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Green’s Functions and Boundary
Integral Analysis for Exponentially
Graded Materials: Heat
Conduction
Free space Green’s functions are derived for graded materials in which the the
conductivity varies exponentially in one coordinate. Closed-form expressions are obt
for the steady-state diffusion equation, in two and three dimensions. The correspo
boundary integral equation formulations for these problems are derived, and the th
dimensional case is solved numerically using a Galerkin approximation. The resu
test calculations are in excellent agreement with exact solutions and finite ele
simulations.@DOI: 10.1115/1.1485753#
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1 Introduction
Functionally graded materials~FGMs! are an important area o

materials science research, with potentially many important ap
cations, e.g., super-heat resistance materials for thermal ba
coatings and furnace liners, vehicle and personal body arm
electromagnetic sensors, and graded refractive index material
optical applications. In an ideal FGM, the material properties m
vary smoothly in one dimension~e.g., are constant in~x, y! but
vary with z!. As an example, having a smooth transition regi
between a pure metal and pure ceramic would result in a mat
that combines the desirable high temperature properties and
mal resistance of a ceramic, with the fracture toughness o
metal. Comprehensive reviews of current FGM research may
found in the articles by Hirai@1#, Markworth et al.@2# and Paulino
et al. @3#, and the book by Suresh and Mortensen@4#.

Computational analysis can be an effective method for des
ing specific FGM systems, and for understanding FGM behav
For homogeneous media, boundary integral equation meth
~e.g.,@5#! have been used extensively. However, the reformula
in terms of integral equations relies upon having, as eithe
closed form or a computable expression, a fundamental solu
~Green’s function! of the partial differential equation. Application
of the boundary integral technique has therefore been limi
almost exclusively, to homogeneous, or piecewise homogene
media.

The fundamental solutions traditionally employed in bound
integral analysis for homogeneous materials are ‘‘free spa
Green’s functions: They satisfy the appropriate differential eq
tion everywhere in space, except at the site where a point
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driving force is applied. Derivations for some of the basic Gree
functions can be found in@5,6#. There has also been work in th
direction of deriving Green’s functions for a general nonhomo
neous material~@7–11#!. Steady-state heat conduction with an a
bitrary spatially varying conductivity has recently been inves
gated ~@12,13#! and has generated some debate in the litera
~@14,15#!. In most cases, exact Green’s functions are only obtai
under certain restrictions.

In the present paper, we derive free space fundamental solu
for both the two-dimensional and three-dimensional FGM Lapla
equation, assuming that the thermal conductivity varies expon
tially. The corresponding boundary integral equation formulati
which turns out to be somewhat different from the homogene
media case, is also obtained, and numerical results based up
Galerkin approximation are presented. Relatively little attent
has been paid to obtaining Green’s functions for the special c
of graded materials: A Green’s function for a special type of el
todynamics problem was obtained by Vrettos@16#, and exponen-
tial grading was also considered in@11#. The two-dimensional
Green’s function results have appeared in conjunction with a c
vective heat transfer problem in ahomogeneousmaterial
~@17,18#!, and moreover@19# essentially contains the Green
functions derived herein~obtained in a different manner!. How-
ever, the analysis employed in this paper for heat conduction in
exponential FGM will carry over to the important case of elast
ity ~@20#!, and thus it is deemed useful to present this altern
derivation in detail.

This paper is organized as follows. The three-dimensio
Laplace equation is treated in Section 2.1, and the tw
dimensional case in Section 2.2. Section 3 discusses some
results from a Galerkin numerical implementation of the bound
integral formulation, and Section 4 contains some concluding
marks. Finally, in the Appendix it is shown that the integral equ
tions and Green’s functions can be suitably modified to allow
a Symmetric-Galerkin implementation. Complete formulas for
three-dimensional reformulated fundamental solutions and t
first and second derivatives, for the case that the thermal con
tivity is real, are also given in this Appendix.
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2 Green’s Functions
Steady-state isotropic heat conduction in a solid is governed

the equation

¹•~k¹f!50. (1)

Here f5f(x,y,z) is the temperature function, and w
assume the functionally graded material is defined by the ther
conductivity

k~x,y,z!5k~z!5k0e22iaz, (2)

wherea is real. This assumption of a purely imaginary expone
is apparently necessary for the derivation that follows. Howe
once the solution is obtained, it is readily seen to be valid for a
complexa. Substituting Eq.~2! into Eq. ~1!, one obtains that the
temperature satisfies

¹2f22iafz50, (3)

wherefz denotes the derivative with respect toz.
The Green’s function equation can be derived by construc

the integral equation corresponding to Eq.~3!. Following the stan-
dard procedure, Eq.~3! is multiplied by an arbitrary function
f (x,y,z)5 f (Q) and integrated over a bounded volumeV. Inte-
grating by parts, and denoting the boundary ofV by S, one ob-
tains

05E
V
f ~Q!~¹2f~Q!22iafz~Q!!dVQ .

5E
S
H f ~Q!

]

]n
f~Q!2f~Q!

]

]n
f ~Q!

22ianz~Q!f~Q! f ~Q!J dQ1E
V
f~Q!~¹2f ~Q!

12ia f z~Q!!dVQ , (4)

where n(Q)5(nx ,ny ,nz) is the unit outward normal forS. If
f (Q)5G(P,Q) satisfies the Green’s function equation~the ad-
joint to Eq. ~3!!

¹2G~P,Q!12iaGz~P,Q!52d~Q2P!, (5)

whered is the Dirac delta function, the remaining volume integ
becomes simply2f(P). Thus we obtain the governing bounda
integral equation

f~P!1E
S
f~Q!S ]

]n
G~P,Q!12ianzG~P,Q! DdQ

5E
S
G~P,Q!

]

]n
f~Q!dQ, (6)

which differs in form from the usual integral statements by t
presence of the additional term multiplyingf(Q). With obvious
changes~e.g., line integrals instead of surface integrals!, the above
equations are equally valid for two dimensions. We first derive
Green’s function for three dimensions.

2.1 Three Dimensions. Let f̂ (v) denote the Fourier trans
form of a functionF(Q),

f̂ ~v!5E
R3

F~Q!e2 i v"QdQ (7)

wherev5(vx ,vy ,vz) is the transform variable and the dot re
resents the inner product. Transforming Eq.~5! and solving for
Ĝ(v) ~the transform ofG with respect toQ!, yields

Ĝ~v!5
e2 i v"P

v212avz
, (8)
544 Õ Vol. 70, JULY 2003
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wherev25v"v. Applying the inverse transform, one obtains

G~P,Q!5
1

~2p!3 E
R3

ei v"~Q2P!

v212avz
dw, (9)

wheredw is shorthand for the three-dimensional differential e
ment, i.e.,dw5dvxdvydvz . Changing variables

vz→vz2a (10)

and settingR5Q2P, Rz5Qz2Pz , we obtain

G~P,Q!5
1

~2p!3 e2 iaRzE
R3

ei v"R

v22a2 dv, (11)

which can be conveniently split into two terms,

G~P,Q!5
e2 iaRz

~2p!3 F ER3

ei v"R

v2 dv1a2E
R3

ei v"R

v2~v22a2!
dvG .

(12)

The first integral is Eq.~9! with a50, and is therefore recognize
as the Green’s function for the Laplace equation~constant k!, the
point source potential:

e2 iaRz

~2p!3 E
R3

ei v"R

v2 dv5
e2 iaRz

4pr
, (13)

wherer 5iRi5iQ2Pi is the distance between the source po
P and the field pointQ.

To evaluate the second term in Eq.~12!, it is convenient to
employ spherical coordinates~r,u,c!, with, however, the axis de-
fining the polec50 taken as the directionR/r instead of the
z-axis ~see Fig. 1!. The integration limits are 0,r,`, 0<c
<p, and 0<u<2p; however, for the residue calculations to fo
low, it will be much more convenient to have2`,r,` and 0
<c<p/2. With the standard limits, the residue calculation mu
shift half-planes depending upon the sign of cos(c); more impor-
tantly, starting atr50 would force consideration of contour
along the imaginary axis, necessary to work with the imagin
part of the exponential. In comparison, ifr varies over the entire
real axis, a simple semicircle in the upper half-plane suffices.
this end,if the functionf satisfiesf (r,c)5 f (2r,p2c), then

E
0

`E
0

p

f ~r,c!dcdr

5E
0

`E
0

p/2

f ~r,c!dcdr1E
0

`E
p/2

p

f ~r,c!dcdr

5E
0

`E
0

p/2

f ~r,c!dcdr1E
0

`E
0

p/2

f ~r,p2c!dcdr

Fig. 1 Spherical coordinate system for evaluating the v
integral
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5E
0

`E
0

p/2

f ~r,c!dcdr1E
2`

0 E
0

p/2

f ~2r,p2c!dcdr

5E
2`

` E
0

p/2

f ~r,c!dcdr. (14)

It will turn out that the function to be integrated satisfies the abo
constraint, and thus the modified limits of integration forr andc
can be employed. As mentioned above, this greatly simplifies
residue procedures for ther integration.

Noting thatv"R5rr cos(c) and that, other than this exponen
tial, the integrand is a function ofv2 and independent ofu, this
second term therefore becomes

a2e2 iaRz

~2p!2 E
0

p/2

sin~c!dcE
2`

` eirr cos~c!

r22a2 dr. (15)

Using the contour shown in Fig. 2, ther integration is a
straightforward exercise in residue calculus, yielding

E
2`

` eirr cos~c!

r22a2 dr52
p

a
sin~ar cos~c!!. (16)

The final integration,

2
p

a E
0

p/2

sin~c!sin~ar cos~c!!dc, (17)

follows from a simple change of variables, and thus the sec
term is seen to be

e2 iaRz cos~ar !

4pr
2

e2 iaRz

4pr
. (18)

Including Eq.~13!, we find the simple result

G~P,Q!5
e2 iaRz cos~ar !

4pr
. (19)

Although this result was derived assuming thata is real, it is a
simple matter to check by direct calculation that Eq.~19! satisfies
Eq. ~5! for any complexa. It is useful, especially for the discus
sion of the two-dimensional case that follows, to observe that

G~P,Q!5e2 iaRz
e2 iar

4pr
(20)

is an equally valid solution of Eq.~5! for a real. Moreover, the
added sin(ar)/r term is regular asr→0, and thus does not alter th
delta function atQ5P. Replacinga by ib0 , whereb0 is real, we
obtain

Fig. 2 Contour in the complex plane used to compute the r
integration
Journal of Applied Mechanics
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G~P,Q!5
eb0~r 1Rz!

4pr
(21)

as the Green’s function fork(z)5e2b0z.
In the derivation of the boundary integral equation, a sphereS«

of radius« centered at the interior pointP would be removed from
V, and the integration overS would include the surface of this
sphere. The limit as«→0 of the integral

E
S«

H G~P,Q!
]

]n
f~Q!2f~Q!

]

]n
G~P,Q!

22ia~f~Q!G~P,Q!!nzJ dQ (22)

must therefore be considered. However, forr→0,

]

]n
G~P,Q!'

]

]n

1

4pr
(23)

and the«50 limit does indeed produce the correct value2f(P).
Finally, it is useful to note that Eq.~18! can, from the point of

view of the singularity atr 50, be considered as a remainder ter
That is, the singularity for the FGM Green’s function is entire
contained within Eq.~13!, the homogeneous steady-state solutio
as Eq.~18! is regular atr 50.

2.2 Two Dimensions. The Green’s function
g(xQ ,zQ ;xP ,zP) for the two-dimensional equation,

fxx1fzz22iafz50, (24)

is expected to behave as log(r), and as this function does not di
off at infinity, the above Fourier transform approach is doomed
fail. However, this fundamental solution can be viewed as
response seen at the point (xQ,0,zQ) to a uniform distribution of
charge along they-axis. This response should be the result
integrating the three-dimensional Green’s function over this a
which for the homogeneous case takes the form

1

4p E
2`

` dyP

~~xQ2xP!21yP
2 1~zQ2zP!2!1/2. (25)

The fact that the integral doesn’t exist is a minor inconvenien
that is remedied by doing the analysis for]G/]xQ ~@21#!. The
integral of this function with respect toyP does exist, and fol-
lowed by an integration overxQ , the correct log(r) result is ob-
tained, wherer is now the two-dimensional distance.

With this framework in mind, we observe that the thre
dimensional functionally graded material~FGM! Green’s func-
tion, in the form of Eq.~20!, is e2 iaRz times the fundamenta
solution for the Helmholtz Eq.~3!. Since this prefactor is indepen
dent of yP , integrating out this coordinate as in Eq.~25!, we
expect that the two-dimensional FGM Green’s function is giv
by

g~xQ ,zQ ;xP ,zP!5
i

4
e2 iaRzH0

1~ar !. (26)

Here,H0
1 is the zeroth-order first kind Hankel function~@22#!, well

known to be the solution of the Helmholtz equation in two dime
sions. This expectation can be established simply by differen
ing Eq. ~26! and checking that

gxx1gzz12iagz50, (27)

for QÞP ~this is the two-dimensional analogue of the Gree
function equation, Eq.~5!!. That this differentiation also yields a
delta function atQ5P follows from the known behavior ofH0

1

for the Helmholtz equation. Finally, it should be noted that t
two-dimensional boundary integral equation becomes
JULY 2003, Vol. 70 Õ 545
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f~P!1E
S
f~Q!S ]

]n
g~P,Q!12ianzg~P,Q! DdQ

5E
S
g~P,Q!

]

]n
f~Q!dQ, (28)

which corresponds to Eq.~6! with G(P,Q) ~three-dimensional
case! replaced byg(P,Q) ~two-dimensional case!.

2.3 Extensions. As it may be useful to have the materi
properties vary in more than one component~@23#!, it is worth
noting that the above analysis extends to a more general expo
tial variation for k,

k~x,y,z!5k0e22i a"Q, (29)

where a5(ax ,ay ,az). The three-dimensional Green’s functio
is now given by

Gxyz~P,Q!5
e2 i a"R cos~~a"a!r !

4pr
. (30)

Comparing this with Eq.~19!, it is not surprising that the two-
dimensional result in this case~again dropping out the
y-coordinate! becomes

gxz~xQ ,zQ ;xP ,zP!5
i

4
e2 i a"RH0

1~~a"a!r !. (31)

2.4 Galerkin Approximation. The numerical results pre
sented in the next section utilize the Galerkin approximation~@5#!
to reduce the integral equation to a finite system of equatio
Here we briefly review this technique, starting by rewriting E
~6! as

P~P![f~P!1E
S
f~Q!S ]

]n
G~P,Q!12ianzG~P,Q! DdQ

2E
S
G~P,Q!

]

]n
f~Q!dQ50. (32)

As is usual, basis shape functionsc j (Q) are used to interpolate
the boundary from the element nodal coordinates, and to appr
mate the surface potential and flux in terms of nodal values,

S~h,j!5(
j

~xj ,yj ,zj !c j~h,j!

f~Q!5(
j

f jc j~Q! (33)

]f

]n
~Q!5(

j
S ]f

]n D
j

c j~Q!.

The numerical results reported herein employ a six-noded q
dratic triangular element, defined using the right triangle para
eter space~h, j!, h>0, j>0, h1j<1. The shape functions ar
given by

c1~h,j!5~12h2j!~122h22j! c4~h,j!54h~12h2j!

c2~h,j!5h~2h21! c5~h,j!54hj (34)

c3~h,j!5j~2j21! c6~h,j!54j~12h2j!.

In a Galerkin approximation, these shape functions are emplo
as weighting functions for enforcing Eq.~32! ‘‘on average,’’ i.e.,

E
S
ck~P!E

S
P~P!dP50. (35)

When the approximations in Eq.~33! are incorporated into this
equation, the resulting finite system of equations can be
cretized and solved numerically.
546 Õ Vol. 70, JULY 2003
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It should also be noted that, unlike the Green’s functi
1/(4pr ) for the Laplace equation~homogeneous problem!, nei-
ther Eq.~20! nor Eq.~26! is a symmetric function ofP andQ. It
would therefore appear impossible to have a symmetric-Gale
approximation~@24–28#!, as this formulation demands a symme
ric Green’s function. However, as shown in the Appendix, a slig
reworking of the equations and the kernel functions restores a
the necessary symmetry properties. This Appendix also prov
formulas for all of the kernel functions: temperature and fl
equations in two and three dimensions.

3 Numerical Examples
The three-dimensional steady-state fundamental solution

been incorporated into a boundary element method~BEM! algo-
rithm. As noted above, the integral Eq.~6! is numerically approxi-
mated via the~nonsymmetric! Galerkin method~see Eq.~35!!,
together with standard six-node isoparametric quadratic triang
elements to interpolate the boundary and boundary functions.
the numerical examples, the conservation Eq.~1! will be taken as
energy conservation in a functionally graded media under the c
dition of steady-state heat conduction without volumetric gene
tion. To validate the numerical implementation, solutions to t
test problems are presented below: In the first, the domain
simple cube and the exact solution is known; the second invo
a curved geometry which may be more representative of an ac
systems component.

3.1 Unit Cube: Linear Heat Flux. For the first example
problem, the geometry is a unit cube with the origin of a Cartes
system fixed at one corner. The thermal conductivity in this
ample is taken to be

k~z!5k0e2bz55e3z. (36)

The cube is insulated on the faces@y50# and @y51#, while
uniform heat fluxes of 5000@POWER/AREA# are added and re
moved, respectively, at the@x51# and@x50# faces. In addition,
the @z50# face is specified to have anx-dependent temperatur
distribution T51000 x deg and at@z51# a normal heat flux of
q515000x is removed. The analytic solution for this problem

T51000xe23z

q525000î115000xk̂ (37)

where î is a unit vector in thex-direction.
The results of the numerical simulations for the temperat

distributions along an edge are shown in Fig. 3. The plot a
includes the results obtained from a finite element method~FEM!
simulation using a commercial package. In the FEM simulati

Fig. 3 Temperature distribution in the functionally graded
material „FGM… unit cube along the edge †xÄ1,yÄ1‡
Transactions of the ASME
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40 homogeneous layers were used to approximate the contin
grading; the conductivity of each layer was computed from E
~36! wherez was taken as thez-coordinate of the layer’s centroid
The FEM elements used were 20-node quadratic brick elem
and each of the 40 layers contained 400 brick elements, resu
in a total of 69,720 nodes. In the boundary element meth
~BEM! solution, a uniform grid consisting of isosceles right tr
angles, with each leg having length 0.1, was employed, resul
in a total of 1200 elements and 2646 nodes.

3.2 Functionally Graded Material „FGM … Rotor. The
second numerical example is a rotor with eight mounti
holes. Due to the eightfold symmetry, only one-eighth of t
rotor is modeled, as drawn in Fig. 4. The grading direction for t
rotor is parallel to its line of symmetry, which is taken a
the z-axis, and the thermal conductivity for the rotor varie
according to

k~z!520e330z
W

m K
. (38)

A schematic for the thermal boundary conditions is shown
Fig. 5. The temperature is specified along the inner and outer r
and a uniform heat flux of 53105 W/m2 is added on the bottom
surface wherez50. All other surfaces are insulated as shown.

The BEM solution is compared with an FEM solution obtain
from the same package used in the previous example using

Fig. 4 Geometry of the functionally graded rotor

Fig. 5 Thermal boundary conditions on the rotor
Journal of Applied Mechanics
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node tetrahedral elements to handle the geometric complexit
the rotor. Due to resource limitations, the FEM model was limit
to 12 layers which resulted in the rather crude conductivity pro
shown in Fig. 6. Even so, the FEM mesh required 95,880 nod

Fig. 6 Thermal conductivity profiles for the computational
models of the rotor

Fig. 7 Surface mesh employed on the functionally graded
rotor

Fig. 8 Temperature distribution around the hole on the
zÄ0.01 surface
JULY 2003, Vol. 70 Õ 547
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whereas the BEM mesh employed 3252. The mesh employed
the boundary integral analysis is shown in Fig. 7.

The temperature distribution around the hole is shown in Fig
The angleu is measured from a line passing through the line
symmetry for the geometry and the center line of the hole. Tho
surface nodal positions in the two models were not coinciden
general, the plot shows a strong agreement in the two soluti
To see the effects of the grading upon the solution, the co
sponding results for theungradedrotor, b50 (k(z)[20), are
also shown.

The radial heat flux along the line shown as the interior cor
in Fig. 5 is plotted in Fig. 9. The negative sign indicates that
flow of heat is toward the interior of the rotor. A limitation on th
use of piecewise constant conductivities in FEM models may
evident in the plot where the FEM nodal value atz50.01 seems
to fall out of line with the other values on the curve. The behav
should be fully expected, however, given the local error associ
with the piecewise constant approximation seen nearz50.01 in
Fig. 6. As should also be expected, the nodal flux values from
BEM solution seem to fall onto a single curve even in the reg
of the steepest conductivity gradient. This isnot to say that BEM
is necessarily better than FEM for graded analysis: The finite
ement method is not restricted to using the discontinuous pi
wise constant approximation presently available in existing pa
ages. It is possible to incorporate continuous grading wit

Fig. 9 Radial heat flux along the inside corner

Fig. 10 Computed interior temperature values in the graded
rotor
548 Õ Vol. 70, JULY 2003
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individual elements, as demonstrated recently by Kim and Pau
@29# using a generalized isoparametric formulation.

As a final test, Fig. 10 displays a comparison between the F
interior temperature values, and corresponding values comp
from the BEM solution~in a post-processing calculation!. The
values are shown for a line of points on the mid-z (z50.005)
plane in the radial direction, passing through the middle of
hole. Again, the BEM and FEM results agree quite well.

4 Conclusions
The primary conclusion of this work is that boundary integ

analysis, for the most part limited to applications involving hom
geneous or piecewise homogeneous media, can be succes
applied to exponentially graded materials. Although the simp
case, namely the Laplace equation, has been treated herein
expected that other applications, including transient diffus
~@30#! and elasticity~@20#!, can also be addressed. Note that
specific elastodynamics problem has already been addresse
Vrettos @16#.

The numerical results presented in this paper have shown th
is simple to implement the functionally graded material~FGM!
Green’s function in a standard boundary integral~Galerkin! ap-
proximation, and that accurate results are obtained. For gra
materials, this offers the possibility of efficient and accurate so
tion of those types of problems for which a boundary integ
analysis is particularly advantageous, such as shape optimiza
moving boundaries, and small-scale structures.
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Appendix

Symmetric Kernels. The symmetric-Galerkin method~@25–
28#! is a highly effective numerical technique for boundary int
gral analysis. As the name implies, it utilizes the Galerkin a
proximation to induce a symmetric coefficient matrix. Th
symmetry comes about because of the symmetry properties o
kernel functions in the integral equations for surface tempera
and for surface flux. Note that for the homogeneous Laplace eq
tion, the fundamental solution is symmetric,G(P,Q)5G(Q,P),
but the functionally graded material~FGM! Green’s function, Eq.
~21!, is not. Thus it would appear that a symmetric-Galerkin a
proximation is not possible.

In this section, the FGM boundary integral equations are
formulated to allow a symmetric numerical implementation.
addition, formulas for all of the required FGM kernel function
for k(z) real,

k~z!5k0e2b0z, (39)

are conveniently summarized.
To obtain a symmetric matrix, the equations have to be writ

in terms of the surface flux,

F~Q!52k~zQ!
]

]n
f~Q! (40)

rather than the normal derivative. The equation for surface te
peraturef(P) is therefore
Transactions of the ASME
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f~P!1E
S
F~P,Q!f~Q!dQ5E

S
GS~P,Q!F~Q!dQ, (41)

and in three dimensions the kernel functions are

GS~P,Q!52
G~P,Q!

k~zQ!
52

1

4k0p

eb0~r 2zQ2zP!

r

F~P,Q!5
]

]n
G~P,Q!22b0nzG~P,Q!

52
eb0~r 1Rz!

4p S n"R

r 3 2b0

n"R

r 2 1b0

nz

r D . (42)

Most importantly, note thatGS(P,Q), unlike G, is symmetric
with respect toP and Q. This is the first of three conditions
needed for symmetry. The other two conditions involve the fl
equation. Differentiating Eq.~41! with respect toP, dotting with
N5N(P), and multiplying by2k(zP) yields the corresponding
equation for surface flux

F~P!1E
S
W~P,Q!f~Q!dQ5E

S
S~P,Q!F~Q!dQ. (43)

The kernel functions, again for three dimensions, are compu
to be

S~P,Q!52k~zP!
]

]N
GS~P,Q!

52
eb0~r 2Rz!

4p S 2
N"R

r 3 1b0

N"R

r 2 1b0

Nz

r D . (44)

and

W~P,Q!52k~zP!
]

]N
F~P,Q!5

k0

4p
eb0~r 1zQ1zP!

3S 3
~n"R!~N"R!

r 5 23b0

~n"R!~N"R!

r 4

1
b0

2~n"R!~N"R!2b0~Nzn2nzN!•R2n"N

r 3

1b0

b0~Nzn2nzN!"R1n"N

r 2 2b0
2

Nznz

r D . (45)

The additional symmetry requirements are thatW must be sym-
metric, W(P,Q)5W(Q,P), and thatS(P,Q)5F(Q,P). Inter-
changingQ andP implies replacingN(P) with n(Q) and changes
the sign ofR, and thus both conditions are seen to hold.
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