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Revisited
Paulino and Jin [Paulino, G. H., and Jin, Z.-H., 2001, ‘‘Correspondence Principle
Viscoelastic Functionally Graded Materials,’’ ASME J. Appl. Mech.,68, pp. 129–132],
have recently shown that the viscoelastic correspondence principle remains valid
linearly isotropic viscoelastic functionally graded material with separable relaxation
creep) functions in space and time. This paper revisits this issue by addressing
subtle points regarding this result and examines the reasons behind the success or
of the correspondence principle for viscoelastic functionally graded materials. For
inseparable class of nonhomogeneous materials, the correspondence principle fai
cause of an inconsistency between the replacements of the moduli and of their deriv
A simple but informative one-dimensional example, involving an exponentially gr
material, is used to further clarify these reasons.@DOI: 10.1115/1.1533805#
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1 Introduction
The present study is motivated by a recent investigation

Paulino and Jin@1# on the correspondence principle in functio
ally graded materials~FGMs!, as discussed below. Such materia
are those in which the composition and volume fraction of
constituents vary gradually, giving a nonuniform microstructu
with continuously graded macroproperties. Various thermom
chanical problems related to FGMs have been studied, for
ample, constitutive modeling,@2#, thermal stresses,@3#, fracture
behavior,@4#, viscoelastic fracture,@5–7#, time-dependent stres
analysis, @8#, strain gradient effects,@9#, plate bending,@10#,
higher order theory,@11#, and so on. Comprehensive reviews
several aspects of FGMs may be found in the article by Hirai@12#,
the chapter by Paulino et al.@13#, and the book by Suresh an
Mortensen@14#.

One of the primary application areas of FGMs is hig
temperature technology. For example, in a ceramic/metal FG
the ceramic offers thermal barrier effects and protects the m
from corrosion and oxidation while the FGM is toughened a
strengthened by the metallic composition. Materials will exhi
creep and stress relaxation behavior at high temperatures.
coelasticity offers a reasonable basis for the study of phenom
logical behavior of creep and stress relaxation. The corresp
dence principle is probably the most useful tool in viscoelastic
because the Laplace transform of the viscoelastic solution ca
directly obtained from the existing elastic solution. The viscoel
tic correspondence principle, unfortunately, does not hold, in g
eral, for FGMs. Paulino and Jin@1#, however, have proved that th
correspondence principle of viscoelasticity and thermoviscoe
ticity is valid for a class of FGMs where the relaxation functio
in shear and dilatation,m(x,t) andK(x,t), have separable forms
i.e., m(x,t)5m(x)g(t) and K(x,t)5K(x) f (t), respectively, in
whichx denotes Cartesian coordinates,t is time, andf (t) andg(t)
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Santa Barbara, CA 93106-5070, and will be accepted until four months after
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are admissible, but otherwise arbitrary functions of time. For c
venience of presentation, let this class of viscoelastic material
called the ‘‘separable class.’’ Thus the rest of the materials con
tute the so called ‘‘inseparable class.’’ Paulino and Jin have
plied the correspondence principle to this ‘‘separable class’’
FGMs to study crack problems under antiplane shear,@5,6#, and
in-plane loading,@7#. Other authors studying crack problems
nonhomogeneous viscoelastic materials have directly solved
governing viscoelastic equations without using the corresp
dence principle. For example, Schovanec et al. have consid
stationary cracks,@15#, quasi-static crack propagation,@16#, and
dynamic crack propagation,@17#, in nonhomogeneous viscoelast
media under antiplane shear conditions. Schovanec and Wa
have also considered quasi-static propagation of a plane-s
mode I crack in a power-law inhomogeneous linearly viscoela
body, @18#, and calculated the corresponding energy release r
@19#. Although a ‘‘separable class’’ of viscoelastic materials we
studied in Refs.@15# to @19#, no use of the correspondence pri
ciple was made in their work. As a result, the mathematical c
culations in these papers become quite complicated and invol

It is important to mention some older work related to the su
ject of this paper. Hilton and Clementes@20# and Hashin@21# have
considered viscoelastic problems with piecewise constant pro
ties. Their problems are not directly relevant to the case of c
tinuously varying elastic moduli under consideration in t
present work. Schapery@22# has, in fact, considered the continu
ously varying case in which the~spatially variable! elastic moduli
also depend on the Laplace transform parameters. The present
work is concerned only with theusual class of nonhomogeneou
elastic materialsin which the moduli are functions only of the
spatial coordinatesx, not of time or of the Laplace parameter.

The present paper supplements that by Paulino and Jin@1#. It is
first shown that the success or failure of the correspondence p
ciple for linear nonhomogeneous viscoelastic materials rests u
the forms of the spatial derivatives of the relaxation functio
since these quantities appear in the equilibrium equations. T
discussion is followed by a simple but informative on
dimensional example for which closed-form solutions are o
tained for a Maxwell material under tensile loading with~a! a
separable and~b! an inseparable relaxation function. Two kinds
boundary conditions, displacement prescribed and mixed, are
sidered for this example.
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2 The Viscoelastic Correspondence Principle for Func-
tionally Graded Materials

Some of the governing equations for nonhomogeneous iso
pic linearly elastic and viscoelastic materials, under quasi-st
deformation, in the physical and Laplace transformed doma
are outlined below. The standard equations for homogeneous
coelastic materials are available in many references, e.g., C
tensen@23#.

2.1 Elasticity. The well-known constitutive equation fo
linear elastic behavior is

s i j ~x,t !5l~x!«kk~x,t !d i j 12m~x!« i j ~x,t ! (1)

wheres i j and« i j are components of the stress and strain tens
respectively,l and m are Lame´ parameters andd i j are compo-
nents of the Kronecker delta. It is useful to note thatl5K
2(2/3)m whereK andm are the bulk and shear moduli, respe
tively, of the material.

Taking Laplace transforms~when they exist! defined asf̄ (s)
5*0

` f (t)exp2st dt, ~1! becomes

s̄ i j ~x,s!5l~x!«̄kk~x,s!d i j 12m~x!«̄ i j ~x,s!. (2)

Applying the equilibrium equation~in the absence of body
forces! in the Laplace transform domain to~2!, one obtains

05s̄ i j , j~x,s!5l~x!«̄kk,i~x,s!12m~x!«̄ i j , j~x,s!1l ,i~x!«̄kk~x,s!

12m , j~x!«̄ i j ~x,s! (3)

where (•) , j5](•)/]xj .

2.2 Viscoelasticity. This time, the integral form of the con
stitutive equation, with relaxation functionsl(x,t) andm(x,t), is

s i j ~x,t !5E
0

t

l~x,t2t!
]«kk

]t
~x,t!d i j dt

12E
0

t

m~x,t2t!
]« i j

]t
~x,t!dt (4)

and its Laplace transform is

s̄ i j ~x,s!5sl̄~x,s!«̄kk~x,s!d i j 12sm̄~x,s!«̄ i j ~x,s!. (5)

Applying the equilibrium equation to~5! results in

05s̄ i j , j~x,s!5sl̄~x,s!«̄kk,i~x,s!12sm̄~x,s!«̄ i j , j~x,s!

1sl̄,i~x,s!«̄kk~x,s!12sm̄ , j~x,s!«̄ i j ~x,s!. (6)

2.3 Range of Validity of the Correspondence Principle
Consider a nonhomogeneous isotropic linear elastic material w
shear and bulk modulim~x! and K(x), respectively. Now conside
a boundary value problem for a body B with a fixed boundary]B
composed of this material. Let]Bu and ]Bt (]B5]Buø]Bt) be
parts of the boundary on which the displacements and tractio
respectively, are prescribed. It is also assumed that]Bu and ]Bt
do not vary in time. The applied boundary displacements and
tractions are allowed to be (slowly varying) functions of time–
therefore, the fields in B—displacement, strain and stress, can
be functions of time. Inertia and body forces are neglected here
this situation, the usual (quasi-static) viscoelastic corresponde
principle remains valid in general in the separable case, i.
when the (viscoelastic) relaxation functions in shear and in d
tation have the formsm(x,t)5m(x)g(t), K(x,t)5K(x) f (t), re-
spectively, where f(t) and g(t) are sufficiently well behaved
otherwise arbitrary functions of time. For the inseparable ca
the viscoelastic correspondence principle is not valid in gener.

2.4 Success of Correspondence Principle for the ‘‘Sepa
rable Class’’. The crucial step is a comparison of Eqs.~3! and
~6! and the replacements:
360 Õ Vol. 70, MAY 2003
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l~x!⇒sl̄~x,s!, m~x!⇒sm̄~x,s! (7)

l ,i~x!⇒sl̄,i~x,s!, m ,i~x!⇒sm̄ ,i~x,s!. (8)

A sufficient condition for the validity of the correspondenc
principle is fulfilled by the ‘‘separable class’’ of linear viscoelast
materials where

l~x,t !5l~x!h~ t !, m~x,t !5m~x!g~ t !. (9)

Now

l̄~x,s!5l~x!h̄~s!, m̄~x,s!5m~x!ḡ~s! (10)

so that

l̄,i~x,s!5l ,i~x!h̄~s!, m̄ ,i~x,s!5m ,i~x!ḡ~s!. (11)

Therefore, for this ‘‘separable class’’ of materials, Eq.~6! be-
comes

05sl~x!h̄~s!«̄kk,i~x,s!12sm~x!ḡ~s!«̄ i j , j~x,s!

1sl ,i~x!h̄~s!«̄kk~x,s!12sm , j~x!ḡ~s!«̄ i j ~x,s!. (12)

With the replacements~7! and~10! for the relaxation functions,
and ~8! and ~11! for their derivatives, Eqs.~3! and ~12! are com-
patible; therefore, the correspondence principle is valid for t
‘‘separable class’’ of viscoelastic materials.

2.5 Failure of the Correspondence Principle for the ‘‘In-
separable Class’’. It is now observed that the replacements~7!,
which work for homogeneous problems, do not, in general, w
in the inseparable case. The reason for this is that the repl
ments~8! are, in general, inconsistent, in the sense that the sp
dependence ofl̄,i(x,s) and ~or! m̄ ,i(x,s) can be quite different
from those~that! of l ,i(x) and~or! m ,i(x), respectively. This issue
is rather subtle and the failure of the correspondence principle
the inseparable case is demonstrated by means of a simple
ample in Section 3 of this paper.

3 An Illustrative One-dimensional Example
This section presents a simple one-dimensional example~see

Fig. 1!, considering exponentially graded properties, to illustr
the various issues regarding the validity or not of the corresp
dence principle for viscoelastic functionally graded materi
~FGMs!. Materials with exponential gradation have been wide
used in the technical literature—see, for example, Refs.@13,14#.
In the present example, closed-form solutions are obtained f
nonhomogeneous Maxwell material under tensile loading with~a!
a separable and~b! an inseparable relaxation function. Two type
of boundary conditions, displacement prescribed and mixed,
considered here.

3.1 Relaxation Function in Tension. Consider a nonhomo-
geneous Maxwell material with tensile parametersE(x) andh(x)
as shown in Fig. 1~a!. The relaxation function of this material in
tension, together with its Laplace transform, are,@23#,

E~x,t !5E~x!expF2E~x!t

h~x! G , Ē~x,s!5
E~x!

s1E~x!/h~x!
.

(13)

Two cases are considered next:
~a! separable:E(x)5E0e2ax, h(x)5h0e2ax.
~b! inseparable:E(x)5E0e2ax, h(x)5h0 .
In the above,E0 , h0 , anda are material constants. Notice tha

a has units@ length#21 and thus 1/a expresses the length scale
inhomogeneity. Such an additional length scale characterize
FGM and influences its material behavior.

3.2 Range of Validity of Correspondence Principle

Separable Class. For case~a!, which belongs to the ‘‘sepa-
rable class,’’ one has
Transactions of the ASME

cense or copyright; see http://www.asme.org/terms/Terms_Use.cfm
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Fig. 1 One-dimensional example; „a… nonhomogeneous Maxwell material; „b… bar un-
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E~x!⇒sĒ~x,s!5
sE~x!

s1E0 /h0
(14)

E8~x!⇒s
]

]x
Ē~x,s!5

sE8~x!

s1E0 /h0
. (15)

In this case, the replacements forE(x) andE8(x) are consistent
~see Eqs.~3! and ~12!! and the correspondence principle rema
valid.

Inseparable class. Now

E~x!⇒sĒ~x,s!5
sE~x!

s1E~x!/h0
5

sE0e2ax

s1~E0 /h0!e2ax . (16)

A consistent replacement forE8(x) should be

sE8~x!

s1E8~x!/h0
5

2asE0e2ax

s2a~E0 /h0!e2ax Þs
]

]x
Ē~x,s!. (17)

This time, the replacements forE(x) andE8(x) are not consis-
tent. As a result, the correspondence principle fails in the inse
rable case.

3.3 Tensile Loading on a Maxwell Bar With Displacement
Boundary Conditions. A bar, made of Maxwell material, is
loaded in tension as shown in Fig. 1~b!. The lateral surface of the
bar is traction free—so that the only nonzero stress issxx(x,t)
[s(x,t). The boundary and initial conditions on the axial di
placementu(x,t) are

u~0,t !50, u~L,t !5v0t; u~x,0!5«~x,0!5s~x,0!50
(18)

wherev0 is a constant.

Elastic Solution. Using the usual equations~here«(x,t) is the
axial strain!

«~x,t !5
]u~x,t !

]x
,

(19)

s~x,t !5E~x!«~x,t !5E0e2ax
]u~x,t !

]x
,

]s~x,t !

]x
50

together with the boundary and initial conditions~18!, one gets
the solution

u~x,t !5v0tF eax21

eaL21G , «~x,t !5
av0teax

eaL21
, s~x,t !5

aE0v0t

eaL21
.

(20)

Note that since the stress must satisfy the equilibrium equa
]s/]x(x,t)50, it must be independent ofx.
Mechanics
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Case (a) ‘‘Separable Class’’—Viscoelastic Solution.The vis-
coelastic solution for this case is obtained easily by applying
correspondence principle. Carrying out the replacement

E~x!5E0e2ax⇒sĒ~x,s!5
sE~x!

s1E0 /h0
5

sE0e2ax

s1E0 /h0
,

one gets

s̄~x,s!5
aE0v0

s@s1E0 /h0#@eaL21#
,

(21)

s~x,t !5
ah0v0

@eaL21#
@12exp~2E0t/h0!#.

As expected from the correspondence principle, the solutions
«(x,t) and u(x,t) can be easily shown to be the same as
elastic solutions (20)2 and (20)1 .

Case (b) ‘‘Inseparable Class’’—Viscoelastic Solution.It is
easy to show that, in this case, an attempt to apply the corres
dence principle fails. One gets a stress solution that is a func
of x, and, therefore, does not satisfy equilibrium.

The boundary value problem to be solved is defined by
equations~see Fig. 1~a!!

]s

]x
~x,t !50, «~x,t !5

]u

]x
~x,t ! (22)

]s

]t
~x,t !1

E~x!

h~x!
s~x,t !5E~x!

]«

]t
~x,t ! (23)

together withE(x)5E0e2ax, h(x)5h0 and the boundary and
initial conditions~18!.

Taking the Laplace transform of~23!, one gets

s̄~x,s!5
sE~x!«̄~x,s!

s1E~x!/h~x!
5sĒ~x,s!«̄~x,s!. (24)

The stress must satisfy equilibrium (22)1 , i.e., it must be inde-
pendent ofx. Therefore, one can write

s̄~x,s!5sC~s!, «̄~x,s!5C~s!/Ē~x,s! (25)

where the functionC(s) must be obtained from boundary cond
tions.

Integrating (25)2 with respect tox, and using the boundary
conditions in~18!, one has

ū~L,s!5E
0

L C~s!

Ē~x,s!
dx5

v0

s2 , C~s!5
v0

s2I ~s!
(26)

whereI (s), with E(x)5E0e2ax, h(x)5h0 , is
MAY 2003, Vol. 70 Õ 361
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I ~s!5E
0

L dx

Ē~x,s!
5

s

aE0
~eaL21!1

L

h0
. (27)

From (25)1 , (26)2 , and ~27!, one obtains the Laplace trans
form of the stress, and then the stress as a function ofx andt. The
result is

s̄~x,s!5
v0

sF s

aE0
~eaL21!1

L

h0
G , s~x,t !5

h0v0

L
@12e2bt#

(28)

whereb5aLE0 /@h0(eaL21)#. With s(x,t) determined,«(x,t)
is obtained directly from the viscoelastic constitutive Eq.~23!.
Integrating the resulting expression for]«/]t(x,t) with respect to
t, and using the quiescent initial condition«(x,0)50, one gets the
solution for the strain distribution in the bar. This is

«~x,t !5
h0v0

LE0
Feax2

~eaL21!

aL G@12e2bt#1
v0t

L
. (29)

Note that, in this example, with the elastic strain distributi
«(x,t) in (20)2 independent ofE, «̄(x,s) from Eq. ~24! is not the
Laplace transform of the elastic solution«(x,t). In other words,
contrary to the dictates of the correspondence principle,«(x,t) in
Eq. ~29! is different from the elastic strain solution in Eq.~20!2.

Finally, integrating~29! with respect tox, and using the bound
ary conditions from~18!, leads to the solution for the displace
ment field in the bar. This is

u~x,t !5
h0v0

aLE0
Feax1

x

L
~12eaL!21G@12e2bt#1

v0xt

L
.

(30)

3.4 Tensile Loading on a Maxwell Bar With Mixed Bound-
ary Conditions. That the situation is quite subtle is evide
from considering the same example as in Fig. 1~b!, but this time
with the boundary and initial conditions

u~0,t !50, s~L,t !5s0t; u~x,0!5«~x,0!5s~x,0!50
(31)

wheres0 is a constant.

Elastic Solution. The elastic solution for this problem is easi
obtained. It is

s~x,t !5s0t, «~x,t !5
s0teax

E0
, u~x,t !5

s0teax

aE0
. (32)

Case (b) ‘‘Inseparable Class’’—Viscoelastic Solution.The
strategy here is to try the correspondence principle first and
examine the resulting solutions. Applying the corresponde
principle, one has

s~x,t !5s0t, «̄~x,s!5
s0eax

s2E0
1

s0

h0s3 ,
(33)

«~x,t !5
s0teax

E0
1

s0t2

2h0
.

It is easy to show that these solutions satisfy the equilibri
Eqs.~22!1 and the constitutive Eq.~23!, together with the bound-
ary and initial conditions~31!. Therefore, they are correct. How
ever, the correct solution for the displacement fieldu(x,t), ob-
tained by integrating (33)3 , is

u~x,t !5
s0teax

aE0
1

s0t2x

2h0
(34)

whereas the correspondence principle delivers thewrong solution
u(x,t)5«(x,t)/a.
362 Õ Vol. 70, MAY 2003
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4 Concluding Remarks
In a recent paper in this journal, Paulino and Jin@1# have

proved that the viscoelastic correspondence principle is valid f
class of functionally graded materials~FGMs! with separable re-
laxation functions. The present paper revisits this issue and ex
ines the reasons behind the success or failure of the corres
dence principle for viscoelastic FGMs. While materi
nonlinearities, moving boundaries, or moving loads~for example!
are well-known reasons for the failure of the viscoelastic cor
spondence principle, to the best of the authors’ knowledge,
reasons for the failure of the principle due to continuously s
tially varying material~elastic and viscoelastic! properties have
not been discussed before in the literature. Schapery@22# has con-
sidered this class of problems, but not for the usual situation
which the elastic material properties depend only on spatial co
dinates. Also, it is not clear to the authors of the present pa
whether anyone has noticed before that for the inseparable cla
nonhomogeneous materials, the viscoelastic correspondence
ciple fails because of an inconsistency between the replacem
of the moduli and of their derivatives~see Eqs.~16!–~17!!.

As stated before, the correspondence principle always wo
for the ‘‘separable class’’ of materials, and does not, in general,
the ‘‘inseparable class’’ of viscoelastic materials. Examples of
plications of the correspondence principle to FGM problems
the separable class are available in Refs.@5–7#.
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