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Abstract

A micromechanics-based elastic model is developed for two-phase functionally graded materials with locally pair-wise interac-

tions between particles. While the effective material properties change gradually along the gradation direction, there exist two

microstructurally distinct zones: particle–matrix zone and transition zone. In the particle–matrix zone, pair-wise interactions be-

tween particles are employed using a modified Green’s function method. By integrating the interactions from all other particles over

the representative volume element, the homogenized elastic fields are obtained. The effective stiffness distribution over the gradation

direction is further derived. In the transition zone, a transition function is constructed to make the homogenized elastic fields

continuous and differentiable in the gradation direction. The model prediction is compared with other models and experimental data

to demonstrate the capability of the proposed method.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years functionally graded materials (FGMs)

have attracted a good deal of attention from engineers

and researchers due to their unique thermomechanical
performance [1–3]. These materials are characterized for

spatially varying microstructures created by non-uni-

form distributions of the reinforcement phase, as well as

by interchanging the role of the reinforcement and ma-

trix in a continuous manner [4]. Within FGMs, the

different microstructural phases have different functions,

and the overall FGMs attain the multifunctional status

from their property gradation, enabling various multi-
functional tasks by virtue of spatially tailored micro-

structures. For instance, in a ceramic/metal FGM, a

continuous trade-off of metallic toughness and high

thermal conductivity is made with ceramic hardness and
* Corresponding author. Tel.: +1-319-384-0830; fax: +1-319-335-

5660.

E-mail address: lizhi-sun@uiowa.edu (L.Z. Sun).

1359-6454/$30.00 � 2004 Acta Materialia Inc. Published by Elsevier Ltd. A

doi:10.1016/j.actamat.2004.04.007
low thermal conductivity. In heat and impact protection

applications, the material multifunctionality consists of

the ability to provide structural support by virtue of the

metallic portions of the FGM, and the simultaneous

ability of the same material system to provide the re-
quired thermal or impact resistance by virtue of the

ceramic portions of the FGM.

Several FGMs are manufactured by two phases of

materials with different properties. Since the volume

fraction of each phase gradually varies in the gradation

direction, the effective properties of FGMs change along

this direction. While FGMs have been designed and

fabricated by diverse methods to achieve unique mi-
crostructures, very limited analytical investigations are

available to tackle the spatial variation of microstruc-

ture [5]. Conventional composite models such as the

Mori–Tanaka method [6] and the self-consistent method

[7,8] are directly applied to estimate the effective elastic

responses of FGMs [1,2,9–12]. Because they were orig-

inally developed for homogeneous mixtures with con-

stant particle concentration, those models are not able
to capture the material gradient nature of FGMs. Fur-
ll rights reserved.
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thermore, no direct interactions between particles are

taken into consideration [13].

Experimental observations (e.g., [3,14]) show that the

typical microstructure of FGMs, illustrated in Fig. 1(a)

towards the gradation direction, contains a particle–
matrix zone with discrete particles filled in continuous

matrix, followed by a skeletal transition zone in which

the particle and matrix phases cannot be well defined

because the two phases are interpenetrated into each

other as a connected network. The transition zone is

further followed by another particle–matrix zone with

interchanged phases of particle and matrix. Hirano et al.

[15] applied the fuzzy logic approach to estimate the ef-
fective elastic behavior in the transition zone by using a

transition function to combine the two solutions ob-

tained from the particle–matrix zones. Reiter and Dvo-

rak [16] also adopted the transition functions combined

with the Mori–Tanaka model in the particle–matrix zone

and self-consistent model in the skeletal transition zone.

The above-mentioned FGMs models did not directly

include the local interactions between particles. Conse-
quently, they could not take into account the graded

particle distribution for FGMs. Some studies have

suggested the need for higher order theory in the mod-

eling of FGMs. For example, Zuiker and Dvorak [17]

extended the Mori–Tanaka method to linearly varying
Fig. 1. Schematic illustration of a two-phase FGM sample: (a) typical

microstructure including A and B phases; (b) three zones in macro-

scopic scale X; and (c) RVE in the microscopic scale x.
fields and investigated the relations of the averaged

stress versus strain relation and of the stress-gradient

versus strain-gradient, which was shown to be depen-

dent on the size of the representative volume element

(RVE). Here the RVE for a material point in a contin-
uum body is a material volume that statistically repre-

sents the material neighborhood of the material point

[24]. Aboudi et al. [5] developed a higher-order numer-

ical cell theory based on volumetric averaging of the

various fields. Micromechanical finite element models

have also been constructed [16,18–20]. While taking into

account the local particle interactions, these numerical

methods are computationally intensive and inconvenient
to be implemented for engineering structural analysis.

In this paper a micromechanical framework is pro-

posed to investigate the effective elastic behavior of

FGMs. Based on the Eshelby’s equivalent inclusion

method [21], the pair-wise particle interaction is col-

lected for any two particles embedded in the matrix

medium. Given a uniform loading on the upper and

lower boundaries of FGMs, averaged strains in particles
are derived by integrating pair-wise interaction contri-

butions of all particles. In the course of derivation, the

microscopic RVE is constructed to reflect the micro-

structure of FGMs. A transition function is adopted in

the skeletal transition zone. From the effective stress and

strain fields distributed in the gradation direction of

FGMs, the effective elasticity distribution is solved as a

function of gradation direction.
The rest of this paper is organized as follows. In

Section 2, we briefly review the Eshelby’s equivalent

inclusion method [21] and two-inhomogeneity interac-

tion in the infinite medium [22]. We then apply the pair-

wise particle interaction for the micromechanical

analysis of FGMs to develop an elastic constitutive

model in Section 3. We further discuss the relation of the

proposed model and the Mori–Tanaka model, and
present the numerical results and comparisons with

available experimental data in Section 4.
2. Micromechanics of pair-wise particle interaction

To solve the local elastic field of a single ellipsoidal

particle filled in the infinite domain under a far field
strain, Eshelby [21] offered an analytical solution

through a so-called equivalent inclusion method. The

essence of this method is that the particle–matrix het-

erogeneous domain is transferred to a homogeneous

domain same as the matrix material but with an eigen-

strain acting in the particle phase to represent inhomo-

geneity. The equivalent inclusion method has been

widely applied in evaluating the effective mechanical
properties of heterogeneous composites [23,24].

Based on the Eshelby’s equivalent inclusion method,

the local strain field at a certain point x for one particle
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with the radius a embedded in the infinite matrix under

the external far-field strain e0 can be written as

eðxÞ ¼ e0 þ e0ðxÞ; ð1Þ
where the perturbed strain e0 due to the elastic mismatch

between the particle and the matrix reads:

e0ðxÞ ¼ �
Z
X
C x; x0� �

� C0 : e
� x0� �

dx0; ð2Þ

in which X represents the ellipsoidal particle domain in

general, C0 signifies the elastic stiffness tensor of the

matrix, and e� denotes the equivalent eigenstrain. The

symbols ‘‘�’’ and ‘‘:’’ indicate the tensor contraction be-
tween two fourth-rank tensors and between fourth-rank

and second-rank tensors, respectively. The modified two-

point Green function C has the explicit form as [25]:

Cijkl x;x0� �
¼ 1

16pl0 1� v0ð Þr3 dijdkl
�

� 1ð � 2v0Þ

� dikdjl
�

þ dildjk
�
� 3 dijnknl

�
þ dklninj

�
� 3v0 diknjnl

�
þ djkninl þ dilnjnk þ djlnink

�
þ 15ninjnknl

�
; ð3Þ

with r ¼ jx� x0j, n ¼ ðx� x0Þ=r, and l0 and v0 being

the shear modulus and Poisson’s ratio of the matrix,

respectively.

From the stress equivalent formulation in the spher-

ical particle domain with elastic stiffness C1

C1 : e0
�

þ e0ðxÞ
�
¼ C0 : e0

�
þ e0ðxÞ � e�ðxÞ

�
; ð4Þ

the equivalent eigenstrain e� is derived as

e� ¼ C�1
0 � P0

�
� DC�1

��1
: e0; ð5Þ

where DC ¼ C1 � C0, and ðP0Þijkl ¼ ½dijdkl� ð4� 5v0Þ
ðdikdjl þ dildjkÞ�=½30l0ð1� v0Þ�. Combining Eqs. (1), (2)

and (5), the local strain filed can be calculated. In par-

ticular, the strain field �e in the spherical particle domain

X is shown to be uniform as

�e ¼ Ið � P0 � DCÞ�1 : e0; ð6Þ
with the fourth-rank identity tensor Iijkl ¼ ðdikdjlþ
dildjkÞ=2.

Moschovidis and Mura [22] extended the single par-

ticle problem to the case of two spherical particles with

identical size embedded in the infinite matrix domain.

By expanding the equivalent eigenstrain and the dis-
turbing strain in terms of polynomial form of local co-

ordinates, we can solve Eqs. (1), (2) and (4) for the local

strain field eðxÞ. Furthermore, the averaged strain in

each spherical particle domain X is integrated as

��e¼D 1

VX

Z
X
eðxÞdx

¼ I½ � P0 � DC� P x1; x2ð Þ � DC��1 : e0 þOð~q8Þ; ð7Þ

where ~q ¼ a=b and VX ¼ 4pa3=3 with a being the particle
radius and b being the center-to-center distance between
the two particles centered at x1 and x2, respectively. In

addition, the fourth-rank tensor P reads:

P ijkl x1; x2ð Þ ¼ ~q3

60l0 1� v0ð Þ ½ð5::� 3~q2Þdijdkl

� ð5� 10v0 þ 3~q2Þ dikdjl
�

þ dildjk
�

þ 15ð5� 7~q2Þ~ni~nj~nk~nl � 15ð1� ~q2Þ

� ðdij~nk~nl þ dkl~ni~njÞ � 15ðv0 � ~q2Þ
� ðdik~nj~nl þ djk~ni~nl þ dil~nj~nk þ djl~ni~nkÞ�;

ð8Þ

with ~n ¼ ðx1 � x2Þ=b. Comparing Eqs. (6) and (7), we

can find that the additional particle provides an inter-

action on the averaged strain of the first particle as

d x1; x2ð Þ ¼ DC�1 � L x1; x2ð Þ : e0; ð9Þ
where the pair-wise interaction tensor

L x1; x2ð Þ ¼ DC�1
��

� P0 � P x1; x2ð Þ
��1 � DC�1

�
� P0

��1
�

þOð~q8Þ: ð10Þ

It is noted that the pair-wise interaction term can reach

high precision as order of Oð~q8Þ where ~q is always no

greater than 0.5. Further, the mathematical inverse op-

eration of the fourth-rank tensor that appears in Eqs. (7)

and (10) can be found in [13]. After lengthy but straight-

forward derivation, the fourth-rank pair-wise interaction

tensor L in Eq. (10) can be explicitly expressed as

Lijkl x1; x2ð Þ ¼ c1dijdkl þ c2 dikdjl
�

þ dildjk
�

þ c3ðdij~nk~nl þ dkl~ni~njÞ
þ c4ðdik~nj~nl þ dil~nj~nk þ djk~ni~nl þ djl~ni~nkÞ
þ c5~ni~nj~nk~nl; ð11Þ

where the coefficients ci (i ¼ 1; 2; . . . ; 5) are defined in

Appendix A.
3. Micromechanical analysis of FGMs

Let us consider a typical FGMmicrostructure (Fig. 1)
containing two phases A and B with isotropic elastic

stiffness CA and CB, respectively. The global coordinate

system of the FGM is denoted by (X1;X2;X3) with X3

being the continuous gradation direction. The overall

grading thickness of the FGM is t. In each infinitesimal

graded layer (X1–X2 plane), micro-particles are uniformly

distributed with a two-dimensionally random setting so

that thematerial layer is statistically homogeneous.While
these micro-particles cannot be observed in the macro-

scopic scale, the volume fraction of phase A or B (for

convenience, we use / to denote the volume fraction of

phase A) is gradually changed in the gradation direction

X3. Microscopically, the particle and the matrix zones

could be well defined when/ is close to 0 or 1 (e.g., Zone I
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and Zone III in Fig. 1(b)). However, a skeletal transition

zone (Zone II) normally exists in middle area (e.g.,

d1 < X3 < d2) in which it is difficult to identify the particle

ormatrix phase. The transition zone boundaries d1 and d2
are generally determined by the FGM fabrication process
directly related to the phase volume fraction /ðX3Þ.

To calculate the effective FGM elastic stiffness �CðX3Þ,
a uniform far-field stress tensor r0 is first applied on the

FGM X3 boundary. Based on the equilibrium condition,

the far-field stress should be related to the averaged

strain heiðX3Þ in each X1–X2 layer as

r0 ¼ �CðX3Þ : heiðX3Þ; ð12Þ
where the far-field stress (equal to the averaged stress

hriðX3Þ) and averaged strain in the X1 � X2 layer can be

further written as

r0 ¼ /ðX3ÞCA : heiAðX3Þ þ 1½ � /ðX3Þ�CB : heiBðX3Þ;
ð13Þ

heiðX3Þ ¼ /ðX3Þ eh iAðX3Þ þ 1½ � /ðX3Þ�heiBðX3Þ: ð14Þ
For any macroscopic material point X0 (Fig. 1(b)) in

the range of 06X3 6 d1 (Zone I), the corresponding mi-
crostructuralRVE (Fig. 1(c)) contains a number ofmicro-

particles of the phase A embedded in a continuous matrix

of the phase B so that the overall volume fraction of

particle phase A and the its gradient should be consistent

with the macroscopic counterparts /ðX 0
3 Þ and d/=

dX3jX3¼X 0
3
. The microscopic coordinate system (x1; x2, and

x3) is constructed with the origin corresponding toX0. All

micro-particles are assumed to be specifically spherical
with identical radius a ða � tÞ for straightforward for-

mulation. ThewholeRVEdomain is denoted asD and the

ith micro-particle ði ¼ 1; 2; 3; . . . ;1Þ domain is denoted

asXi centered at x
i. For the ease of formulation, a particle

centered at the origin is assumed and denoted as X0.

While the Eshelby’s single spherical-particle solution

offers the uniform strain distribution in the particle

phase, the local strain field in each particle is position-
dependent for many particles embedded in the matrix.

To simplify the elastic modeling for the FGM, the av-

eraged particle strains are collected based on the local

strain fields in particles located at various x1–x2 layers.

Specifically, the averaged strain in the central particle X0

can be written in two parts: the elastic-mismatch inter-

action between the central particle and the matrix

(Eq. (6)) and the pair-wise interaction between the
central particle and other particles (Eq. (9)):

heiAð0Þ ¼ Ið � P0 � DCÞ�1 : heiBð0Þ

þ
X1
i¼1

DC�1 � L 0; xið ÞheiB xi3
� �

; ð15Þ

where heiBð0Þ is the averaged matrix strain in the layer
with x3 ¼ 0 and heiBðxi3Þ is the averaged matrix strain

tensor in the xi3th layer. Because all particles are statis-

tically distributed in a random way, the probability of
particle distribution can be introduced to statistically

demonstrate the particle interaction effect. Therefore,

the second-rank pair-wise interaction tensor hdið0Þ (i.e.,
the second term of the right hand side of Eq. (15)) can be

further integrated over all possible particle positions as

hdið0Þ¼D
X1
i¼1

DC�1 � L 0; xið Þ : heiB xi3
� �

¼
Z
D
P xj0ð ÞDC�1 � L 0; xð Þ : heiBðx3Þdx; ð16Þ

where Pðxj0Þ is the conditional number density function

used to find a particle centered at x when the first particle

is located at 0. For statistically homogeneous composite

materials containing randomly distributed spherical

particles with the volume fraction /, the particle proba-
bility density function is frequently proposed as [13,26]:

P xj0ð Þ ¼ 3/gðxÞ
4pa3

; ð17Þ

where x denotes the distance from x to 0, or jxj. The
term 3/=ð4pa3Þ in fact indicates the total number of

particles per unit volume. The other term gðxÞ is the

radial distribution function of particles proposed by

Percus and Yevick [27] to estimate the particle non-

uniformity effect in the radial direction.

For the FGM considered, since the micro-particles in
RVE are distributed in a continuously increasing man-

ner in the gradation direction, the particle density

function is proposed as

P xj0ð Þ ¼ 3gðxÞ
4pa3

/ X 0
3

� ��
þ e�x=d/;3 X 0

3

� �
x3
�
: ð18Þ

Here the expression enclosed by square brackets is

constructed on the basis that the averaged volume

fraction of particle in the RVE is /ðX 0
3 Þ, the gradient

of particle volume fraction is /;3ðX 0
3 Þ, and in the far

field the particle concentration must not be beyond

the range of zero to the maximum particle concen-

tration. Thus, an exponential function is introduced to

attenuate the gradation term exponentially. The pa-

rameter d, which controls the attenuating rate, will be

determined under the condition that the maximum

volume fraction of particles in the RVE should not be
greater than the maximum volume fraction in parti-

cle–matrix zone. Since the particle interaction energy

is quickly attenuated with the increment of the dis-

tance between particles, those particles in the neigh-

boring domain of the central particle should

contribute the majority part for the averaged strain of

the central particle.

Similarly to Moschovidis and Mura [22] and Ju and
Chen [13], the Taylor expansion of heiBðx3Þ is applied to

analytically integrate equation (16). It is noted that the

average strain heiBðx3Þ varies along the grading direc-

tion. It is differentiable and bounded, and thus is ap-

proximated by the Taylor expansion. In the chosen
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RVE, the elastic interaction between the central particle

and the particles far away from it is negligible; only the

particles in the close neighborhood of the central par-

ticle may have noticeable interaction on the central

particle. As a first order approximation, we truncate the
Taylor expansion of heiBðx3Þ to linear term in terms of x3
so that Eq. (16) can be analytically integrated and

rewritten as

hdið0Þ ¼ / X 0
3

� �
DC�1 �Dð0Þ : heiBð0Þ

þ /;3 X 0
3

� �
DC�1 � Fð0Þ : heiB;3ð0Þ; ð19Þ

where

D ¼
Z
D

3gðxÞ
4pa3

L 0; xð Þdx;

F ¼
Z
D
e�x=d 3gðxÞ

4pa3
L 0; xð Þx23 dx:

ð20Þ

The above two integration terms D and L can be further

simplified. The volume element dx ¼ dx1 dx2 dx3 can be

expressed as dx ¼ x2 dxdx where x¼D jxj and dx is the

surface element on the unit sphere R centered at the

origin of the coordinates.

With the help of the following identitiesZ
R

~ni~nj dx ¼ 4p
3
dij; ð21Þ

Z
R

~ni~nj~nk~nl dx ¼ 4p
15

dijdkl
�

þ dikdjl þ dildjk
�

ð22Þ

andZ
R

~ni~nj~nk~nl~np~nq dx

¼ 4p
105

dij dkldpq
��

þ dkpdlq þ dkqdlp
�

þ dik djldpq
�

þ djpdlq þ djqdlp
�

þ dil djkdpq
�

þ djpdkq þ djqdkp
�

þ dip djkdlq
�

þ djldkq þ djqdkl
�

þ diq djkdlp
�

þ djldkp þ djpdkl
��
; ð23Þ

the two integrations can be further simplified asZ
R
Lijkl 0; xð Þdx ¼ 4p

15
15c1ð þ 10c3 þ c5Þdijdkl

þ 4p
15

15c2ð þ 10c4 þ c5Þ dikdjl
�

þ dildjk
�

ð24Þ
and

Z
R
Lijkl 0;xð Þ~n23dx

¼ 4p
105

35c1½ þ14c3þc5þ2 7c3ð þc5Þ dI3ð þdK3Þ�dijdkl

þ 4p
105

35c2½ þ14c4þc5þ2 7c4ð þc5Þ dI3ð þdJ3Þ� dikdjl
�

þdildjk
�
:

ð25Þ
It is noted that Mura’s [23] tensorial indicial notation is

followed in the above equation; i.e., uppercase indices

have the same representation as the corresponding

lowercase ones but are not summed. Recognizing the

explicit form of Eqs. (24) and (25), only one-dimensional
numerical integration in terms of x should be further

employed to calculate D and F in Eq. (20).

Substituting Eq. (19) into Eq. (15) and recognizing

that the origin of the local coordinates in the RVE

corresponds to the global coordinate point X0 of FGM,

we can obtain the averaged particle strain tensor in

terms of the arbitrary material point X3

heiA X3ð Þ ¼ Ið � P0 � DCÞ�1
: heiB X3ð Þ

þ / X3ð ÞDC�1 �D X3ð Þ : heiB X3ð Þ
þ /;3 X3ð ÞDC�1 � F X3ð Þ : heiB;3 X3ð Þ: ð26Þ

With the combination of Eqs. (13) and (26), the aver-

aged particle strain tensor heiAðX3Þ and the averaged
matrix strain tensor heiBðX3Þ in the FGM gradation di-

rection X3 can be solved in terms of the far-field stress

r0. Since Eq. (26) is a set of ordinary differential equa-

tions, we also need the appropriate boundary condi-

tions. In the particle–matrix zone with 06X3 6 d1, the
boundary at X3 ¼ 0 corresponds to the 100% matrix

material (i.e., /ð0Þ ¼ 0). The corresponding boundary

conditions can be proposed as

heiBð0Þ ¼ CB�1

: r0: ð27Þ
Therefore, the averaged strain tensors in both phases

can be numerically solved on the basis of standard

backward Eulerian method. Similarly, in the other

particle–matrix with the range of d2 6X3 6 t (zone III),
we can also calculate the averaged strain fields by the

switch of matrix and particle phases. It is noted that, for

those FGMs of which the volume fraction of phase A

does not start from 0% (say 10%), the boundary con-

dition equation (27) is no longer valid. The modified

boundary condition of heiBð0Þ can be obtained from the

combination of Eqs. (12)–(14) for X3 ¼ 0 where the

composite elastic properties �Cð0Þ (i.e., 10% phase A and
90% phase B) at the boundary are estimated with the

help of conventional composite models such as the

Mori–Tanaka model [6] or self-consistent model [7,8].

For the transition zone II (d1 < X3 < d2), the particle
and matrix phases cannot be well defined because the

two phases are interpenetrated into each other as a

connected network. As a consequence, the averaged

elastic fields cannot explicitly be determined through the
micromechanics framework. Similarly to Reiter and

Dvorak [16], a phenomenological transition function is

introduced as

f ðX3Þ ¼ 1

�
� 2

/ X3ð Þ � / d1ð Þ
/ d1ð Þ � / d2ð Þ

�
/ X3ð Þ � / d2ð Þ
/ d1ð Þ � / d2ð Þ

� �2
; ð28Þ
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so that the averaged strain of each phase (A or B) in the

transition zone II can be approximated as a cubic Her-

mite function appropriately contributed by the averaged

strain of the same phase (A or B) from two particle–

matrix zones (zones I and III). Namely,

heiA or B
zone-II X3ð Þ ¼ f X3ð ÞheiA or B

zone-I X3ð Þ þ 1½ � f X3ð Þ�heiA or B
zone-III X3ð Þ:

ð29Þ
The overall averaged strain tensor at each layer in the

transition zone can be further obtained from Eq. (14). It

is noted that the proposed transition function satisfies

the requirement that the effective FGM elastic fields and
corresponding moduli should be bounded, continuous,

and differentiable [28].

Given a specifically uniaxial loading r033 on the lower

and upper FGM boundaries, from Eq. (12), the effective

Young’s modulus and the Poisson’s ratio at any material

layer in the FGM gradation direction can be derived as

E X3ð Þ ¼ r0
33

e33h i X3ð Þ ; v X3ð Þ ¼ � e11h i X3ð Þ
e33h i X3ð Þ : ð30Þ

The effective shear modulus at any material layer in the

gradation direction can be similarly obtained through an

applied shear loading s013 as

l X3ð Þ ¼ s013
2 e13h i X3ð Þ : ð31Þ
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Fig. 2. Effect of modulus contrast ratio on (a) the effective FGM

Young’s modulus and (b) the effective FGM Poisson’s ratio.
4. Numerical simulations and discussion

From the above procedures, when a uniformly dis-

tributed loading is applied on the FGM upper and lower

boundaries, the effective Young’s modulus, Poisson’s

ratio and shear modulus distributions over the FGM

can be estimated. Since most two-phase FGMs are
fabricated to gradually change material phases from one

end to the other, the effective elastic properties strongly

depend on the individual performance of constituent

phases. The effect of phase modulus contrast on the

overall FGM elastic behavior is shown in Fig. 2. Spe-

cifically, the effective Young’s modulus (Fig. 2(a)) in the

FGM gradation direction increases as the volume frac-

tion of phase A increases, ranging from Zone I (phase A
as particle phase), Zone II (transition zone), and Zone

III (phase A as matrix phase). Continuous and differ-

entiable jump is expected in the transition zone II when

the phase modulus contrast ratio is large. Unless

otherwise stated, the lower and upper bounds d1 and d2
are conveniently selected where the corresponding vol-

ume fractions are 40% and 60%, respectively, which

follows Bao and Cai’s suggestion [29]. It is suggested
that the larger transition zone made during FGM fab-

rication is desirable to prevent the significant jump of

effective elasticity when the elastic contrast ratio is big.
While the effective Poisson’s ratio (Fig. 2(b)) varies be-

tween the Poisson’s ratios of individual phases and de-

pends on the phase modulus contrast, it is not as
significant as the effective modulus of FGMs.

Changing the phase volume fraction distribution also

affects the elastic responses of FGMs. Fig. 3 illustrates

the effective Young’s modulus and the Poisson’s ratio

distribution as a function of three types of volume

fraction distribution cases (quadratic, linear, and

square-root cases). The FGM material includes TiC as

phase A and Ni3Al as phase B. Their elastic parameters
are obtained from [30] as: ETiC ¼ 460 GPa, vTiC ¼ 0:19,
ENi3Al ¼ 199 GPa and vNi3Al ¼ 0:295. The transition

zone is bounded as /ðd1Þ ¼ 40% and /ðd2Þ ¼ 60%. It is

shown from Fig. 3 that the effective Young’s modulus of

the TiC–Ni3Al FGM is in the range of ENi3Al to ETiC,

and effective Poisson’s ratio in the range of vNi3Al to vTiC
as expected. However, at a given location, the effective
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elastic responses are strongly dependent on the phase
volume fraction distribution, suggesting that the overall

mechanical behavior can be tailored through phase

distribution pattern for desired FGM material design.

Conventional micromechanics-based FGM models

(e.g., Mori–Tanaka method and self-consistent method)

do not directly take into account the local particle in-

teractions and gradient effects of phase volume frac-

tions. On the contrary, our proposed model adopts the
pair-wise local interaction between particles and in-

cludes the deformation gradient in the micromechanics

framework. Therefore, our elastic prediction depends

not only on the phase volume fraction, but on the gra-

dient of volume fraction as well. More specifically, the

second term of the right-hand side in Eq. (26) denotes

the pair-wise interaction contribution while the third

term represents the gradient effect. If these two terms are
dropped from the equation, then the proposed model
recovers the standard Mori–Tanaka’s model. Fig. 4

shows the simulation comparison between the proposed

particle interaction model and conventional Mori–Ta-

naka model. In a certain FGM zone I ranging from

06/6 50% with glass particles (EA ¼ 76 GPa,

vA ¼ 0:23) embedded in the epoxy matrix (EB ¼ 3:0
GPa, vB ¼ 0:40), Mori–Tanaka method underestimates

the effective elastic response when the phase volume
fraction exceeds 20%. Furthermore, the proposed model

is compared with self-consistent method and finite ele-

ment method (FEM) both performed by Reiter et al.

[18] as illustrated in Fig. 5. It is shown that, when the
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shear traction s013 is applied on the upper boundary of a

C/SiC FGM with the carbon as phase A (EA ¼ 28 GPa,

vA ¼ 0:3) and the silicon carbide as phase B (EB ¼ 320

GPa, vB ¼ 0:3), averaged shear stress on the carbon

phase estimated by the current model is much closer to
the numerical FEM results than the one estimated by

the self-consistent method. The transition zone is taken

from /ðd1Þ ¼ 48% to /ðd1Þ ¼ 52% to be consistent with

FEM simulation [18].

Elastic simulations from the proposed model are also

compared with available experimental data to demon-

strate the validity of the micromechanics-based particle

interaction model. One such comparison is illustrated in
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fraction and (b) the effective FGM Poisson’s ratio vs. phase volume fraction
Fig. 6. The experimental data were provided in [31]

with two types of FGM fabrications: cenospheres in

the polyester matrix and cenospheres in the polyester–

plasticizer matrix. The cenospheres are hollow spheres

made of aluminum silicates with the mean diameter of
127 lm and wall thickness of 12.7 lm. During the sim-

ulation process, the hollow spheres are replaced by solid

particles with the estimated Young’s modulus and Pois-

son’s ratio as Ec ¼ 6:0 GPa and vc ¼ 0:35. The particle

volume fractions vary continuously from 0% to 45% with

the particle concentration distributions in the gradation

direction X3 given as: /ðX3Þ ¼ �0:4731þ 4:226�
10�3X3 � 8:666� 10�6X 2

3 for cenospheres in the polyes-
ter matrix and /ðX3Þ ¼ �0:3729þ 4:561� 10�3X3�
1:06� 10�5X 2

3 for the polyester–plasticizer matrix,

respectively. The thickness of the two FGMs is 250 mm

(06X3 6 250 mm). The phase Young’s moduli and

Poisson’s ratios are given as: Ep ¼ 3:6 GPa, vp ¼ 0:41,
Ep–p ¼ 2:5 GPa, vp–p ¼ 0:33 with the subscript ‘p’ de-

noting the polyester matrix and ‘p–p’ representing the

polyester–plasticizer matrix. With these parameters as
input data, the effective Young’s moduli of the FGMs are

simulated and shown in Fig. 6 as a function of location in

the gradation direction. The proposed model compares

well with the experimental results.

Zhai et al. [30] conducted the effective elastic proper-

ties of TiC/Ni3Al FGMwith phase material properties as

ETiC ¼ 460 GPa, vTiC ¼ 0:19, ENi3Al ¼ 199 GPa and

vNi3Al ¼ 0:295. Fig. 7 shows the comparisons between the
proposed model with the linear volume fraction distri-

bution and the experiment data for both effective

Young’s modulus (Fig. 7(a)) and Poisson’s ratio

(Fig. 7(b)). The transition zone is included with the lower

and upper bounds d1 and d2 selected corresponding to the
volume fractions of 40% and 60%, respectively.
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5. Conclusions

In this paper, a micromechanics-based elastic model

is developed for two-phase FGMs, based on their zoned

microstructures. In the microscopic scale, a RVE is
constructed to simulate the graded microstructure. Di-

rect pair-wise particle interactions are taken into ac-

count and the corresponding averaged strains in both

phases are derived. The effective elastic properties of

FGMs are then computed by solving the ordinary dif-

ferential equations with respect to the spatial location in

the FGM gradation direction. Due to the microstruc-

tural gradation, the model captures the gradient effect of
phase volume fraction distribution. If the particle in-

teraction terms are dropped, the model is reduced to the

Mori–Tanaka’s model. Comparisons are conducted

among the present simulations and the available nu-

merical simulation and experimental data to illustrate

the performance of the proposed micromechanics

framework.
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Appendix A

The coefficients ci ði ¼ 1; 2; . . . ; 5Þ that appear in

Eq. (11) are defined as

c1 ¼
�d1 2d2 þ 4d4 þ d5ð Þ þ d2

3

4d2 d1 3d2 þ 4d4 þ d5ð Þ þ d2 2d2 þ 2d3 þ 4d4 þ d5ð Þ � d2
3½ �

þ a
2b 3aþ 2bð Þ ;

c2 ¼
1

4d2
� 1

4b
;

c3 ¼
�d1 4d4 þ d5ð Þ � 2d2d3 � d2

3

4d2 d1 3d2 þ 4d4 þ d5ð Þ þ d2 2d2 þ 2d3 þ 4d4 þ d5ð Þ � d2
3½ � ;

c4 ¼ � d4
4d2 d2 þ d4ð Þ ;

c5 ¼ d2 8d3d4
�	

þ 3d2
3 � 3d1d5 � 2d2d5 þ 2d4d5 þ 8d2

4

�
þ d1d4 4d4ð þ d5Þ � d2

3d4


= 4d2 d2ð
	

þ d4Þ
� d1 3d2ð
�

þ 4d4 þ d5Þ þ d2 2d2ð þ 2d3 þ 4d4 þ d5Þ � d2
3

�

;

where

d1 ¼ a� ~q3

60l0 1� v0ð Þ 5
�

� 3~q2
�
;

d2 ¼ bþ ~q3

60l0 1� v0ð Þ 5
�

� 10v0 þ 3~q2
�
;

d3 ¼
~q3

4l0 1� v0ð Þ 1
�

� ~q2
�
;

d4 ¼
~q3

4l0 1� v0ð Þ v0
�

� ~q2
�
;

d5 ¼ � ~q3

4l0 1� v0ð Þ 5
�

� 7~q2
�
;

a ¼ � k1 � k0
2 l1 � l0ð Þ 3 k1 � k0ð Þ þ 2 l1 � l0ð Þ½ � �

1

30l0 1� v0ð Þ ;

b ¼ 1

4 l1 � l0ð Þ þ
4� 5v0

30l0 1� v0ð Þ ;

with kI; lI being the Lame constants for phase I

(I ¼ 0; 1), respectively.
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