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SUMMARY

This paper is directed towards :nite element computation of fracture parameters in functionally graded
material (FGM) assemblages of arbitrary geometry with stationary cracks. Graded :nite elements are
developed where the elastic moduli are smooth functions of spatial co-ordinates which are integrated
into the element sti=ness matrix. In particular, stress intensity factors for mode I and mixed-mode
two-dimensional problems are evaluated and compared through three di=erent approaches tailored for
FGMs: path-independent J ∗

k -integral, modi:ed crack-closure integral method, and displacement cor-
relation technique. The accuracy of these methods is discussed based on comparison with available
theoretical, experimental or numerical solutions. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The emergence of functionally graded materials, or FGMs, is the outcome of the need to
accommodate material exposure to non-uniform service requirements. Such materials have
been the focus of intense investigations, which in Japan and Germany, have become highly
coordinated in their technical emphasis and government :nancial support. The Fourth Inter-
national Symposium on FGMs was held in Tsukuba City, Japan, in 1996 (FGM’96); and the
Fifth International Symposium on FGMs was held in Dresden, Germany, in 1998 (FGM’98).
Recently, the Sixth International Symposium on FGMs was held in the United States at Estes
Park, Colorado (FGM’2000).

Although the initial emphasis for FGMs focused on the synthesis of thermal barrier coat-
ings for space-type applications [1], subsequent investigations have addressed a wide variety
of applications [2–4]. These include the potential use of FGMs in nuclear fusion and fast
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breeder reactors as :rst-wall composite materials [5]; in electronic and magnetic applications
as piezoelectric and thermoelectric devices, and as high density magnetic recording media and
position measuring devices [6–9]; in optical applications, e.g. graded refractive index mate-
rials in audio-video disks [10]; in thermionic applications, e.g. thermionic converters [11];
in biomaterials, e.g. dental and other implants [12; 13]; and in other applications, e.g. the
development of :re retardant doors [14].

FGMs possess the distinguishing feature of non-homogeneity with regard to thermome-
chanical and strength related properties including yield strength, fracture toughness, fatigue
and creep behaviour. Next, a few related papers in the context of :nite element modelling of
fracture of FGMs are brieIy reviewed. Eischen [15] has done an early investigation of mixed-
mode cracks in non-homogeneous materials which included three examples that were analysed
by the :nite element method (FEM). Gu et al. [16] have presented a simpli:ed method for
calculating the crack-tip :eld of FGMs using the equivalent domain integral (EDI) technique.
Anlas et al. [17] have evaluated SIFs in FGMs by the FEM where the material property vari-
ation was discretized by assigning di=erent homogeneous elastic properties to each element.
Both Gu et al. [16] and Anlas et al. [17] have considered a Mode I crack where the crack
is parallel to the material gradation and have used the FEM code ABAQUS in their analy-
ses. Marur and Tippur [18] have considered a crack normal to the elastic gradient and have
performed FEM analysis in conjunction with experiments. Bao and Wang [19] have studied
multiple cracking in functionally graded ceramic=metal coatings. Bao and Cai [20] have inves-
tigated delamination cracking in a functionally graded ceramic=metal substrate. Lee and Erdo-
gan [21] have calculated residual thermal stresses in FGMs. It is worth mentioning that all the
previous models cited in this paragraph are problem speci:c. Thus the goal of the present
paper is to develop a general purpose FEM formulation and implementation for elastic
FGMs and for fracture of FGMs considering mixed-mode cracks. To this e=ect, techniques
to evaluate mixed-mode SIFs, such as the J ∗

k -integral, are speci:cally tailored for FGMs.
The remainder of this paper, which is devoted to :nite element modelling of fracture in

FGMs, is organized as follows. The next section brieIy reviews crack tip :elds. Section 3
addresses the displacement correlation technique (DCT), and Section 4 presents the modi:ed
crack closure (MCC) method. Section 5 details the J ∗

k (k =1; 2) formulation accounting for
material non-homogeneity. These three methods (DCT, MCC, J ∗

k -integral) are presented in
the context of mixed-mode fracture in FGMs. Section 6 discusses some relevant aspects of
the FEM implementation. To validate all the previous development, Section 7 presents many
numerical results which, whenever possible, are compared to available theoretical, experimen-
tal, or numerical solutions. Finally, Section 8 concludes the present investigation.

2. CRACK TIP FIELDS IN FGMs

The eigenfunction expansion technique proposed by Williams [22] has been widely used to
investigate the nature of the near-tip :elds in a cracked body. Eischen [15] has used an
extension of this procedure to establish the general form of the stress and displacement :elds
near a crack tip in a non-homogeneous material where the elastic moduli vary with position
(x) such that the Young’s modulus E≡E(x) and Poisson’s ratio �≡ �(x) are continuous,
bounded, and di=erentiable functions. This result was further con:rmed by Jin and Noda [23]
for materials with piecewise di=erentiable property variations. Figure 1 shows a crack in
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Figure 1. Cartesian (x; y) and polar (r; 
) co-ordinate systems at the crack tip.

a two dimensional FGM elastic body with applied tractions and speci:ed displacements on
the boundary resulting in a state of generalized plane stress or plane strain. Local Cartesian
and cylindrical co-ordinates are :xed at the crack tip, body forces are neglected, and crack
faces are assumed to be traction-free. The following approximate expressions for stresses are
obtained [15; 23]:
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where KI and KII are the modes I and II stress intensity factors (SIFs), respectively. The
stress component �x0 is called ‘non-singular stress’, and it has been associated with crack
kinking phenomena. The symbols fI

ij (
) and fII
ij (
) (i; j=1; 2) denote the standard angular

distribution functions for homogeneous materials and can be found in many references in
fracture mechanics, e.g. Eftis et al. [24]. Nevertheless, the angular variation of the com-
ponents of stress which correspond to terms O(r1=2) and higher do change due to material
non-homogeneity [15].

The present analysis also leads to the near-tip displacement of the form [15; 23]:
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where �tip is the shear modulus at the crack tip and the angular functions gI
i(
), g

II
i (
) (i=1; 2)

can be found, for example, in Eftis et al. [24]. Again, the nature of the near crack tip
displacement :eld is the same as for homogeneous materials. However, the terms O(r3=2)
and higher do not exhibit the same spatial dependence as the corresponding terms for a
homogeneous material [15].

The SIFs are functions of material gradients, external loading and geometry. The material
gradients do not a=ect the order of singularity and the angular functions of the crack tip
:elds, but do a=ect the SIFs. However, this dependence cannot be determined by techniques
such as eigenfunction expansion [22; 25]. Methods to accomplish this task will be discussed
in the next three sections of this paper (which address the DCT, MCC, and J ∗

k -integral,
respectively).

3. DISPLACEMENT CORRELATION TECHNIQUE (DCT) FOR FGMs

The DCT is one of the simplest methods to evaluate SIFs. It consists of correlating numerical
results for displacement at speci:c locations on the crack with available analytical solutions.
For quarter point singular elements, the crack opening displacement (COD) pro:le at x=−r
is given by [26].

COD(−r)= (4u2; i−1 − u2; i−2)
√

r
Pa

(3)

where u2; i−1 and u2; i−2 are the relative displacements to the crack tip in the x2 direction at
locations (i − 1) and (i − 2), r is the distance from the crack tip along the x1 direction, and
Pa is a characteristic length associated to the crack tip elements (see Figure 2).

For FGMs, material properties need to be considered at the crack tip location. Thus,
consistently with Equation (2), the analytical expression for COD(−r), neglecting higher order

Figure 2. Crack tip rosette of singular quarter-point (1st ring) and regular (2nd ring) :nite elements.
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terms, can be written as

COD(−r)=KI

(
� + 1
�

)
tip

√
r
2

(4)

where �tip = 3−4�tip for plane strain, �tip = (3−�tip)=(1+�tip) for plane stress, and �tip denotes
the Poisson’s ratio at the crack tip location. By correlating Equations (3) and (4), the SIF for
mode I can be evaluated by
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(5)

For mode II, the crack sliding displacement (CSD) replaces the COD and the following
expression is obtained:
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tip

u1; i−2

]
(6)

Note that in the above expressions for SIFs, the material properties (�≡�(x) and �≡�(x))
have been taken at the crack tip location, which is consistent with Equation (2).

4. MODIFIED CRACK-CLOSURE (MCC) INTEGRAL FOR FGMs

The modi:ed crack-closure integral method was proposed by Rybicki and Kanninen [27]
based on Irwin’s virtual crack-closure method [28] using the stresses ahead of the crack tip
and the displacements behind the crack tip. The energy release rates can be obtained for
modes I and II separately by this method, which utilizes only a single :nite element analysis.
No assumption of isotropy or homogeneity around the crack is necessary. Thus the method
is ideally suited for FGMs. The energy release rate is estimated only in terms of the work
done by the stresses (or equivalent nodal forces) over the displacements produced by the
introduction of a virtual crack extension. The expression for GI (strain energy release rate
for mode I) and GII (strain energy release rate for mode II) may be obtained according to
Irwin [28] as

GI = lim
�a→0

2
�a

∫ x1=�a

x1=0

1
2
�22(r= x1; 
=0; a) u2(r= �a− x1; 
=; a+ �a) dx1 (7)

GII = lim
�a→0

2
�a

∫ x1=�a

x1=0

1
2
�12(r= x1; 
=0; a) u1(r= �a− x1; 
=; a+ �a) dx1 (8)

where �12 ≡�xy and �22 ≡�yy are shear and normal stresses ahead of the crack tip, and
u1 ≡ ux and u2 ≡ uy are the relative displacements with respect to the crack tip co-ordinates,
respectively. Figure 3 illustrates a self-similar virtual crack extension �a and the distribution
of normal stress ahead of the crack tip.
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Figure 3. Self-similiar crack extension and normal stress distribution.

Stress intensity factors can be related to the values of the potential energy release rates
through the following expressions [29]:

GI =
(
� + 1
8�

)
tip

K2
I and GII =

(
� + 1
8�

)
tip

K2
II (9)

Ramamurthy et al. [30], and Raju [31] have shown that the values of GI and GII can be
written in terms of the equivalent nodal forces F2 ≡Fy and F1 ≡Fx, and the relative nodal
displacements u2 and u1 when employing quarter-point singular elements around the crack tip
(see Figure 2). They provided initial expressions for GI and GII which were valid only for
pure mode, homogeneous problems. In general, for mixed mode problems, the deformation
is neither symmetric nor antisymmetric about the local x1-axis. Thus Raju [31] proposed the
corrected formulae as follows:

GI =
1

2Pa
[F2; i(t11u2; i−2 + t12u2; i−1) + F2; i+1(t21u2; i−2 + t22u2; i−1)

+FT
2; i+2(t31 Qu2; i−2 + t32 Qu2; i−1) + FB

2; i+2(t31û2; i−2 + t32û2; i−1)]
(10)

GII =
1

2Pa
[F1; i(t11u1; i−2 + t12u1; i−1) + F1; i+1(t21u1; i−2 + t22u1; i−1)

+FT
1; i+2(t31 Qu1; i−2 + t32 Qu1; i−1) + FB

1; i+2(t31û1; i−2 + t32û1; i−1)]

where the :rst subscript in F or u refers to the Cartesian co-ordinate (x1 ≡ x or x2 ≡y)
and the second subscript refers to the nodal point, the parameters tkl (k =1; 2; 3; l=1; 2) are
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given by

t11 = 14− 33
8
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2
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8
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21
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(11)

and Pa is the characteristic length of singular elements around the crack tip which are six-node
quarter-point triangular elements as illustrated in Figure 2. The superscripts T and B indicate
the top and bottom regions of the crack with respect to x1-axis, and thus FT and FB indicate
the forces at top and bottom surfaces, respectively. The :elds Qu and û represent the relative
displacement of the top and bottom parts with respect to the crack tip. For example, at location
(i − 1), Quy; i−1 = vTy; i−1 − vy; i and ûy = vBy; i−1 − vy; i where v represents absolute displacement.

5. J ∗
k -INTEGRAL FOR FGMs

This section presents a general derivation (for two-dimensional problems) of the J ∗
k integral

for non-homogeneous materials and details the actual FEM implementation in this work. The
spatial variation of both elastic properties (E≡E(x); �≡ �(x)) is considered and the equivalent
domain integral (EDI) concept is used to evaluate J ∗

k (k =1; 2) in the FEM implementation.
The presentation below is an extension of the J ∗

k formulation by Eischen [15; 33]. Because of
some previous controversy in the literature, a few words about the path independence of J ∗

k
are in order. Herrmann [32] has claimed that J2 is path-dependent for paths surrounding the
crack tip, however, Eischen [33] has shown that path independency of J2 can be assured by
including the integration of the strain energy density W along the lower and upper crack faces.
Thus a correct de:nition of J2 assuring path independency is obtained. The path independency
of J1 and J2 ensures reliable computation of mixed mode SIFs. This will be demonstrated in
the section on computational results by means of several numerical examples.

5.1. Formulation

An elastic body subjected to two dimensional deformation :elds (plane strain, generalized
plane stress) possesses a strain energy function W de:ned by

W =W (�ij; xi) where �ij =
@W
@�ij

(i; j=1; 2) (12)

To derive a balance law, the gradient of W needs to be evaluated, i.e.

@W
@xk

=
@W
@�ij

@�ij
@xk

+
(
@W
@xk

)
expl

= �ij�ij; k + (W;k)expl (13)
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where (·); k ≡ @(·)=@xk , and the ‘explicit’ derivative of W is de:ned by

(
@W
@xk

)
expl

=
@
@xk

W (�ij; xi)

∣∣∣∣∣
�ij = const:; xm = const: for m �=k

(14)

Using the symmetry properties of the stress tensor, the linearized strain–displacement relation,
and the equilibrium equations, one obtains

(W�jk − �ijui; k); j − (W;k)expl = 0 (15)

where �jk is the Kronecker delta. This represents a balance law, valid pointwise, for an
elastic FGM. A simple closed curve S in the (x1; x2) local plane is introduced along with the
domain T which it encloses. By integrating Equation (15) over the domain T and applying
the divergence theorem, the following expression is obtained:∮

S
(Wnk − �ijnjui; k) dS−

∫
T
(W;k)expl dT=0 (16)

where nj is the outward unit normal vector to S. For a linear elastic FGM, the strain energy
function is

W = 1
2Cprst(x1; x2)up; r us; t (17)

where Cprst = %(x) �pr�st + �(x) (�ps�rt + �pt�rs) denotes the elastic tensor, in which % and �
are the Lame’s moduli. Thus, for an isotropic FGM, the ‘explicit’ derivative of W is obtained
in closed form as

(W;k)expl = 1
2 [%; k�pr�st + �;k(�ps�rt + �pt�rs)]up; rus; t (18)

Since the stress and strain :elds are singular at a crack tip, and therefore unbounded, the
region T in Equation (16) should not contain the crack tip. In order to derive an integral
expression which is valid in the presence of a crack tip, a special region T must be considered.
Figure 4 shows a crack located in a two-dimensional body of arbitrary shape. The region T
(free of singularity) is bounded by a closed curve S composed of segments S0, S+

c , S�, S−
c

as shown. The region between S� and the crack surfaces is T�. The region T0 is de:ned as
T+T�. The divergence theorem can be applied in the region T. Thus Equation (16) leads to∫

S0
bk dS +

∫
S+
c

bk dS +
∫
S�
bk dS +

∫
S−
c

bk dS−
∫
T
(W;k)expl dT=0 (19)

where

bk =Wnk − �ijnjui; k (20)

If the direction of integration is reversed in the third term of Equation (19), and the region
T is decomposed into T0 −T�, i.e. T=T0 −T�, it follows that∫

S0
bk dS−

∫
T0

(W;k)expl dT +
∫
S+
c

bk dS +
∫
S−
c

bk dS=
∫
S�
bk dS−

∫
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(W;k)expl dT (21)
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Figure 4. Schematic of cracked body.

A vector J ∗
k is introduced as the limit S� → 0 of the right-hand side of Equation (21),

i.e.

J ∗
k ≡ lim

S�→0

[∫
S�
(Wnk − �ijnjui; k) dS−

∫
T�

(W;k)expl dT
]

= lim
S�→0

[∫
S�

bk dS−
∫
T�

(W;k)expl dT
]

(22)

As the loop S� is shrunk onto the crack tip, the domain integral in Equation (22) vanishes
because derivatives of the elastic moduli are assumed to be bounded at the crack tip. Then
Equations (21) and (22) can be combined to produce

J ∗
k ≡ lim

S�→0

∫
S�

bk dS

= lim
S�→0

{∫
S0
bk dS−

∫
T0

(W;k)expl dT +
∫
S+
c

bk dS +
∫
S−
c

bk dS
}

(23)

It is convenient to combine the two terms involving integration along the crack faces,
and call the associated path of integration Sc. In order to combine these terms, the path S0

must intersect the top and bottom crack faces which are at the same distance from the
crack tip, as shown in Figure 4. Equation (23), together with Equation (20), leads to the
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general expression

J ∗
k = lim

S�→0

{∫
S0

[Wnk − �ijnjui; k] dS−
∫
T0

(W;k)expl dT

+
∫
Sc

([W+ −W−]n+
k − [t+i u

+
i; k − t−i u−i; k])

}
dS (24)

where ti =�ijnj; (+) and (−) refer to the upper and lower crack faces, and n+
k =−n−k is

the outward unit normal vector to S+
c . The notation [W+−W−] denotes the discontinu-

ity (or jump) in the strain energy density across the crack opening. Notice that the mate-
rial nonhomogeneity a=ects the standard J -integral [34] by adding a domain integral term.
This term must be accounted so that relatively large regions can be used to evaluate the
J-integral in the FEM.

By introducing the EDI [16; 35], the closed contour integral of Equation (24) can be
converted to the following expression if the crack surfaces are assumed to be traction-free:

J ∗
k =

∫
A
[�ij ui; k −W�kj]q; j dA−

∫
A
(W;k)explq dA+

∫
Sc

[W+ −W−]qn+
k dS (25)

where q is a smooth function which has the value of unity on S� and zero on S0, and q
was employed on the contour Sc [35]. The two often used shapes of the q function are the
pyramid function and the plateau function. The plateau function was adopted in the present
:nite element analysis. For simplicity, let us de:ne the last term of Equation (25) as

R=
∫
Sc

[W+ −W−]qn+
k dS (26)

where strain energy density can be represented as

W=W [E(x); �(x); �(x)] (27)

with x=(x1; x2).
Thus the derivative of W in the second term of Equation (25) becomes(

@W
@xk

)
expl

=
@W
@E

@E
@xk

+
@W
@�

@�
@xk

(28)

If we separate Equation (25) into modes I and II, then for mode I (k =1 in Equation (25)),

(J ∗
1 )local =

∫
A
[�ijui;1 −W�1j]

@q
@xj

dA−
∫
A
(W;1)q dA (29)

and for mode II (k =2 in Equation (25)),

(J ∗
2 )local =

∫
A
[�ijui;2 −W�2j]

@q
@xj

dA−
∫
A
(W;2)q dA+

∫
Sc

[W+ −W−]qn+
2 dS (30)

Notice that the expression for (J ∗
2 )local given in Equation (30) includes the term R which

is the integration along the crack face of the discontinuity in the strain energy density, while
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Figure 5. Schematic of the integration path.

the expression for (J ∗
1 )local does not. This term causes diUculty in numerical evaluation of

(J ∗
2 )local. In what follows, it is useful to derive an expression for [W+−W−] near a crack tip.

The expressions for stresses near a crack tip in FGMs are given in Equation (1).
Recall that for plane stress in FGMs (E≡E(x); �≡ �(x))

W =
1

2E(x)
(�2

11 + �2
22 − 2�(x)�11�22) +

1 + �(x)
E(x)

�2
12 (31)

Substituting Equation (1) into Equation (31) and performing some algebraic manipulation,
one obtains

W (r; )−W (r;−)= [W+ −W−]=
−4KII�x0

E(r)
√
2r

+O(r1=2) + · · · (32)

The range of integration can be divided into two parts, the :rst remote from the crack tip,
and the second close to the crack tip. Thus a characteristic distance parameter is introduced,
denoted by �, as shown in Figure 5.

Hence, the origin of the x1-axis will be located at the point where the path S0 intersects the
crack face. The distance from this point to the crack tip is d. It will be assumed that over the
distance �, the term [W+−W−] is satisfactorily approximated by the asymptotic form above
(see Equation (32)). The following approximation is made to the integration of [W+ −W−]
along the crack face:

∫
Sc
[W+ −W−]qn+

2 dS=−
∫
Sc

[W+ −W−]q dx1

≈−
∫ d−�

0
[W+ −W−]q dx1 −

∫ d

d−�

−4KII�x0

Etip
√
2r

q dx1 (33)
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Using the fact that along the crack face r=d− x1 (see Figure 5), one can evaluate the last
integral in Equation (33) so that it can be written as∫

Sc

[W+ −W−]qn+
2 dS ≈ −

∫ d−�

0
[W+ −W−]q dx1 +

8KII�x0

√
�

Etip
√
2

(34)

Thus, based on Equation (30) and using the result given by Equation (34), the approximate
expression for (J ∗

2 )local is

(J ∗
2 )local ≈

∫
A
[�ijui;2 −W�2j]

@q
@xj

dA−
∫
A
(W;2)q dA

−
∫ d−�

0
[W+ −W−]q dx1 +

8KII�x0

√
�

Etip
√
2

(35)

If the crack faces are traction-free, an expression for the strain energy density can be
obtained either according to the local co-ordinates (x1; x2), i.e. W =(�11�11)=2= (E(x1; x2)�211)=2
or to the global co-ordinates (X1; X2)

W = 1
2(�11�11 + �22�22 + �12�12) (36)

as used in the FEM implementation. The strain and stress values are evaluated directly (rather
than being smoothed from the element interiors) on the crack faces (S+

c and S−
c ) by computing

the strain–displacement matrix (B matrix) at those locations. Gauss quadrature along the
3-node line segments of the parent elements (T6, Q8) is used to integrate W . Such procedure
improves the accuracy of the numerical results.

5.2. Numerical aspects

Since the FEM computations of displacement, strain, stress, etc., are based on the global
co-ordinate system, the (J ∗

k )global is evaluated :rst and then transformed into (J ∗
k )local. The

quantity (Ĵ ∗
2 )local is introduced from Equation (35) as

(Ĵ ∗
2 )local ≈

∫
A
[�ijui;2 −W�2j]

@q
@xj

dA−
∫
A
(W;2)q dA−

∫ d−�

0
[W+ −W−]q dx1 (37)

so that

(J ∗
2 )local = (Ĵ ∗

2 )local +
8KII�x0

√
�

Etip
√
2

(38)

The relation among the two components of the J ∗
k -integral and the mode I and mode II

SIFs is established for plane stress as

(J ∗
1 )local =

K2
I + K2

II

Etip
(39)

(J ∗
2 )local =

−2KIKII

Etip
(40)

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:1903–1935



FUNCTIONALLY GRADED MATERIALS 1915

For plane strain, the Young’s modulus at the crack tip Etip must be divided by (1 − �2tip),
where �tip denotes the Poisson’s ratio at the crack tip. Upon examining Equations (38) and
(40), it follows that

(Ĵ ∗
2 )local =−2KIKII

Etip
− 8KII�x0

√
�

Etip
√
2

(41)

The above expressions are represented by the local co-ordinates xk , which can be expressed
in terms of the global co-ordinates Xi by the usual transformation

xi = -ij(
)Xj; -ij(
)=
[

cos 
 sin 

− sin 
 cos 


]
(42)

The same transformation also holds for the J ∗
k integral, i.e.{

(J ∗
1 )local

(J ∗
2 )local

}
=

[
cos 
 sin 


− sin 
 cos 


]{
(J ∗

1 )global

(J ∗
2 )global

}
(43)

For the sake of numerical implementation by the FEM, Equation (25) is evaluated in global
co-ordinates. Thus

(J ∗
1 )global = (J̃ ∗

1 )global − R sin 
 (44)

(J ∗
2 )global = (J̃ ∗

2 )global + R cos 
 (45)

where R is given by Equation (26) and

(J̃ ∗
1 )global =

∫
A

[
�ij

@u
@X1

−W�1j

]
@q
@Xj

dA−
∫
A

(
@W
@X1

)
q dA (46)

(J̃ ∗
2 )global =

∫
A

[
�ij

@u
@X2

−W�2j

]
@q
@Xj

dA−
∫
A

(
@W
@X2

)
q dA (47)

The de:ned quantities (J̃ ∗
1 )global (Equation (46)) and (J̃ ∗

2 )global (Equation (47)) are computed
numerically to calculate (J ∗

1 )local according to the transformation given by Equation (43), i.e.

(J ∗
1 )local = (J̃ ∗

1 )global cos 
 + (J̃ ∗
2 )global sin 
 (48)

The quantity (Ĵ ∗
2 )local is computed using Equation (37), for two values of � (�1; �2). These

values of (Ĵ ∗
2 )local are called (Ĵ ∗

2 )�1 , and (Ĵ ∗
2 )�2 . Therefore, from Equation (41), one obtains

(Ĵ ∗
2 )�1 =−2KIKII

Etip
− 8KII�x0

√
�1

Etip
√
2

(49)

(Ĵ ∗
2 )�2 =−2KIKII

Etip
− 8KII�x0

√
�2

Etip
√
2

(50)
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Once (J ∗
1 )local, (Ĵ

∗
2 )�1, and (Ĵ ∗

2 )�2 have been computed numerically, Equations (39), (49), and
(50) can be solved for KI, KII, and �x0. The solution is accomplished as follows:

−2KIKII

Etip
= (J ∗

2 )local =
(Ĵ ∗

2 )�1
√
�2 − (Ĵ ∗

2 )�2
√
�1√

�2 −
√
�1

(51)

− 8KII�x0

Etip
√
2

= S =
(Ĵ ∗

2 )�2 − (Ĵ ∗
2 )�1√

�2 −
√
�1

(52)

Then

KI =±

Etip(J ∗

1 )local
2


1±

(
1−

(
(J ∗

2 )local
(J ∗

1 )local

)2)1=2


1=2

(53)

KII =±

Etip(J ∗

1 )local
2


1∓

(
1−

(
(J ∗

2 )local
(J ∗

1 )local

)2)1=2


1=2

(54)

The signs of KI and KII are determined by checking the magnitudes of the crack opening
and sliding displacements near the crack tip. Such displacements are de:ned by

PI = u+
2 − u−2 and PII = u+

1 − u−1 (55)

where, as before, the (+) and (−) refer to the upper and lower crack faces, respectively. The
signs of KI and KII correspond to the signs of PI and PII, respectively. The sign of the term
within the braces [·] in Equations (53) and (54) is determined by checking the following
conditions:

If |PI|¿ |PII| take [+] (56)

If |PI|¡ |PII| take [−] (57)

Finally,

�x0 =−
√
2EtipS
8KII

(58)

The feasibility of the procedure explained above is illustrated in the section on numerical
examples.

6. FINITE ELEMENT IMPLEMENTATION

The public domain FEM code FRANC2D (FRacture ANalysis Code 2D) [36; 37] has been
used as the basic framework for implementing fracture capabilities in FGMs. It is worth
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mentioning that the source code of FRANC2D is fully available—thus it is not a ‘black
box’ (such as most commercial software), and this availability makes the code well suited
for research investigations and for new developments. The code with extended capabilities
for fracture of FGMs is called FGM FRANC2D (Functionally Graded Material—FRacture
ANalysis Code 2D). It considers spatial changes in material properties and special techniques
to evaluate SIFs in FGMs such as J ∗

k -integral, MCC and DCT, which were discussed in
previous sections. The :nite element sti=ness equations can be written as [38]

keue =Fe (59)

with

ke =
∫
Te

BeTDe(x)Be dTe (60)

where ue is the nodal displacement vector, Fe is the load vector, Be is the strain–displacement
matrix which contains gradients of the interpolating functions, De(x) is the constitutive matrix,
and Te is the domain of element (e). In the present work, the elasticity matrix De(x)=
De(x1; x2) is assumed to be a function of spatial co-ordinates.

Two alternative approaches for graded elements have been considered and implemented:
generalized isoparametric formulation and direct Gaussian integration. The quality of the
graded elements has been investigated by Paulino and Kim [39] within the context of the
weak patch test.

6.1. Generalized isoparametric formulation

In a standard parametric :nite element formulation, displacements and co-ordinates are inter-
polated from the element nodal values. Similarly, material properties can also be interpolated
from the element nodal values using shape functions. The general approach is illustrated as
follows:

Displacements (u; v): e:g: u=
∑
i
Niui (61)

Co-ordinates (x; y): e:g: x=
∑
i
Ñixi (62)

Material properties (E; �): E=
∑
i

QNiEi; �=
∑
i
N̂i�i (63)

where Ni; Ñi; QNi, and N̂i are shape functions corresponding to node i, and the summation
is done over the element nodal points. Since the element formulation adopted here is fully
isoparametric, then

N= Ñ= QN= N̂ (64)

In this approach, material properties at each Gaussian integration point are interpolated from
the nodal material properties of the element using isoparametric shape functions, which are
the same for spatial co-ordinates and displacements.
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6.2. Direct Gaussian integration formulation

The integral in Equation (60) is evaluated by Gaussian quadrature, and the matrix De(x) is
speci:ed at each Gaussian integration point. Thus, for 2D problems, the resulting integral
becomes

ke =
n∑

i=1

n∑
j=1
BeT

ij D
e
ij B

e
ij Jij wi wj (65)

where the subscripts i and j refer to the Gaussian integration points, Jij is the determinant of
the Jacobian matrix, and wi are the Gaussian weights.

7. COMPUTATIONAL RESULTS

One of the goals of this paper is to examine, by means of computational experiments, the
elastic stress analysis for FGMs and the performance of the DCT, MCC, and J ∗

k -integral
methods for extracting SIFs in FGMs. In order to assess the various features of these methods,
the following examples are presented:

(1) Edge crack in a plate.
(2) Slanted crack in a plate.
(3) Three-Point bending specimen with crack perpendicular to material gradation.
(4) Three-Point bending specimen with crack parallel to material gradation.
(5) Plate with an interior inclined crack.
(6) Multiple interacting cracks.

This set of problems comprise a severe test of the FEM code and the methods presented
for evaluation of SIFs in FGMs. For quadratic (present work) and higher order elements,
the two approaches discussed above (generalized isoparametric and direct Gaussian integra-
tion) are nearly equivalent. All the above problems have either experimental, numerical (e.g.
:nite element) or (semi-) analytical solutions available. Thus the results obtained with the
FGM FRANC2D code are compared against those available solutions.

7.1. Edge crack in a plate

Figure 6(a) shows an edge crack of length a located in a :nite two-dimensional strip. Figures
6(b) and 6(c) show applied tension and bending loads, respectively, and Figure 6(d) shows
a detail of the FEM mesh around the crack tip. The crack tip element size is Pa= a=32.
This example was originally proposed by Erdogan and Wu [40], and it is one of the few
theoretical fracture solutions available for a :nite width FGM. The applied loading corresponds
to �22(x1; ± 4)=± 1:0 for tension, and �22(x1; ± 4)=± (−2x1 + 1) for bending. This stress
distribution was obtained by applying nodal forces along the top and bottom edges of the mesh.
The displacement boundary condition is prescribed such that u2 = 0 in the region a6x161
along the x2 = 0 line and, in addition, u1 = 0 for the node at the right-hand side (see Figure
6(a)).

Young’s modulus is an exponential function of x1, i.e. E(x1)=E1e3x1 , while Poisson’s
ratio is constant. The modulus variation, E(x1), is characterized by two parameters which
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Figure 6. Con:gurations for edge cracked plate: (a) geometry and BCs; (b) tension
loading; (c) bending loading; (d) detail of the FEM mesh around the crack tip showing

eight sectors and :ve rings of elements.
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Figure 7. Stress distribution for uncracked strip under tension. Present (FEM) results are represented
by data points. Erdogan and Wu’s [40] results are represented by curved lines.

Figure 8. Stress distribution for uncracked strip under bending. Present (FEM) results are represented
by data points. Erdogan and Wu’s [40] results are represented by curved lines.

are selected to be E1 =E(0) and E2 =E(1) giving 3= log(E2=E1). Eight-node serendipity
elements (Q8) were used over most of the mesh, while around the crack tip, quarter-point
six-node triangles (T6qp) were used. The typical mesh has 803 Q8, 124 T6 with a total of
927 elements and 2855 nodes. The following data were used for the :nite element analysis:
a=W = 0:2; 0:3; 0:4; 0:5; 0:6;L=W = 8:0;E(x1) = E1e3x1 (E1 = 1);E2=E1 = (0:1; 0:2; 1:0; 5:0; 10:0);
� = 0:3; plane strain condition; and 2× 2 Gauss quadrature.

For the tension and bending loads, Figures 7 and 8 show a comparison of the stress
distributions in the uncracked plate between the FEM results and the analytical solution
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Table I. Normalized stress intensity factors for edge cracked plate under tension.

a=W

Method E2=E1 0.2 0.3 0.4 0.5 0.6

Erdogan 0.1 1.296 1.858 2.569 3.570 5.188
and Wu [40] 0.2 1.395 1.839 2.443 3.326 4.761

1 N=A N=A N=A N=A N=A
5 1.131 1.369 1.748 2.365 3.445

10 1.001 1.229 1.588 2.176 3.212

Chen et al. [41] 0.1 1.366 1.926 2.658 3.666 5.243
0.2 1.455 1.897 2.529 3.443 4.926
1 1.408 1.698 2.178 2.933 4.237
5 1.158 1.392 1.794 2.446 3.611

10 1.032 1.249 1.614 2.223 3.337

MCC 0.1 1.280 1.832 2.523 3.470 4.921
0.2 1.380 1.818 2.411 3.268 4.632
1 1.358 1.649 2.097 2.806 4.005
5 1.129 1.371 1.744 2.360 3.437

10 1.001 1.234 1.582 2.174 3.207

J ∗
1 ≡ J ∗ 0.1 1.284 1.846 2.544 3.496 4.962

0.2 1.390 1.831 2.431 3.292 4.669
1 1.358 1.658 2.110 2.822 4.030
5 1.132 1.370 1.749 2.366 3.448

10 1.003 1.228 1.588 2.175 3.212

DCT 0.1 1.298 1.847 2.543 3.489 4.934
0.2 1.396 1.832 2.429 3.286 4.644
1 1.368 1.658 2.108 2.815 4.010
5 1.132 1.366 1.744 2.375 3.426

10 1.001 1.225 1.583 2.166 3.190

by Erdogan and Wu [40] (using strength of materials concepts). These :gures show that
both results agree within plotting accuracy. Thus such excellent results validate the present
FEM implementation for elastic FGMs. Tables I and II compare the normalized SIFs for
those two loading cases computed using DCT, MCC, and J ∗

k -integral with those reported
by Erdogan and Wu [40] and Chen et al. [41]. Using Erdogan and Wu’s [40] results as
reference, we observe that the J ∗

k -integral method best estimates the Mode I SIFs for the
mesh discretization of Figure 6. Moreover, for the exponential material variation used in
this example, the explicit derivative of the strain energy density is (W;1 )expl=3W. Also the
MCC and DCT show very good performance. However, the results by Chen et al. [41],
using the element free Galerkin (EFG) method [42], are worse than ours, using the FEM
(see Table I). Chen et al. [41] have discretized the plate (symmetric portion) with 617
nodes and they have also considered the explicit derivative term in the J ∗

1 -integral (see
Equation (29)).
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Table II. Normalized stress intensity factors for edge cracked plate under bending.

a=W

Method E2=E1 0.2 0.3 0.4 0.5 0.6

Erdogan 0.1 1.904 1.885 1.977 2.215 2.717
and Wu [40] 0.2 1.595 1.612 1.721 1.953 2.403

1 N=A N=A N=A N=A N=A
5 0.687 0.777 0.923 1.151 1.559

10 0.564 0.658 0.804 1.035 1.428

MCC 0.1 1.873 1.850 1.927 2.128 2.532
0.2 1.575 1.590 1.693 1.910 2.322
1 1.048 1.116 1.252 1.487 1.901
5 0.685 0.776 0.921 1.156 1.557

10 0.564 0.658 0.803 1.033 1.426

J ∗
1 ≡ J ∗ 0.1 1.888 1.864 1.943 2.145 2.553

0.2 1.588 1.601 1.706 1.925 2.341
1 1.055 1.122 1.260 1.496 1.913
5 0.687 0.778 0.924 1.158 1.561

10 0.565 0.659 0.804 1.035 1.429

DCT 0.1 1.880 1.855 1.930 2.127 2.536
0.2 1.583 1.596 1.697 1.911 2.327
1 1.053 1.120 1.256 1.488 1.903
5 0.686 0.757 0.920 1.152 1.553

10 0.564 0.656 0.800 1.028 1.421

7.2. Slanted crack in a plate

The slanted crack in a two-dimensional elastic body provides a mixed-mode loading situation
which requires computation of both J ∗

1 and J ∗
2 in order to determine the SIFs. Figure 9(a)

shows a slanted crack in a :nite two-dimensional plate with three integration contours, and
Figure 9(b) shows the mesh discretization, which is the same as the one adopted by Eischen
[15], who proposed this problem. The applied load is prescribed along the upper edge with
normal stress �22(x1; 1)= Q� QEe3(x1−0:5) where Q�=1. The displacement boundary condition is
speci:ed such that u2 = 0 along the lower edge and, in addition, u1 = 0 for the node at the
right-hand side.

The Young’s modulus varies according to E(x1)= QEe3(x1−0:5), where QE=1:0; 3a=0:4
√
2,

and the Poisson’s ratio is assumed to be constant. Eight-node serendipity quadrilateral
elements (Q8) were used over most of the mesh, while near the crack tip quarter-point
six-node triangles (T6qp) were utilized. The mesh has 97 Q8, 38 T6 with a total of 135
elements and 412 nodes. The following data were used for the :nite element analysis:
a=W =0:4

√
2; L=W =2:0; E=1:0; �=0:3; generalized plane stress; and 2× 2 Gauss quadra-

ture. Table III shows a comparison of the normalized SIFs and non-singular stress component
using regions 2 and 3 (see Figure 9) with those obtained by Eischen [15]. The integration
regions 2 and 3 provide the same converged SIFs. The results in Table III indicate resonably
good agreement between ours and Eischen’s [15] solution for this problem.
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Figure 9. Slanted crack plate con:guration: (a) geometry, BCs, J ∗
k -integral parameters (�1; �2) and

integration regions 1–3; (b) FEM mesh (same as the mesh used by Eischen [15]).

Table III. Normalized SIF and non-singular stress component for FGM slanted crack plate
(a=W =0:4

√
2; L=W =2:0).

Present results (J ∗
k -Integral) Eischen [15]

3a KI= Q� QE
√
a KII= Q� QE

√
a �x0= Q� QE KI= Q� QE

√
a KII= Q� QE

√
a �x0= Q� QE

0.00 1.451 0.604 0.796 1.438 0.605 0.822
0.10 1.396 0.579 0.769 N=A N=A N=A
0.25 1.316 0.544 0.731 N=A N=A N=A
0.50 1.196 0.491 0.673 N=A N=A N=A
0.75 1.089 0.443 0.620 N=A N=A N=A
1.00 0.993 0.402 0.572 0.984 0.395 0.588

7.3. Three-point bending specimen with crack perpendicular to material gradation

Marur and Tippur [43] have fabricated FGM specimens using gravity assisted casting technique
with two-part slow curing epoxy and uncoated solid glass sphere :llers. They have also
analysed a three-point bending specimen with a crack normal to the elastic gradient using
both experimental (static fracture tests) and numerical (FEM) techniques [18]. Figure 10(a)
shows the specimen geometry and BCs. Figure 10(b) shows linear variation of Young’s
modulus in the material gradient region from 10.79 to 3:49 GPa, and linear variation of
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Figure 10. Three-point bending specimen with crack perpendicular to the material gradation: (a) speci-
men geometry (length in mm); (b) variation of Young’s modulus and Poisson’s ratio.

Poisson’s ratio from 0.348 for epoxy side to 0.282 for glass-rich side. Figure 11(a) shows
the global FEM mesh con:guration, and Figure 11(b) shows a detail of the mesh using 16
sectors around the crack tip. Marur and Tippur [18] used the experimental strain data to
compute |K |=0:65 MPa

√
m and  =−3:45◦, while their FEM results are |K|=0:59MPa

√
m

and  =−3:24◦, where  = tan−1(KII=KI) is the mode-mixity parameter. These numerical
results, together with the present ones using MCC, DCT, and J ∗

k -integral, are reported in
Table IV.

7.4. Three-point bending specimen with crack parallel to material gradation

Figure 12 shows the three-point bending specimen geometry and BCs. Figure 13(a) shows
the global FEM mesh con:guration, and Figure 13(b) shows a detail around the crack tip.
The variation of Young’s modulus in the material gradient region is linear and the Poisson’s
ratio is constant. If the origin of the Cartesian co-ordinates is located at the centre of the
specimen and the x2-axis is along the thickness direction, the Young’s modulus is expressed
by E(x2)=Ax2 + B, where A=(E2 − E1)=2h, and B=(E2 + E1)=2.
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Figure 11. Finite element mesh for three-point bending specimen with crack perpen-
dicular to the material gradation: (a) :nite element mesh; (b) detail around the crack

tip showing 16 sectors and four rings of elements.

Table IV. FEM SIFs for three-point bending specimen with crack perpen-
dicular to material gradation.

Present results

Parameters MCC J ∗
k -integral DCT Marur and Tippur [18]

KI 0.557 0.557 0.558 0.589
KII −0:028 −0:026 −0:026 −0:033
|K| 0.5575 0.5576 0.5580 0.59
 −2:87◦ −2:67◦ −2:64◦ −3:24◦

Table V shows the solution for Mode I SIFs corresponding to crack tip position in the
FGM for linear material variation, where h=H =0:1. All the three methods provide consistent
results with respect to each other and agree well with the results presented by Gu et al. [16]
in graphic form.

7.5. Plate with an interior inclined crack

Figure 14 shows an interior inclined crack of length 2a located with angle 
 in a :nite
two-dimensional plate, and Figure 15 shows mesh con:gurations with various crack slopes
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Figure 12. Single edge notched bend (SENB) specimen with crack parallel to material gradation.

Figure 13. Finite element mesh for three point bending specimen with crack parallel
to the material gradation: (a) :nite element mesh; (b) detail around the crack tip

showing eight sectors and :ve rings of elements.

measured clockwise. Konda and Erdogan [44] have investigated an in:nite plate with such a
con:guration. The applied load corresponds to �22(x1; 10)= Q� QEe3x1 , and such stress distribution
was obtained by applying nodal forces along the top edge of the mesh. The displacement
boundary condition is prescribed such that u2 = 0 along the lower edge and, in addition,
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Table V. Normalized SIFs for three-point bending specimen with crack parallel to material
gradation (h=H =0:1).

KI
√
H=P (a=4:5) KI

√
H=P (a=5:0) KI

√
H=P (a=5:5)

E2=E1 MCC J ∗
k -int DCT MCC J ∗

k -int DCT MCC J ∗
k -int DCT

0.05 32.66 33.04 32.57 30.72 31.12 31.01 14.98 15.21 15.18
0.1 23.23 23.47 23.18 23.47 23.92 23.79 13.66 13.73 13.76
0.2 17.18 17.36 17.18 18.01 18.32 18.24 12.65 12.79 12.71
0.5 11.54 11.65 11.55 12.42 12.57 12.52 11.65 11.76 11.69
1 8.072 8.134 8.069 9.398 9.467 9.413 11.05 11.15 11.09
2 5.198 5.239 5.185 7.296 7.318 7.258 10.53 10.62 10.56
5 2.526 2.540 2.497 5.502 5.496 5.438 9.878 9.963 9.903
10 1.327 1.334 1.294 4.606 4.586 4.543 9.427 9.505 9.451
20 0.652 0.660 0.620 3.980 3.939 3.924 9.049 9.123 9.073

Figure 14. Plate with an inclined crack in which the angle 
 is measured clockwise (cw) with respect
to the Cartesian axes. The shaded area illustrates a typical region used for the EDI computation of J ∗

k .

u1 = 0 for the node at the left-hand side. This loading results in a uniform strain �11(x1; x2)= Q�
in a corresponding uncracked structure.

Young’s modulus is an exponential function of x1, while Poisson’s ratio is constant. Eight-
node serendipity elements (Q8) were used over most of the mesh, while at each crack tip,
quarter-point six-node triangles (T6qp) were used. The following data were used for the
FEM analysis: a=W =0:1; L=W =1:0; E(x1)= QEe3x1 ; QE=1:0; 
==(0; 0:1; 0:2; 0:3; 0:4; 0:5); 3a
=(0:25; 0:5); Q�=1:0; �=0:3; generalized plane stress; and 2× 2 Gauss quadrature. The
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characteristic length Pa (see Figure 2) was selected such that (�1; �2)= (a=18; a=9) for both
3a=0:25 and 3a=0:5. Tables VI and VII compare the normalized SIFs computed by using
the DCT, the J ∗

k -integral and the MCC with those reported by Konda and Erdogan [44]. The
selection of a typical region for the EDI computation of J ∗

k around the crack tip is illustrated
by the shaded portion of Figure 14.

It can be observed that for pure mode I, the J ∗
k -integral, the MCC, and the DCT provided

good results within 4 per cent errors. For mixed-mode conditions, the MCC best estimates
the SIFs within 6 per cent errors regardless of the choice of the characteristic lengths of the
:rst ring of elements around the crack tips. The DCT also best estimates the SIFs within
6 per cent errors providing better results as the characteristic length becomes smaller. The
J ∗
k -integral shows relatively good performance within 9 per cent errors for Pa= a=18 and
3a=0:25 (Table VI) or 3a=0:5 (Table VII). For Pa= a=9 and 3a=0:25 (Table VI) or
3a=0:5 (Table VII), the general performance of the J ∗

k method is also good, however, it
deteriorates as the crack approaches the vertical orientation, i.e. 
=→ 0:5 in Tables VI and
VII. Table VIII shows a comparison of the SIFs using J ∗

k -integral with eight (S8) and sixteen
(S16) sectors around the crack tips. The SIF results are similar to each other, indicating
convergence of the results with respect to the number of sectors (relevant for better resolution
of hoop stresses). It can also be observed that some numerical residuals were obtained for
the MCC with a horizontal crack (
=0◦) and the J ∗

k with a vertical crack (
=90◦), which
are indicated by an ∗ in the tables of results.

7.6. Multiple interacting cracks

Figure 16(a) shows two cracks of length 2a located with the angle 
i (
1 = 30◦; 
2 = 60◦)
in a :nite two-dimensional plate. Figure 16(b) shows the complete FEM mesh, and Figures
16(c) and 16(d) show details of the centre region and around crack tips, respectively. The
distance from the origin to the two crack tips is 1.0. Shbeeb et al. [45; 46] have provided semi-
analytical solutions for this example obtained with the integral equation method. However,
graphical results were given in their paper which makes accurate veri:cation diUcult. The
applied load corresponds to �22(x1;±10)= ±�0 = 1:0. This stress distribution was obtained by
applying nodal forces along the top edge of the mesh. The displacement boundary condition
is prescribed such that u2 = 0 along the lower edge and, in addition, u1 = 0 for the node
at the left-hand side. Young’s modulus is an exponential function of x2, while Poisson’s
ratio is constant and is set to be zero in this numerical analysis. The actual value of the
Poisson’s ratio was not provided in the paper by Shbeeb et al. [46]. Eight-node serendip-
ity elements (Q8) were used over most of the mesh, while at each crack tip, quarter-point
six-node triangles (T6qp) were used. The mesh has 2287 Q8 and 214 T6 with a total
of 2501 elements and 7517 nodes. The following data were used for the :nite element
analysis: 2a=2 ; L=W =1:0; E(x2)= QEe3x2 ; QE=1:0 ; 3a=(0:0; 0:25; 0:5; 0:75; 1:0); �=0:0; gen-
eralized plane stress; and 2× 2 Gauss quadrature. With such geometrical con:guration, the
material property E can get out-of-bounds as the plate size increases. This occurs because
the non-homogeneity parameter 3 introduces a geometrical length scale in the problem. The
geometrical con:guration for this problem was adopted simply as a means to approximate the
in:nite plate as originally conceived by Shbeeb et al. [46].

Table IX shows a comparison of the normalized SIFs at two crack tips for the lower crack
with the angle 
=30◦ computed by using the DCT, MCC, the J ∗

k integral with those reported
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Figure 15. Mesh con:gurations with various crack slopes measured clockwise (cw): (a) 
 = 0◦;
(b) 
 = 18◦; (c) 
 = 36◦; (d) 
 = 54◦; (e) 
 = 72◦; and (f) 
 = 90◦.

by Shbeeb et al. [45; 46]. In this table KI(a−) and KI(a+) refer to the SIFs at the left and
right crack tips, respectively. Similar notation is adopted for KII. It can be observed that both
the DCT and J ∗

k -integral agree reasonably well with the results by Shbeeb et al. [46], and
the MCC best estimates the SIFs.
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Table VI. Normalized stress intensity factors (3a=0:25; K0 = QE Q�
√
a).

�1 =Pa Method 
= KI(a)=K0 KII(a)=K0 KI(−a)=K0 KII(−a)=K0

Konda and 0 1.196 0 0.825 0
Erdogan 0.1 1.081 −0:321 0.750 −0:254

N=A [44] 0.2 0.781 −0:514 0.548 −0:422
0.3 0.414 −0:504 0.290 −0:437
0.4 0.121 −0:304 0.075 −0:282
0.5 0 0 0 0

MCC 0 1.221 ≈ 0∗ 0.827 ≈ 0∗

0.1 1.101 −0:325 0.752 −0:250
0.2 0.789 −0:519 0.549 −0:416
0.3 0.414 −0:507 0.291 −0:432
0.4 0.117 −0:303 0.073 −0:277
0.5 0 0 0 0

J ∗
k -integral 0 1.220 0 0.840 0

0.1 1.106 −0:315 0.769 −0:239
a=9 0.2 0.810 −0:494 0.582 −0:390

0.3 0.404 −0:523 0.297 −0:439
0.4 0.135 −0:304 0.097 −0:280
0.5 ≈ 0∗ 0 ≈ 0∗ 0

DCT 0 1.235 0 0.854 0
0.1 1.140 −0:312 0.775 −0:248
0.2 0.802 −0:499 0.565 −0:412
0.3 0.423 −0:489 0.297 −0:425
0.4 0.122 −0:293 0.075 −0:272
0.5 0 0 0 0

MCC 0 1.217 ≈ 0∗ 0.830 ≈ 0∗

0.1 1.098 −0:324 0.754 −0:252
0.2 0.788 −0:516 0.551 −0:417
0.3 0.414 −0:504 0.291 −0:432
0.4 0.119 −0:302 0.075 −0:277
0.5 0 0 0 0

J ∗
k -integral 0 1.220 0 0.840 0

0.1 1.106 −0:317 0.767 −0:246
a=18 0.2 0.812 −0:492 0.578 −0:396

0.3 0.390 −0:534 0.282 −0:449
0.4 0.120 −0:311 0.079 −0:286
0.5 ≈ 0∗ 0 ≈ 0∗ 0

DCT 0 1.227 0 0.845 0
0.1 1.107 −0:310 0.768 −0:245
0.2 0.796 −0:496 0.560 −0:407
0.3 0.420 −0:485 0.295 −0:420
0.4 0.121 −0:291 0.075 −0:269
0.5 0 0 0 0

∗Numerical residual.
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Table VII. Normalized stress intensity factors (3a=0:5; K0 = QE Q�
√
a).

�1 =Pa Method 
= KI(a)=K0 KII(a)=K0 KI(−a)=K0 KII(−a)=K0

Konda and 0 1.424 0 0.674 0
Erdogan 0.1 1.285 −0:344 0.617 −0:213

N=A [44] 0.2 0.925 −0:548 0.460 −0:365
0.3 0.490 −0:532 0.247 −0:397
0.4 0.146 −0:314 0.059 −0:269
0.5 0 0 0 0

MCC 0 1.458 ≈ 0∗ 0.664 ≈ 0∗

0.1 1.310 −0:353 0.608 −0:207
0.2 0.933 −0:558 0.454 −0:355
0.3 0.487 −0:536 0.244 −0:386
0.4 0.142 −0:312 0.059 −0:262
0.5 0 0 0 0

J ∗
k -integral 0 1.446 0 0.679 0

0.1 1.306 −0:341 0.628 −0:195
a=9 0.2 0.944 −0:534 0.488 −0:329

0.3 0.461 −0:563 0.256 −0:392
0.4 0.156 −0:314 0.083 −0:265
0.5 ≈ 0∗ 0 ≈ 0∗ 0

DCT 0 1.461 0 0.693 0
0.1 1.315 −0:333 0.633 −0:209
0.2 0.943 −0:529 0.469 −0:356
0.3 0.498 −0:512 0.249 −0:384
0.4 0.148 −0:301 0.058 −0:258
0.5 0 0 0 0

MCC 0 1.448 ≈ 0∗ 0.669 ≈ 0∗

0.1 1.302 −0:350 0.612 −0:209
0.2 0.929 −0:552 0.456 −0:357
0.3 0.487 −0:531 0.245 −0:388
0.4 0.143 −0:310 0.059 −0:262
0.5 0 0 0 0

J ∗
k -integral 0 1.446 0 0.679 0

0.1 1.306 −0:341 0.625 −0:203
a=18 0.2 0.946 −0:531 0.483 −0:337

0.3 0.446 −0:576 0.240 −0:402
0.4 0.142 −0:321 0.064 −0:270
0.5 ≈ 0∗ 0 ≈ 0∗ 0

DCT 0 1.453 0 0.686 0
0.1 1.308 −0:331 0.626 −0:205
0.2 0.937 −0:526 0.465 −0:351
0.3 0.494 −0:508 0.247 −0:379
0.4 0.146 −0:299 0.058 −0:255
0.5 0 0 0 0

∗Numerical residual.
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Table VIII. Comparison of normalized stress intensity factors for eight (S8) and 16 (S16)
sectors (3a=0:5; K0 = QE Q�

√
a).

�1 =Pa Method 
= KI(a)=K0 KII(a)=K0 KI(−a)=K0 KII(−a)=K0

Konda and 0 1.424 0 0.674 0
Erdogan 0.1 1.285 −0:344 0.617 −0:213

N=A [44] 0.2 0.925 −0:548 0.460 −0:365
0.3 0.490 −0:532 0.247 −0:397
0.4 0.146 −0:314 0.059 −0:269
0.5 0 0 0 0

J ∗
k -integral 0 1.446 0 0.679 0

0.1 1.306 −0:341 0.625 −0:203
a=18 S8 0.2 0.946 −0:531 0.483 −0:337

0.3 0.446 −0:576 0.240 −0:402
0.4 0.142 −0:321 0.064 −0:270
0.5 ≈ 0∗ 0 ≈ 0∗ 0

J ∗
k -integral 0 1.453 0 0.684 0

0.1 1.306 −0:350 0.625 −0:211
a=18 S16 0.2 0.950 −0:526 0.481 −0:339

0.3 0.443 −0:579 0.244 −0:400
0.4 0.149 −0:318 0.065 −0:270
0.5 ≈ 0∗ 0 ≈ 0∗ 0

∗Numerical residual.

Table IX. Normalized stress intensity factors for lower crack (K0 = �22
√
a).

Method 3 KI(a−)=K0 KII(a−)=K0 KI(a+)=K0 KII(a+)=K0

Shbeeb et al. 0.0 0.59 0.43 0.78 0.42
[46] 0.25 0.62 0.39 0.82 0.48
(Approximate) 0.5 0.66 0.36 0.88 0.57

0.75 0.69 0.34 0.98 0.685
1.0 0.70 0.315 1.10 N=A

MCC 0.0 0.589 0.423 0.804 0.408
0.25 0.626 0.385 0.816 0.474
0.5 0.662 0.346 0.842 0.546
0.75 0.696 0.312 0.880 0.625
1.0 0.715 0.277 0.930 0.709

J ∗
k -integral 0.0 0.603 0.431 0.801 0.431

0.25 0.627 0.401 0.811 0.495
0.5 0.662 0.363 0.841 0.558
0.75 0.692 0.347 0.895 0.617
1.0 0.734 0.298 0.985 0.663

DCT 0.0 0.598 0.413 0.812 0.399
0.25 0.632 0.375 0.818 0.463
0.5 0.672 0.336 0.838 0.533
0.75 0.712 0.302 0.869 0.610
1.0 0.747 0.273 0.910 0.693
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Figure 16. Two interacting cracks in a plate: (a) geometry and BCs; (b) :nite element
mesh; (c) mesh detail of centre region; (d) mesh detail around crack tips showing

16 sectors and four rings of elements around each tip.

8. CONCLUSIONS AND EXTENSIONS

This paper presents a general purpose FEM formulation and implementation for linearly elastic
FGMs and for fracture of FGMs considering mixed-mode cracks. The displacement correlation
technique (DCT), the modi:ed crack closure (MCC) method and the J ∗

k -integral are inves-
tigated in the context of fracture of FGMs. In the present investigation, carefully designed
transition elements emanating from the crack tip region are used.

Extensive numerical results are presented, from which the following conclusions may be
drawn. In general, the J ∗

k -integral and the MCC method are superior to the DCT. For pure
mode I problem, the J ∗

k -integral and the MCC method provide almost the same results as
the DCT. For mixed-mode problems, the MCC provides accurate SIFs independent of the
choice of the characteristic length (�1 =Pa) for the :rst ring of elements around the crack
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tip. Within limits, the DCT provides better results as the characteristic length (�1) becomes
smaller. The J ∗

k -integral is sensitive to the choice of the characteristic length (�1) and it shows
good performance for �1 in the range a=24 (test results were not shown for this case) to a=18.

This work has presented reliable methods to evaluate SIFs in FGMs. Thus it o=ers room
for potential extension such as fracture analysis of orthotropic FGMs and mixed-mode crack
initiation and propagation in FGMs. These topics are currently being pursued by the authors.
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