ratio and boundary conditions for problems involving such materials.
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Table 7

The normalized SIFs with two interacting offset cracks for uniform remote tension loading considering a homogeneous isotropic

material and also an orthotropic FGM with ða; b; cÞ ¼ ð0:01970; 0:01576; 0:01183Þ. The normalizing factor is K0 ¼ r
ffiffiffiffiffiffi
pa
p

Problem Method SIFs TIP A TIP B TIP C TIP D

Isotropic homogeneous Mehdi-Soozani

et al. [39]

KI=K0 (exper.) 0.64 0.70 1.14 1.16

KII=K0 (exper.) �0.59 �0.58 0.14 0.04

KI=K0 (numer.) 0.79 0.64 1.18 1.18

KII=K0 (numer.) �0.65 �0.61 0.14 0.01

MCC KI=K0 0.613 0.752 1.129 1.124

KII=K0 �0.576 �0.614 0.130 0.012

DCT KI=K0 0.616 0.756 1.131 1.129

KII=K0 �0.565 �0.602 0.128 0.005

Orthotropic FGM

(proposed)

MCC KI=K0 0.631 0.872 1.216 1.341

KII=K0 �0.607 �0.630 0.155 0.021

DCT KI=K0 0.633 0.875 1.220 1.343

KII=K0 �0.594 �0.613 0.152 0.004
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