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Abstract

The path-independent J �k -integral, in conjunction with the finite element method (FEM), is presented for mode I and

mixed-mode crack problems in orthotropic functionally graded materials (FGMs) considering plane elasticity. A

general procedure is presented where the crack is arbitrarily oriented, i.e. it does not need to be aligned with the

principal orthotropy directions. Smooth spatial variations of the independent engineering material properties are in-

corporated into the element stiffness matrix using a ‘‘generalized isoparametric formulation’’, which is natural to the

FEM. Both exponential and linear variations of the material properties are considered. Stress intensity factors and

energy release rates for pure mode I and mixed-mode boundary value problems are numerically evaluated by means of

the equivalent domain integral especially tailored for orthotropic FGMs. Numerical results are discussed and validated

against available theoretical and numerical solutions.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) possess

a continuous spatial distribution of the volume

fractions of two or more basic materials. These

materials were initially introduced to take advan-

tage of different properties of its constituents, e.g.

heat and corrosion resistance of ceramics together

with mechanical strength and toughness of metals.

With such materials, it is possible to improve

thermal or mechanical stress relaxation (Choules

and Kokini, 1993; Lee and Erdogan, 1995), and to

increase bonding strength and toughness (Kurihara

et al., 1990) along coating/substrate interfaces. In-

vestigations on FGMs have found various appli-

cations (Koizumi, 1993; Hirai, 1993; Suresh and
Mortensen, 1998), which include high temperature

(Igari et al., 1990); electronics and magnetics (Tani

and Liu, 1993; Hirano et al., 1993; Osaka et al.,

1990; Watanabe et al., 1993); optics (Koike, 1992);

Mechanics of Materials 35 (2003) 107–128

www.elsevier.com/locate/mechmat

*Corresponding author. Tel.: +1-217-333-3817; fax: +1-217-

265-8041.

E-mail address: paulino@uiuc.edu (G.H. Paulino).

0167-6636/03/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0167-6636 (02 )00159-X

mail to: paulino@uiuc.edu


thermionics (Desplat, 1996); biomaterials (Watari

et al., 1996; Oonishi et al., 1994); and so on. A de-

scription of design, modeling, processing, and

evaluation of FGMs, as well as their applications,

can be found in the books by Suresh andMortensen

(1998) and by Miyamoto et al. (1999), and also in
the review article by Paulino et al. (2003).

Extensive studies have been carried out on

fracture mechanics under mechanical (Delale and

Erdogan, 1983; Erdogan and Wu, 1993; Ozturk

and Erdogan, 1997, 1999) or thermal (Noda and

Jin, 1993; Jin and Noda, 1993; Erdogan and Wu,

1996; Jin and Batra, 1996; Jin and Paulino, 2001)

loading in FGMs. Eischen (1987) has investigated
the J �k -integral in the form of line integral for

mixed-mode cracks in nonhomogeneous materials

using the finite element method (FEM). Honein

and Herrmann (1997) have studied the path-inde-

pendent J-integral based on conservation laws for

elastic nonhomogeneous materials. Gu et al. (1999)

have proposed a simplified method based on the

standard J-integral (Rice, 1968) to evaluate SIFs in
FGMs using the equivalent domain integral (EDI)

technique. They considered material properties

at the Gauss integration points and selected very

small domains to avoid the effect of the extra term

in the domain integral due to nonhomogeneity.

Other authors have used the interaction integral

method to compute SIFs in FGMs (Dolbow and

Gosz, 2002; Rao and Rahman, in press; Kim and
Paulino, submitted for publication). Anlas et al.

(2000) have evaluated SIFs in FGMs by the FEM

where the material property variation was discret-

ized by assigning different homogeneous elastic

properties to each element. Chen et al. (2000) have

presented a modified J-integral for FGMs using the

element-free Galerkin method. Gu et al. (1999),

Anlas et al. (2000), and Chen et al. (2000) have
considered a pure mode I crack where the crack is

parallel to the material gradation. Marur and

Tippur (2000) have considered a crack normal to

the elastic gradient and have performed FEM anal-

ysis along with experiments. In the particular case

of Marur and Tippur (2000), no extra term (due to

material nonhomogeneity) arises in the J-integral.

Bao and Wang (1995) have studied multiple crack-
ing in functionally graded ceramic/metal coatings

using the FEM. Bao and Cai (1997) have investi-

gated delamination cracking and buckling in a

functionally graded ceramic/metal substrate under

mechanical and thermal loads using the FEM.

All the investigations cited above have been

done for isotropic FGMs and no consideration

of orthotropy has been made. In general, the
manufacturing of ceramic-metal FGMs requires

sophisticated processing techniques, and the na-

ture of processing techniques may cause the FGMs

to lose isotropy. For instance, graded materials

processed by a plasma spray technique generally

have a lamellar structure (Sampath et al., 1995),

whereas the materials processed by electron beam

physical vapor deposition technique have a col-
umnar structure (Kaysser and Ilschner, 1995). In

such cases, we can assume that the graded material

is not isotropic but orthotropic. Previous work on

modeling of fracture in orthotropic FGMs include

those by Gu and Asaro (1997), who performed

theoretical studies in a four point bending speci-

men; and by Ozturk and Erdogan (1997, 1999),

who investigated mode I and mixed mode crack
problems in an infinite medium using integral

equations. In this paper, extension of the path-

independent J �k -integral methodology for isotropic

FGMs is made to orthotropic FGMs (Eischen,

1987; Kim and Paulino, 2002a). To discretize the

variation of the orthotropic material properties,

the ‘‘generalized isoparametric formulation’’ (GIF)

is used to formulate the stiffness matrix in the
FEM (Kim and Paulino, 2002a,b).

The organization of this paper is as follows.

Section 2 discusses crack-tip fields in two-dimen-

sional orthotropic FGMs. Section 3 presents the

domain-independent J �k -integral formulation in or-

thotropic FGMs, which includes the nonlinear re-

lations between J �k ðk ¼ 1; 2Þ and the modes I and II

stress intensity factors (SIFs). Section 4 contains
the finite element implementation. Section 5 in-

cludes numerical examples evaluated by means of

the J �k integral. Finally, Section 6 presents some

final remarks and concludes this investigation.

2. Crack-tip fields in orthotropic FGMs

The linear elastic stress–strain relations are

given by
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eij ¼ Sijklrkl ði; j; k; l ¼ 1; 2; 3Þ ð1Þ

where rij is the linear stress tensor, eij is the linear
strain tensor, and Sijkl is the fourth-order compli-

ance tensor. A contracted notation aij is intro-
duced for Sijkl as follows (Lekhnitskii, 1968):

ei ¼ aijrj; aij ¼ aji ði; j ¼ 1; 2; . . . ; 6Þ ð2Þ
where the compliance coefficients, aij, are related

to the elastic properties of the material and

e1 ¼ e11; e2 ¼ e22; e3 ¼ e33;

e4 ¼ 2e23; e5 ¼ 2e13; e6 ¼ 2e12;

r1 ¼ r11; r2 ¼ r22; r3 ¼ r33;

r4 ¼ r23; r5 ¼ r13; r6 ¼ r12 ð3Þ

For the special case of plane problems where at

each point there is a plane of symmetry parallel to

the surface of a thin plate in plane stress or plane

strain, Eq. (2) can be reduced to six independent

elastic constants for plane stress:

aij ði; j ¼ 1; 2; 6Þ ð4Þ
and six corresponding constants for plane strain:

bij ¼ aij �
ai3aj3
a33

ði; j ¼ 1; 2; 6Þ ð5Þ

Fig. 1 shows a crack tip referred to the Carte-

sian coordinate system in orthotropic FGMs.

Two-dimensional anisotropic elasticity problems

can be formulated in terms of the analytic func-

tions, /kðzkÞ, of the complex variable, zk ¼ xk þ iyk
ðk ¼ 1; 2Þ, where
xk ¼ xþ aky; yk ¼ bky ðk ¼ 1; 2Þ ð6Þ
The parameters ak and bk are the real and imaginary

parts of lk ¼ ak þ ibk, which can be determined

from the characteristic equation (Sih et al., 1965)

a11l4 � 2a16l3 þ ð2a12 þ a66Þl2 � 2a26lþ a22 ¼ 0

ð7Þ

The roots lk are always complex or purely imagi-

nary in conjugate pairs as l1, l1; l2, l2. Moreover,

l1 and l2 must be evaluated at the crack-tip

location for FGMs.

For mixed mode, the stresses in the vicinity of
the crack tip are

r11 ¼
KIffiffiffiffiffiffiffi
2pr
p Re

ltip
1 ltip

2

ltip
1 � ltip

2

ltip
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ ltip
2 sin h

q
8><
>:

2
64 � ltip

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos hþ ltip

1 sin h
q

9>=
>;
3
75

þ KIIffiffiffiffiffiffiffi
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r22 ¼
KIffiffiffiffiffiffiffi
2pr
p Re

1

ltip
1 � ltip

2

ltip
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos hþ ltip
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q
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2
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3
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r12 ¼
KIffiffiffiffiffiffiffi
2pr
p Re
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1 ltip
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ð8Þ
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where r0
11 is Oð1Þ and the displacements are

where ltip
1 and ltip

2 denote the crack-tip material

parameters calculated according to Eq. (7), i.e. ltip
1

and ltip
2 are the roots of Eq. (7), which are taken

such that bk > 0 ðk ¼ 1; 2Þ, and pk and qk are given
by

pk ¼ a11ðltip
k Þ

2 þ a12 � a16l
tip
k

qk ¼ a12l
tip
k þ

a22
ltip
k

� a26
ð10Þ

respectively. Notice that the main difference be-

tween the above expressions for the crack-tip fields
and those reported by Sih et al. (1965) is that here

the material parameters are sampled at the crack-

tip location.

3. J�k-integral formulation for orthotropic FGMs

This section presents the derivation (for two-

dimensional problems) of the J �k -integral for non-
homogeneous orthotropic materials and details the
actual FEM implementation. The spatial variation

of material properties is considered, which in-

cludes elastic moduli E11 	 E11ðxÞ, E22 	 E22ðxÞ;
in-plane shear modulus G12 	 G12ðxÞ; and Pois-

son�s ratio m12 	 m12ðxÞ. The EDI concept is used to

evaluate J �k ðk ¼ 1; 2Þ in the FEM implementation.

The following derivation is an extension of the J �k
formulation for isotropic FGMs (Eischen, 1987;
Kim and Paulino, 2002a).

3.1. Formulation

In an elastic FGM body subjected to two-

dimensional deformation fields (plane strain, gen-

eralized plane stress), the strain energy density W

is defined by

W ¼ W ðeij; xiÞ where rij ¼
oW
oeij

ði; j ¼ 1; 2Þ

ð11Þ
Thus the gradient of W is evaluated as

rW ¼ oW
oxk
¼ oW

oeij

oeij
oxk
þ oW

oxk

� �
expl

¼ rijeij;k þ ðW;kÞexpl ð12Þ

where ð�Þ;k 	 oð�Þ=oxk, and the ‘‘explicit’’ derivative

of W is defined by
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ð9Þ

Fig. 1. Coordinate systems at the crack tip for orthotropic

FGMs.
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oW
oxk

� �
expl

¼ o

oxk
W ðeij; xiÞjeij¼const:; xm¼const: for m 6¼k

ð13Þ

The symmetry properties of the stress tensor, the

linearized strain–displacement relation, and the

equilibrium equations lead to

ðW djk � rijui;kÞ;j � ðW;kÞexpl ¼ 0 ð14Þ

where djk is the Kronecker delta. This expression

represents a conservation law, valid pointwise, for

an elastic FGM, free of body forces. Applying the

divergence theorem to Eq. (14), one obtainsI
C
ðWnk � rijnjui;kÞdC�

Z
X
ðW;kÞexpl dX ¼ 0 ð15Þ

where C is a simple closed curve in the (x1, x2) local
coordinates, X is the domain enclosed by C, and nj
is the outward unit normal vector to C.

Because the stress and strain fields are singular

and unbounded at the crack tip, a special region X
in Eq. (15) must be considered such that the region

does not contain the crack tip. Fig. 2 shows a

crack located in a two-dimensional body of arbi-
trary shape. The region X (free of singularity) is

bounded by a closed curve C including segments

C0, Cþc , Ce, and C�c . The region between Ce and the

crack surfaces is Xe. The region X0 is defined as

Xþ Xe. The divergence theorem can be applied in

the region X. By using the expression

C ¼ C0 þ Cþc þ Ce þ C�c ð16Þ
Eq. (15) leads toZ

C0

bk dCþ
Z

Cþc

bk dCþ
Z

Ce

bk dCþ
Z

C�c

bk dC

�
Z

X
ðW;kÞexpl dX ¼ 0 ð17Þ

where

bk ¼ Wnk � rijnjui;k ð18Þ
Reversing the integration path in the third term

of Eq. (17), and decomposing the region X into

X0 � Xe, i.e. X ¼ X0 � Xe, one obtainsZ
C0

bk dC�
Z

X0

ðW;kÞexpl dXþ
Z

Cþc

bk dC

þ
Z

C�c

bk dC ¼
Z

Ce

bk dC�
Z

Xe

ðW;kÞexpl dX ð19Þ

By taking the limit Ce ! 0 of the right-hand-side

of Eq. (19), a vector J �k is introduced as

J �k 	 lim
Ce!0

Z
Ce

bk dC

�
�
Z

Xe

ðW;kÞexpl dX

�
ð20Þ

As the loop Ce is closer to the crack tip, the do-

main integral in Eq. (20) vanishes because deriv-

atives of the elastic moduli are bounded at the

crack tip. Then Eqs. (19) and (20) lead to

J �k 	 lim
Ce!0

Z
Ce

bk dC ð21Þ

and thus

J �k 	 lim
Ce!0

Z
C0

bk dC

(
�
Z

X0

ðW;kÞexpl dX

þ
Z

Cþc

bk dCþ
Z

C�c

bk dC

)
ð22Þ

Let us combine the two terms which involve

integrations along two crack faces, and define the

associated path of integration as Cc, i.e. Cc ¼
Cþc þ C�c . For the sake of the derivation given

later, the path C0 intersects the top and bottom

crack faces at the same distance from the crack tip,

as shown in Fig. 2. Eq. (22) together with Eq. (18)

lead to the general expressionFig. 2. Schematic of a cracked body and notation.
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J �k ¼ lim
Ce!0

Z
C0

½Wnk
�

� rijnjui;k�dC

�
Z

X0

ðW;kÞexpl dXþ
Z

Cc

ð½W þ � W ��nþk

� ½tþi uþi;k � t�i u
�
i;k�ÞdC

�
ð23Þ

where ti ¼ rijnj, ðþÞ and ð�Þ refer to the upper and

lower crack faces, and nþk ¼ �n�k is the outward

unit normal vector to Cþc . The notation ½W þ � W ��
denotes the discontinuity (or jump) in the strain

energy density across the crack faces. Notice that

the material nonhomogeneity affects the standard

J-integral (Rice, 1968) by adding a domain integral

term. This term must be taken into account in order

to evaluate the J-integral in FGMs.

The closed contour integral of Eq. (23) is con-

verted into an EDI (Gu et al., 1999; Raju, 1990)
for traction-free crack faces:

J �k ¼
Z
A
½rijui;k � W dkj�q;j dA�

Z
A
ðW;kÞexpl qdA

þ
Z

Cc

½W þ � W ��qnþk dC ð24Þ

where q is a smooth function which changes from
unity on Ce to zero on C0. The plateau function

was adopted in the present finite element analysis,

as illustrated by Fig. 3. The last term of Eq. (24) is

defined as

R ¼
Z

Cc

½W þ � W ��qnþk dC ð25Þ

where the strain energy density can be represented

for generalized plane stress as

W ¼ W ½E11ðxÞ;E22ðxÞ;G12ðxÞ; m12ðxÞ; eðxÞ� ð26Þ
with x ¼ ðx1; x2Þ. Thus the explicit derivative of W
in the second term of Eq. (24) becomes

oW
oxk

� �
expl

¼ oW
oE11

oE11

oxk
þ oW
oE22

oE22

oxk
þ oW
oG12

oG12

oxk

þ oW
om12

om12
oxk

ð27Þ

It is worth mentioning that if the material

properties are given by a known function, e.g.

exponential (Ozturk and Erdogan, 1997, 1999),

then the expression (27) can be evaluated in closed

form. However, if such is not the case, e.g. when
the properties are obtained from micromechan-

ics models (Reiter et al., 1997; Zuiker, 1995), then

the expression (27) needs to be evaluated numeri-

cally.

If we separate Eq. (24) into mode I and mode II

contributions, then for mode I (k ¼ 1 in Eq. (24)),

ðJ �1 Þlocal ¼
Z
A
½rijui;1 � W d1j�q;j dA

�
Z
A
ðW;1ÞqdA ð28Þ

and for mode II (k ¼ 2 in Eq. (24)),

ðJ �2 Þlocal ¼
Z
A
½rijui;2 � W d2j�q;j dA

�
Z
A
ðW;2ÞqdAþ

Z
Cc

½W þ � W ��qnþ2 dC

ð29Þ
Notice that the expression for ðJ �2 Þlocal given in

Eq. (29) includes the R term of Eq. (25), which is

the integration along the crack faces of the dis-

continuity in the strain energy density; while the

expression for ðJ �1 Þlocal does not. The R term causes

difficulty in the numerical evaluation of ðJ �2 Þlocal
(Kim and Paulino, 2002a). In what follows, it is

useful to derive an expression for ½W þ � W �� near
a crack tip.Fig. 3. Plateau q function (weight function).
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Recall that for orthotropic FGMs in plane

stress ðE11 	 E11ðxÞ, E22 	 E22ðxÞ, G12 	 G12ðxÞ,
m12 	 m12ðxÞÞ, the strain energy density is given

by

W ¼ 1

2

r2
11

E11ðxÞ

�
þ r2

22

E22ðxÞ
� 2m12ðxÞ

E11ðxÞ
r11r22

þ 1

G12ðxÞ
r2
12

�
ð30Þ

Evaluation of Eq. (8) for h ¼ �p yields

r11ðr;þpÞ ¼ KIffiffiffiffiffiffiffi
2pr
p f�Aðb1 � b2Þ � Bða1 � a2Þg

þ KIIffiffiffiffiffiffiffi
2pr
p f2Cða2b2 � a1b1Þ

� Dða2
1 � a2

2 � b2
1 þ b2

2Þg þ r0
11

r22ðr;þpÞ ¼ KIffiffiffiffiffiffiffi
2pr
p fCðb1 � b2Þ þ Dða1 � a2Þg

r12ðr;þpÞ ¼ KIIffiffiffiffiffiffiffi
2pr
p fCðb1 � b2Þ þ Dða1 � a2Þg

r11ðr;�pÞ ¼ � r11ðr;pÞ þ 2r0
11

r22ðr;�pÞ ¼ � r22ðr;pÞ

r12ðr;�pÞ ¼ � r12ðr;pÞ
ð31Þ

where

A ¼ ða1 � a2Þða1a2 � b1b2Þ þ ðb1 � b2Þða2b1 þ a1b2Þ
ða1 � a2Þ2 þ ðb1 � b2Þ

2

B ¼ ða1 � a2Þða2b1 þ a1b2Þ � ðb1 � b2Þða1a2 � b1b2Þ
ða1 � a2Þ2 þ ðb1 � b2Þ

2

C ¼ a1 � a2

ða1 � a2Þ2 þ ðb1 � b2Þ
2

D ¼ b2 � b1

ða1 � a2Þ2 þ ðb1 � b2Þ
2

Thus, performing some algebraic manipulation in

Eq. (30), one obtains

W ðr; pÞ � W ðr;�pÞ
¼ ½W þ � W ��

¼ KIffiffiffiffiffiffiffi
2pr
p 2r0

11

E11ðrÞ

� �
f

�
� Aðb1 � b2Þ

� Bða1 � a2Þg þ
�
� 2m12ðrÞr0

11

E11ðrÞ

�

�fCðb1 � b2Þ þ Dða1 � a2Þg
�

þ KIIffiffiffiffiffiffiffi
2pr
p 2r0

11

E11ðrÞ

� ��

�f2Cða2b2 � a1b1Þ � Dða2
1 � a2

2 � b2
1 þ b2

2Þg
�

þOðr1=2Þ þ � � � ð32Þ

which can be rewritten as

½W þ � W �� ¼ 1ffiffiffiffiffiffiffi
2pr
p F ðKI;KII; r

0
11; r

0
22; r

0
12;E11ðrÞ;

E22ðrÞ;G12ðrÞ; m12ðrÞÞ
þOðr1=2Þ ð33Þ

where F ¼ F ðKI; KII; r11; E11ðrÞ; E22ðrÞ; G12ðrÞ;
m12ðrÞÞ. The range of integration can be divided

into two parts: the first remote from the crack tip,

and the second close to the crack tip. Thus a

characteristic distance parameter is introduced,

which is denoted d, as shown in Fig. 4. The origin

of the x1 axis will be located at the point where

the path C0 intersects the crack face. The dis-
tance from this point to the crack tip is d. It will
be assumed that over the distance d, the term

Fig. 4. Schematic of the integration path and establishment of

notation.
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½W þ � W �� is satisfactorily approximated by the

asymptotic form above (see Eq. (32)). The fol-

lowing approximation is made to the integration

of ½W þ � W �� along the crack faceZ
Cc

½W þ � W ��qnþ2 dC ¼ �
Z

Cc

½W þ � W ��qdx1

� �
Z d�d

0

½W þ � W ��qdx1 �
Z d

d�d

Fffiffiffiffiffiffiffi
2pr
p qdx1

ð34Þ

Using the fact that along the crack face

r ¼ d � x1 (see Fig. 4), one rewrites Eq. (34) asZ
Cc

½W þ � W ��qnþ2 dC

� �
Z d�d

0

½W þ � W ��qdx1 �
2

ffiffiffi
d
p
ffiffiffiffiffiffi
2p
p F ð35Þ

where F 	 F tip ¼ F ðKI;KII; r0
11;E

tip
11 ;E

tip
22 ;G

tip
12 ; m

tip
12 Þ.

Thus, based on Eq. (29) and using the result given

by Eq. (35), the approximate expression for ðJ �2 Þlocal
is

ðJ �2 Þlocal �
Z
A
½rijui;2 � W d2j�q;j dA

�
Z
A
ðW;2ÞqdA�

Z d�d

0

½W þ � W ��qdx1

� 2
ffiffiffi
d
p
ffiffiffiffiffiffi
2p
p F ð36Þ

If the crack faces are traction free, an expres-

sion for the strain energy density can be obtained
according to the global coordinates ðX1;X2Þ
W ¼ 1

2
ðr11e11 þ r22e22 þ r12e12Þ ð37Þ

as used in the FEM implementation. The strain

and stress values are evaluated directly on the
crack faces (Cþc and C�c ) using Gauss integration

along the 3-node line segments of the parent ele-

ments (T6, Q8), rather than being smoothed from

the element interiors. This procedure improves the

accuracy of the numerical results (Kim and Pau-

lino, 2002a).

3.2. Numerical aspects

Since the FEM calculations of displacement,

strain, stress, etc., are based on the global co-

ordinate system, the ðJ �k Þglobal is evaluated first

and then transformed into ðJ �k Þlocal. The quantity

ðĴJ �2 Þlocal is introduced from Eq. (36) as

ðĴJ �2 Þlocal �
Z
A
½rijui;2 � W d2j�q;j dA�

Z
A
ðW;2ÞqdA

�
Z d�d

0

½W þ � W ��qdx1 ð38Þ

so that

ðJ �2 Þlocal ¼ ðĴJ �2 Þlocal �
2

ffiffiffi
d
p
ffiffiffiffiffiffi
2p
p F ð39Þ

or

ðĴJ �2 Þlocal ¼ ðJ �2 Þlocal þ
2

ffiffiffi
d
p
ffiffiffiffiffiffi
2p
p F ð40Þ

The above expressions are represented by the local

coordinates xk, which can be expressed in terms of

the global coordinates Xi by the usual transfor-

mation

xi ¼ aijðhÞXj; aijðhÞ ¼
cos h sin h
� sin h cos h

� �
ð41Þ

The same transformation also holds for the J �k
integral, i.e.

ðJ �1 Þlocal
ðJ �2 Þlocal

� �
¼ cos h sin h
� sin h cos h

� �
ðJ �1 Þglobal
ðJ �2 Þglobal

� �
ð42Þ

For the sake of numerical implementation by

the FEM, Eq. (24) is evaluated in global coordi-

nates. Thus

ðJ �1 Þglobal ¼ ð~JJ �1 Þglobal � R sin h ð43Þ

ðJ �2 Þglobal ¼ ð~JJ �2 Þglobal þ R cos h ð44Þ

where

ð ~JJ �1 Þglobal ¼
Z
A

rij
ou
oX1

�
� W d1j

�
oq
oXj

dA

�
Z
A

oW
oX1

� �
qdA ð45Þ

ð ~JJ �2 Þglobal ¼
Z
A

rij
ou
oX2

�
� W d2j

�
oq
oXj

dA

�
Z
A

oW
oX2

� �
qdA ð46Þ
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The defined quantities ð~JJ �1 Þglobal (Eq. (45)) and

ð~JJ �2 Þglobal (Eq. (46)) are computed numerically to

calculate ðJ �1 Þlocal according to the transformation

given by Eq. (42), i.e.

ðJ �1 Þlocal ¼ ð ~JJ �1 Þglobal cos hþ ð~JJ �2 Þglobal sin h ð47Þ

The quantity ðĴJ �2 Þlocal is computed using Eq. (38),
for two values of d (d1, d2). These values of ðĴJ �2 Þlocal
are called ðĴJ �2 Þd1 , and ðĴJ

�
2 Þd2 . Therefore, from Eq.

(40), one obtains

ðĴJ �2 Þd1 ¼ ðJ
�
2 Þlocal þ

2
ffiffiffiffiffi
d1

pffiffiffiffiffiffi
2p
p F ð48Þ

ðĴJ �2 Þd2 ¼ ðJ
�
2 Þlocal þ

2
ffiffiffiffiffi
d2

pffiffiffiffiffiffi
2p
p F ð49Þ

Once ðJ �1 Þlocal, ðĴJ �2 Þd1 , and ðĴJ �2 Þd2 have been

computed numerically, the ðJ �2 Þlocal is obtained as
follows:

ðJ �2 Þlocal ¼
ðĴJ �2 Þd1

ffiffiffiffiffi
d2

p
� ðĴJ �2 Þd2

ffiffiffiffiffi
d1

p
ffiffiffiffiffi
d2

p
�

ffiffiffiffiffi
d1

p ð50Þ

The relationship between the two components of

the J �k -integral and the mode I and mode II SIFs is
established as (Obata et al., 1989; Ma and Chen,

1996)

ðJ �1 Þlocal ¼ �
a11
2

Im K2
I ðl

tip
1

h
þ ltip

2 Þl
tip
1 ltip

2

þ 2KIKIIl
tip
1 ltip

2 � K2
IIðl

tip
1 þ ltip

2 Þ
i
ð51Þ

ðJ �2 Þlocal ¼ �
a11
4

Im K2
I ðl

tip
1 ltip

2

h
þ ltip

1 ltip
2 ltip

1 ltip
2 Þ

� KIKII ltip
1 ltip

2 ðl
tip
1

n
þ ltip

2 þ ltip
1 þ ltip

2 Þ

þ ðltip
1 þ ltip

2 Þðl
tip
1 ltip

2 þ 3ltip
1 ltip

2 Þ
o

þ K2
II ltip

1 ltip
2 ðl

tip
1

n
þ ltip

2 þ ltip
1 þ ltip

2 Þ

þ ltip
1 ltip

2

oi
ð52Þ

For this case, the SIFs are coupled and they

may be solved by means of the Newton iteration
algorithm with the system of nonlinear equations

as follows:

FðKÞ ¼ ðF1ðKÞ;F2ðKÞÞ;

F1ðKÞ ¼ ðJ �1 Þlocal þ
a11
2

� Im K2
I ðl

tip
1

h
þ ltip

2 Þl
tip
1 ltip

2 þ 2KIKIIl
tip
1 ltip

2

�K2
IIðl

tip
1 þ ltip

2 Þ
i

F2ðKÞ ¼ ðJ �2 Þlocal þ
a11
4

� Im K2
I ðl

tip
1 ltip

2

h
þ ltip

1 ltip
2 ltip

1 ltip
2 Þ

�KIKII ltip
1 ltip

2 ðl
tip
1

n
þ ltip

2 þ ltip
1 þ ltip

2 Þ

þ ðltip
1 þ ltip

2 Þðl
tip
1 ltip

2 þ 3ltip
1 ltip

2 Þ
o

þK2
II ltip

1 ltip
2 ðl

tip
1

n
þ ltip

2 þ ltip
1 þ ltip

2 Þ

þ ltip
1 ltip

2

oi
ð53Þ

where F is a vector-valued function of F1 and F2,
and K is a vector of the unknowns ðKI;KIIÞ.

Determination of ðKI;KIIÞ using Newton iteration:

1. Select K ð0Þ (KI,KII) and initialize counter i ¼ 0.

2. Compute gradient: rFðKÞ.
3. Perform iteration: K ðiþ1Þ ¼ K ðiÞ � FðK ðiÞÞ

rFðK ðiÞÞ.

4. Check convergence: If jFðK ðiÞÞj > TOL, then

i iþ 1, and GOTOGOTO Step 1.

For the initial values of K ð0Þ (KI, KII) in Step 1,

we may use the SIFs obtained by the displacement

correlation technique (DCT) because it provides

physically reasonable SIF values and accelerates

the iterative procedure. Any other judicious choice

for the initial values of K ð0Þ (KI, KII) may be also

acceptable. The SIFs obtained by the DCT are

KI ¼
1

4

ffiffiffiffiffiffi
2p
Da

r
Dð4u1;i�1 � u1;i�2Þ � Bð4u2;i�1 � u2;i�2Þ

AD� BC
ð54Þ

KII ¼
1

4

ffiffiffiffiffiffi
2p
Da

r
Að4u2;i�1 � u2;i�2Þ � Cð4u1;i�1 � u1;i�2Þ

AD� BC
ð55Þ

where

A ¼ Re
i

ltip
1 � ltip

2

ðl1p2

"
� l2p1Þ

#
ð56Þ
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B ¼ Re
i

ltip
1 � ltip

2

ðp2

"
� p1Þ

#
ð57Þ

C ¼ Re
i

ltip
1 � ltip

2

ðl1q2

"
� l2q1Þ

#
ð58Þ

D ¼ Re
i

ltip
1 � ltip

2

ðq2

"
� q1Þ

#
ð59Þ

in which u1;i�1, u1;i�2, u2;i�1, and u2;i�2 are the rel-

ative displacements of the crack tip in the xi
ði ¼ 1; 2Þ direction at locations ði� 1Þ and ði� 2Þ,
r is the distance from the crack tip along the x1
direction, Da is the characteristic length of the

crack tip elements (see Fig. 5), and all the material

parameters and related coefficients are considered

at the crack tip location. The feasibility of the
procedure explained above is illustrated by the

numerical examples in Section 5.

4. Finite element implementation

Graded elements are introduced to discretize

functionally graded material properties (Kim and

Paulino, 2002a,b). The material properties at

Gauss quadrature points are interpolated from

the nodal material properties. The graded ele-

ment were implemented according to the GIF

described by Kim and Paulino (2002a,b). The

behavior of graded elements (4-node and 8-node

quadrilateral elements) has been studied by Pau-
lino and Kim (submitted for publication) consid-

ering plane and axisymmetric states in isotropic

FGMs. For the fracture analyses, the public do-

main FEM code FRANC2D (FRacture ANalysis

Code 2D) (Wawrzynek, 1987; Wawrzynek and

Ingraffea, 1991) has been used as the basis for

implementing fracture capabilities in FGMs.

The source code of FRANC2D is fully accessible
which makes it ideal for further research and

development. The extended code for FGMs is

called I-FRANC2D (Illinois––FRANC2D). The

I-FRANC2D has special techniques to evaluate

SIFs in both isotropic and orthotropic FGMs

(such as the J �k -integral), and to create many sec-

tors and rings around a crack tip. At the crack tip,

six-node triangular quarter-point (T6qp) singular
elements are used; far away from the crack(s),

eight-node serendipity elements (Q8) are used; and

regular triangular quadratic elements (T6) are

employed in the transition region between T6qp

and Q8 elements. Thus the code allows a careful

design of the mesh around the crack-tip region,

which is especially beneficial for modeling ortho-

tropic FGMs.

5. Numerical examples

This paper examines, by means of computa-

tional experiments, the elastic stress analysis for

orthotropic FGMs and the performance of the J �k -
integral in computing SIFs using the FEM. In

order to verify the performance of the J �k -integral,
the following examples are considered:

1. Path-independence of J �k .
2. Plate with a crack parallel to the material gra-

dation.

3. Plate with a crack perpendicular to the material

gradation.

4. Poisson�s ratio effect.

Fig. 5. Crack tip rosette of singular quarter-point (1st ring) and

regular (2nd ring) finite elements. Notice that x ¼ ðx1; x2Þ.
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These problems assess the FEM code and the

performance of the J �k -integral presented for eval-

uation of SIFs in orthotropic FGMs. For all the

examples, the material property nonhomogeneity

is expressed by a known function (see Eq. (27) and

related comments). Moreover, all the examples
have either numerical (e.g. finite element) or semi-

analytical (e.g. integral equation method) solutions

available. Thus, the results obtained with our I-

FRANC2D code are compared with those avail-

able solutions.

The independent engineering constants Eii, Gij

and mij ((mij=Eii) ¼ (mji=Ejj)) (i; j ¼ 1; 2; 3) can be

replaced by the averaged Young�s modulus E, the
effective Poisson�s ratio m, the stiffness ratio d4 and

the shear parameter j0 (Krenk, 1979), i.e.

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E11E22

p
; m ¼ ffiffiffiffiffiffiffiffiffiffiffi

m12m21
p

; d4 ¼ E11

E22

¼ m12
m21

;

j0 ¼
E

2G12

� m ð60Þ

for generalized plane stress. Expressions for plane
strain can be found in the paper by Krenk (1979).

For the sake of comparison with semi-analytical

solutions by Ozturk and Erdogan (1997, 1999), the

above averaged parameters will be used in the

second and third examples below. For plane or-

thotropy, the bounds on Poisson�s ratios m12 and

m21 are given by (Christensen, 1979):

jm12j < ðE11=E22Þ1=2; jm21j < ðE22=E11Þ1=2 ð61Þ
respectively. Therefore the bound on the effective

Poisson�s ratio is m < 1:0.

5.1. Path-independence of J �k

This example discusses path-independence of

the J �k -integral (includes the explicit derivative of

W) in comparison with the Jk-integral (excludes

the explicit derivative of W). Fig. 6(a) shows a

crack of length 2a located with the angle h ¼ 36�
in a finite two-dimensional plate under fixed-grip

loading, Fig. 6(b) shows the complete finite ele-

ment mesh, and Fig. 6(c) shows the contours used

to evaluate both J �k and Jk ðk ¼ 1; 2Þ. Notice that

the Young�s modulus EðXÞ for the isotropic FGM

case, and the material parameters E11ðXÞ, E22ðXÞ,
and G12ðXÞ for the orthotropic FGM case are

exponentially graded as functions of X1, while the

Poisson�s ratio is constant for both cases. The

displacement boundary conditions are prescribed

such that u1 ¼ 0 for the left corner node on the

bottom edge, and u2 ¼ 0 for all the nodes on the

bottom edge. The applied load along the top
edge corresponds to r22ðX1;X2Þ ¼ r22ð�106X1 6

10; 10Þ ¼ e0E0 ebX1 for the isotropic case and

r22ð�106X1 6 10; 10Þ ¼ e0E0
22 e

bX1 for the ortho-

tropic case, as illustrated by Fig. 6(a), which shows

a fixed-grip loading case.

The mesh has been discretized with 625 Q8, 176

T6, and 24 T6qp singular elements with a total of

825 elements and 2392 nodes (see Fig. 6(b)). Fig.
6(c) shows a detail around the crack-tip region with

4 rings (R4) and 12 sectors (S12) of elements. The

following data were used for the FEM analysis:

a=W ¼ 0:1; L=W ¼ 1:0; e0 ¼ 1:0

generalized plane stress; 2� 2 Gauss quadrature

For isotropic FGM case :

EðX1Þ ¼ E0 ebX1 ; E0 ¼ 1:0; m ¼ 0:3; ba ¼ 0:25

For orthotropic FGM case :

E11ðX1Þ ¼ E0
11 e

aX1 ; E22ðX1Þ ¼ E0
22 e

bX1 ;

G12ðX1Þ ¼ G0
12 e

cX1 ; E0
11 ¼ 0:75;

E0
22 ¼ 1:0; G0

12 ¼ 0:5;

m12 ¼ 0:3; ðaa; ba; caÞ ¼ ð0:2; 0:25; 0:15Þ;
ð62Þ

Notice that the independent nonhomogeneity pa-
rameters (a; b; c) are given by

a ¼ 1

2W
log

E11ðW Þ
E11ð�W Þ

� �
;

b ¼ 1

2W
log

E22ðW Þ
E22ð�W Þ

� �
;

c ¼ 1

2W
log

G12ðW Þ
G12ð�W Þ

� �
ð63Þ

and have units ½length��1.
Figs. 7 and 8 show the path-independence of J �k

ðJ �1 ; J �2 Þ in comparison with Jk ðJ1; J2Þ in the iso-
tropic and orthotropic FGMs, respectively. The J �1
and J �2 show path-independence and convergence,

while the values of J1 and J2 increase as the con-

tours become larger. Thus, the explicit derivative
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Fig. 7. Comparison of J �k ðJ �1 ; J �2 Þ and Jk ðJ1; J2Þ for isotropic

FGM. Note that J �k is path independent while Jk is path de-

pendent.

Fig. 8. Comparison of J �k ðJ �1 ; J �2 Þ and Jk ðJ1; J2Þ for orthotropic
FGM. Note that J �k is path independent while Jk is path de-

pendent.

Fig. 6. Plate containing an inclined crack with angle h ¼ 36�: (a) geometry and BCs under fixed-grip loading; (b) complete finite el-

ement mesh; (c) contours for EDI computation of J �k ðJ �1 ; J �2 Þ and Jk ðJ1; J2Þ, and mesh detail using 4 rings (R4) and 12 sectors (S12)

around the crack tips.
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of the strain energy density (see Section 3) must be

taken into account to ensure path-independence of

the J �-integral, especially when finite domains are

considered for its evaluation.

For the orthotropic FGM case where a crack is

not aligned with material directions, Newton�s it-
eration method is used to solve for SIFs ðKI;KIIÞ
because of the nonlinear relations between J �k
ðk ¼ 1; 2Þ and ðKI;KIIÞ. The initial values for SIFs

ðKI;KIIÞ are important in the Newton�s iteration

method. Fig. 9 shows four possible solutions

(four intersection points) for SIFs at the right

crack tip, i.e. (KðþaÞI ;KðþaÞII ):

ð1:340;�1:014Þ; ð1:005;�1:332Þ;

ð�1:340; 1:014Þ; ð�1:005; 1:332Þ

Initial values for SIFs must be carefully selected
for this problem because there are two sets of

admissible solutions for this problem (the first two

results above). If we use initial values of the SIFs

obtained by the DCT, i.e. ðKI;KIIÞ ¼ ð1:405;
�0:917Þ, the final SIFs ðKI;KIIÞ ¼ ð1:340;�1:014Þ
are obtained after six iterations, and are indicated

in bold above (also see Fig. 9). On the other hand,

other initial guesses may also lead to the correct

solution. For instance, for the following two dis-

tinct initial guesses of ðKð0ÞðþaÞI ;Kð0ÞðþaÞII Þ:
ð1;�0:5Þ; ð1;�1Þ
the correct SIFs are obtained after six and sixteen

iterations, respectively, i.e. ðKðþaÞI ;KðþaÞII Þ ¼ ð1:340;
�1:014Þ.

5.2. Plate with a crack parallel to material grada-

tion

Ozturk and Erdogan (1997) have investigated

the mode I crack problem for an infinite nonho-

mogeneous orthotropic medium. Here this prob-

lem is simulated consideringW =a ¼ 10 (Fig. 10(a)).

Fig. 10(a) shows a crack of length 2a located in

a finite two-dimensional plate under fixed grip

loading and Fig. 10(b) illustrates the complete fi-

nite element mesh discretization. Fig. 10(c) shows
a mesh detail with 4 rings (R4) and 16 sectors (S16)

around crack tips. The applied load corresponds

to r22ðX1; 10Þ ¼ e0E0
22 e

bX1 along the top edge, which

is equivalent to the fixed grip condition illustrated

by Fig. 10(a). The displacement boundary condi-

tion is prescribed such that u1 ¼ 0 for the left-hand

corner node on the bottom edge, and u2 ¼ 0 for all

the nodes along the bottom edge.
The variations of E11, E22, and G12 are assumed

to be an exponential function of X1 and propor-

tional to one another, while the Poisson�s ratio m12
is constant. The mesh has 1666 Q8, 303 T6, and 32

T6qp crack-tip singular elements with a total of

2001 elements and 5851 nodes (see Fig. 10(b)). The

following data were used for the FEM analysis:

a=W ¼ 0:1; L=W ¼ 1:0; e0 ¼ 1:0; ba ¼ 0:5

E11ðX1Þ ¼ E0
11 e

bX1 ; E22ðX1Þ ¼ E0
22 e

bX1 ;

G12ðX1Þ ¼ G0
12 e

bX1

j0 ¼ 0:5

m ¼ ð0:1; 0:2; 0:3; 0:4; 0:5; 0:7; 0:9Þ

generalized plane stress; 2� 2 Gauss quadrature

ð64Þ
In this case, the material nonhomogeneity is as-
sumed such that the variations in the stiffnesses

E11, E22, and G12 are proportional and thus

Fig. 9. SIF solution of nonlinear system of equations by

Newton�s iteration method considering (a; b; cÞ ¼ ð0:2; 0:25;
0:15Þ (see Fig. 6). The circle around the bullet indicates the

converged solution: ðKðþaÞI ;KðþaÞII ¼ 1:340;�1:014Þ.

J.-H. Kim, G.H. Paulino / Mechanics of Materials 35 (2003) 107–128 119



b ¼ 1

2W
log

E11ðW Þ
E11ð�W Þ

� �

¼ 1

2W
log

E22ðW Þ
E22ð�W Þ

� �

¼ 1

2W
log

G12ðW Þ
G12ð�W Þ

� �
ð65Þ

Notice that b has units ½length��1.

Table 1 compares the normalized SIFs using the

J �k -integral in an orthotropic plate under fixed-grip

loading with those reported by Ozturk and Erdo-

gan (1997). The FEM results obtained by means of
the J �k -integral agree with the SIFs obtained by

Ozturk and Erdogan (1997) to within 2%. Notice

that the effective Poisson�s ratio m ¼ ffiffiffiffiffiffiffiffiffiffiffi
m12m21
p

has a

negligible effect on the SIFs for the mode I crack

problem.

Fig. 10. Plate with a center crack parallel to the material gradation: (a) geometry and BCs under fixed-grip loading; (b) complete finite

element mesh; (c) mesh detail using 4 rings (R4) and 16 sectors (S16) around crack tips.
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5.3. Plate with a crack perpendicular to material

gradation

Ozturk and Erdogan (1999) have investigated
the mixed-mode crack problem for an infinite

nonhomogeneous orthotropic medium. Fig. 11(a)

and (b) show a crack of length 2a located in a finite

two-dimensional plate under remote uniform ten-

sion loading for two different boundary conditions.

These boundary conditions are prescribed such

that, for Fig. 11(a), u1 ¼ 0 along the left and right

edges and, in addition, u2 ¼ 0 for the node in the
middle of the left edge, while for Fig. 11(b), u1 ¼ 0

for the left corner node of the bottom edge and

u2 ¼ 0 along the bottom edge. The finite element

mesh configurations are the same as in the previous

example (see Fig. 10(b) and (c)). The applied load

corresponds to r22ðX1;�LÞ ¼ �r ¼ �1:0 for the

BC in Fig. 11(a), and r22ðX1; LÞ ¼ r ¼ 1:0 for the

BC in Fig. 11(b).

The variations of E11, E22, and G12 are expo-

nential functions of X2 and are proportional, while
the Poisson�s ratio m12 is constant. The following

data were used for the FEM analysis:

a=W ¼ 1=9; 1=10; 1=11; 1=13; 1=15; L=W ¼ 1:0;

E11ðX2Þ ¼ E0
11 e

bX2 ; E22ðX2Þ ¼ E0
22 e

bX2 ;

G12ðX2Þ ¼ G0
12 e

bX2 ;

dimensionless nonhomogeneity parameter:

ba ¼ ð0:0 to 0:5Þ;
d4 ¼ E11=E22 ¼ ð0:25; 0:5; 1:0; 3:0; 10:0Þ;
j0 ¼ ð�0:25; 0:0; 0:5; 1:0; 2:0; 5:0Þ; m ¼ 0:30;

generalized plane stress; 2� 2 Gauss quadrature

ð66Þ
Similarly to the previous example, the material

nonhomogeneity is assumed such that the varia-

tions in the stiffnesses E11, E22, and G12 are pro-

portional and thus

b ¼ 1

2L
log

E11ðLÞ
E11ð�LÞ

� �
¼ 1

2L
log

E22ðLÞ
E22ð�LÞ

� �

¼ 1

2L
log

G12ðLÞ
G12ð�LÞ

� �
ð67Þ

Fig. 11. Plate with a center crack perpendicular to the material gradation: (a) first set of BCs; (b) second set of BCs.

Table 1

Normalized SIFs in an inhomogeneous orthotropic plate under

fixed grip loading for various Poisson�s ratios––mode I

(ba ¼ 0:5, j0 ¼ 0:5, K0 ¼ e0E
0 ffiffiffiffiffiffi

pa
p

; E
0 ¼ E0=d2; E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0
11E

0
22

p
)

m J �k integral Ozturk and Erdogan

(1997)

KIðþaÞ=K0 KIð�aÞ=K0 KIðþaÞ=K0 KIð�aÞ=K0

0.1 1.4451 0.6776 1.4183 0.6647

0.2 1.4488 0.6802 1.4233 0.6676

0.3 1.4522 0.6822 1.4280 0.6704

0.4 1.4559 0.6843 1.4325 0.6730

0.5 1.4593 0.6864 1.4368 0.6755

0.7 1.4655 0.6902 1.4449 0.6802

0.9 1.4718 0.6939 1.4524 0.6846
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As before, b has units ½length��1. Therefore 1=b is

the single length scale of nonhomogeneity for this

specific problem.

Figs. 12 and 13 show the FEM results for

normalized strain energy release rates with varying
d4 and fixed ba ¼ 0:5 using various plate size and

considering the two BCs of Fig. 11(a) and (b),

respectively. The normalizing strain energy release

rate G0 ¼ pr2a=E0 corresponds to a homogeneous

isotropic medium (ba ¼ 0, j0 ¼ 1, d4 ¼ 1). For the

BC of Fig. 11(a), Fig. 12 shows that there is no size

effect on G=G0, which matches well the results by

Ozturk and Erdogan (1999) for an infinite me-

dium; while for the BC of Fig. 11(b), there is a

significant size-effect on G=G0, as illustrated by

Fig. 13. As the plate size changes, the solution also

changes. Notice that the effect of plate size on
G=G0 strongly depends on far-field boundary con-

ditions in FGMs, however, such phenomenon is

not observed in homogeneous materials (cf. Pau-

lino et al., 1993).

The effect of boundary conditions and material

gradation on G=G0 are investigated by fixing plate

size 2W � 2L ¼ 20� 20. Fig. 14 shows plots of

normalized strain energy release rates in a non-
homogeneous orthotropic plate under uniform

tension for two different boundary conditions for a

fixed stiffness ratio d4 ¼ 10 and constant Poisson�s
ratio m ¼ 0:3 with varying material nonhomoge-

neity ba and j0. It is clearly observed that the

boundary conditions and the Poisson�s ratio have

much influence on the strain energy release rates

and SIFs. The boundary condition of Fig. 11(a)
prohibits the Poisson�s effect of contraction in the

X1 direction. When using this BC (see Fig. 11(a)),

the FEM results agree with the normalized strain

energy release rates (G=G0) obtained by Ozturk

and Erdogan (1999), which are monotonically in-
Fig. 12. Normalized strain energy release rate versus d4 for

ba ¼ 0:5. There is no size-effect for this case (first set of BCs).

Fig. 13. Size-effect on normalized strain energy release rate

versus d4 for ba ¼ 0:5. Notice the pronounced size-effect for this

case (second set of BCs).

Fig. 14. Normalized strain energy release rate versus the non-

homogeneity parameter ba and the shear parameter j0 con-

sidering uniformly applied tension (r22ðX1;�LÞ ¼ �r for the

first set of BCs and r22ðX1; LÞ ¼ r for the second set of BCs) and

d4 ¼ 10:0, m ¼ 0:3, G0 ¼ pr2a=E0.
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creasing functions of j0 and ba. However, for the

other BC (see Fig. 11(b)), the results (dashed lines

in Fig. 14) differ significantly from the previous

ones (solid lines in Fig. 14). Notice that, for the

case illustrated by Fig. 11(b), although G=G0 is still

an increasing function of j0, it is a decreasing
function of ba.

Figs. 15 and 16 give the FEM results for a fixed

j0 ¼ 1 with varying d4 and ba for the two BCs of

Fig. 11(a) and (b), respectively. For the BC of Fig.

11(a), Fig. 15 shows that G=G0 is an increasing

function of d4, which agrees well with the results

by Ozturk and Erdogan (1999). Moreover, G=G0 is

a monotonically increasing function of ba. How-
ever, for the BC of Fig. 11(b), the overall behavior

is quite different as shown by Fig. 16. Note that

G=G0 is a monotonically increasing function of ba
for d4 ¼ 0:25 and a monotonically decreasing

function of ba for d4 ¼ 10:
Figs. 17 and 18 show the FEM results with

varying ba and d4 considering the two BCs of Fig.

11(a) and (b), respectively. For the BC of Fig.
11(a), Fig. 17 shows that G=G0 is an increasing

function of ba, which matches well the results by

Ozturk and Erdogan (1999); while for the BC of

Fig. 11(b), G=G0 loses such trends for ba as illus-

trated by Fig. 18. Fig. 19 shows an enlargement for

the transition region d4 ¼ ð0:25–2:0Þ, observed in

Fig. 18. The region around d4 ¼ 1 is of special
interest because of the change of the stiffness ratio

E11=E22 (from E11 < E22 to E11 > E22). Notice that,

for this particular case of a 20� 20 plate with a

center crack, the curves for the nonhomogeneous

materials meet near d4 ¼ 0:5. However, this loca-

tion changes as the plate size changes (size-effect).

Fig. 20 shows a comparison of the FEM results

Fig. 15. Normalized strain energy release rate with the non-

homogeneity parameter ba and the stiffness parameter d4 con-

sidering uniform tension (first set of BCs), and r22ðX1;�LÞ ¼
�r, j0 ¼ 1, m ¼ 0:3, G0 ¼ pr2a=E0.

Fig. 16. Normalized strain energy release rate with the non-

homogeneity parameter ba and the stiffness parameter d4 con-

sidering uniform tension (second set of BCs), and

r22ðX1; LÞ ¼ r, j0 ¼ 1, m ¼ 0:3, G0 ¼ pr2a=E0.

Fig. 17. Normalized strain energy release rate with the stiffness

parameter d4 and the nonhomogeneity parameter ba consider-

ing uniform tension (first set of BCs), and r22ðX1;�LÞ ¼ �r,
j0 ¼ 1, m ¼ 0:3, G0 ¼ pr2a=E0.
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obtained by the present method (using the path-

independent J �k -integral) with those obtained by

the modified crack closure (MCC) method (Kim

and Paulino, 2002c). Notice that there is relatively

good agreement between the two methods.
Figs. 21 and 22 show the variation of G=G0 with

ba and j0 for a fixed d4 ¼ 9 considering the two

BCs of Fig. 11(a) and (b), respectively. For the BC

of Fig. 11(a), Fig. 21 shows that G=G0 is an in-

creasing function of ba and j0 for d4 ¼ 9, which

agrees with the results by Ozturk and Erdogan

(1999). However, for the BC of Fig. 11(b), Fig. 22

shows that G=G0 is a decreasing function of ba and
j0 for d4 ¼ 9. Notice that the FEM results are

obtained for j0 P � 0:25. To ensure that the ex-

pression E=ð2G12Þ ¼ j0 þ m in Eq. (60) is satisfied
for the range of material properties considered

here, the shear parameter j0 should be greater

than )0.3.

Fig. 19. Zoom of Fig. 18 for the range of d4 ¼ ð0:25–2:0Þ.

Fig. 20. Comparison of the FEM results obtained by the pre-

sent method and the MCC method (Kim and Paulino, 2002c)

for normalized strain energy release rate versus the stiffness

parameter d4 and the nonhomogeneity parameter ba consider-

ing uniform tension (second set of BCs), and r22ðX1;LÞ ¼ r,
j0 ¼ 1, m ¼ 0:3, G0 ¼ pr2a=E0.

Fig. 18. Normalized strain energy release rate with the stiffness

parameter d4 and the nonhomogeneity parameter ba consider-

ing uniform tension (second set of BCs), and r22ðX1; LÞ ¼ r,
j0 ¼ 1, m ¼ 0:3, G0 ¼ pr2a=E0.

Fig. 21. Normalized strain energy release rate with the shear

parameter j0 and the nonhomogeneity parameter ba consider-

ing uniform tension (first set of BCs), and r22ðX1;�LÞ ¼ �r,
d4 ¼ 9, m ¼ 0:3, G0 ¼ pr2a=E0.
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In summary, the BCs, plate size, material gra-
dation, and orthotropy may have a significant in-

fluence on fracture behavior. Due to the intrinsic

length scales of material nonhomogeneity (1=b in

Eq. (67), which has units of [length]), there exists

an interplay between the geometrical length scale

of the boundary value problem and the length

scale of material gradation (cf. Figs. 12 and 13).

5.4. Poisson’s ratio effect

As pointed out in Section 5.2, where a mode I

crack is investigated (crack parallel to the material

gradation––see Fig. 10(a)), the Poisson�s ratio has

a negligible effect on the SIFs, as evidenced by the

results shown in Table 1. However, for the mixed-

mode crack problem (e.g. crack perpendicular to

the material gradation––see Fig. 11(b)), the Pois-

son�s ratio has much influence on the SIFs. This

point is shown by considering the results of Table
2 for the plate of Fig. 11(b) with E11, E22, and G12

exponential functions of X2, which is under uni-

formly applied remote tension load r22ðX1; 10Þ ¼
1:0, and by comparing the results with those of

Table 1.

6. Conclusions and extensions

This paper presents the path-independent J �k -
integral formulation, in conjunction with a corre-

sponding general purpose FEM, for mixed-mode

crack problems considering cracks arbitrarily ori-

ented with respect to the principal axes of ortho-

tropy in linearly elastic orthotropic FGMs. The

path-independent J �k -integral formulation, previ-
ously developed for isotropic FGMs, is extended

to orthotropic FGMs. The J �k -integral includes

the explicit derivative of the strain energy density

and exhibits path-independence for mixed-mode

problems. The numerical results show good agree-

ment with the semi-analytical solutions by Ozturk

and Erdogan (1999), which are valid for an infi-

nite orthotropic nonhomogeneous medium having
proportional stiffness (E11;E22;G12) and constant

Poisson�s ratio with a single crack along a princi-

pal orthotropy direction. In general, such solutions

provide higher accuracy than numerical solutions,

however, the present FEM implementation, using

the J �k -integral formulation, does not have any of

these limitations, and is valid for any material

variation, any BCs, and multiple cracks with ar-
bitrary orientation in finite bodies.

Plate size, material property gradation (isotropy

or orthotropy), and BCs play a significant role in

fracture behavior of FGMs. For a given plate size,

the effect of material gradation is characterized by

the length scale of material gradation, which in-

terplays with the geometrical length scale. Thus, in

general, the ratio of crack size to the dimensions of
a plate (a=W ) does not lead to a converged solu-

tion when approximating an infinite domain with a

Table 2

Normalized SIFs in an inhomogeneous orthotropic plate under

remote constant loading for various Poisson�s ratios––mixed-

mode (ba ¼ 0:5, j0 ¼ 0:5)

m J �k -integral

KI KII

0.1 1.6140 0.1992

0.2 1.4162 0.1878

0.3 1.2404 0.1773

0.4 1.0836 0.1674

0.5 0.9428 0.1577

0.7 0.7010 0.1378

0.9 0.5014 0.1018

Fig. 22. Normalized strain energy release rate with the shear

parameter j0 and the nonhomogeneity parameter ba consider-

ing uniform tension (second set of BCs), and r22ðX1; LÞ ¼ r,
d4 ¼ 9, m ¼ 0:3, G0 ¼ pr2a=E0.
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finite domain for boundary value problems in

FGMs. However, this behavior is not observed

in homogeneous materials. Moreover, the numer-

ical results obtained indicate that the Poisson�s
ratio has a significant influence on SIFs and

mode-mixity for mixed-mode crack problems with
prescribed boundary conditions, while it has a

negligible effect for pure mode I problems.

The potential extensions of this work include

development of fracture criteria and simulation

crack propagation for orthotropic FGMs. The

computational simulations need to be validated

by means of carefully executed experiments. These

topics are currently under investigation by the
authors.
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