
Engineering Fracture Mechanics 71 (2004) 1907–1950

www.elsevier.com/locate/engfracmech
A new approach to compute T -stress in functionally graded
materials by means of the interaction integral method

Glaucio H. Paulino *, Jeong-Ho Kim

Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign,

2209 Newmark Laboratory, 205 North Mathews Avenue, Urbana, IL 61801-2352, USA

Received 4 April 2003; received in revised form 14 November 2003; accepted 24 November 2003
Abstract

A ‘‘non-equilibrium’’ formulation is developed for evaluating T -stress in functionally graded materials with mixed-

mode cracks. The T -stress is evaluated by means of the interaction integral (conservation integral) method in con-

junction with the finite element method. The gradation of material properties is integrated into the element stiffness

matrix using the so-called ‘‘generalized isoparametric formulation’’. The types of material gradation considered include

exponential, linear, and radially graded exponential functions; however, the present formulation is not limited to

specific functions and can be readily extended to micromechanics models. This paper investigates several fracture

problems (including both homogeneous and functionally graded materials) to verify the proposed formulation, and also

provides numerical solutions to various benchmark problems. The accuracy of numerical results is discussed by

comparison with available analytical, semi-analytical, or numerical solutions. The revisited interaction integral method

is shown to be an accurate and robust scheme for evaluating T -stress in functionally graded materials.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) are new advanced multifunctional composites in which the

volume fractions of constituent materials vary smoothly, thus giving a non-uniform microstructure with

continuously graded macroproperties [1]. These materials were introduced to take advantage of ideal
behavior of its constituents, e.g. heat and corrosion resistance of ceramics together with mechanical

strength and toughness of metals, such as in the FGM system composed of partially stabilized zirconia

(PSZ) and CrNi alloy [2]. The books by Suresh and Mortensen [3] and Miyamoto et al. [4], and the review

chapter by Paulino et al. [5] present comprehensive information about various aspects of FGMs.
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For the past decade, FGMs have been extensively investigated for various applications including syn-

thesis of thermal barrier coatings for space-type applications [6]; first-wall composite materials in nuclear

fusion and fast breeder reactors [7]; piezoelectric and thermoelectric devices, and high-density magnetic

recording media and position-measuring devices [8–11]; graded refractive index materials [12]; thermionic
converters [13]; dental and other implants [14,15]; and fire retardant doors [16]. New applications are

continuously being discovered [5].

To pace with applications and performance demand of FGMs, scientific knowledge of fracture and

damage tolerance is important for improving their structural integrity. In this paper, fracture behavior of

FGMs is investigated with emphasis on the T -stress. Eischen [17] extended the eigenfunction expansion

technique [18], and derived the general form of the crack-tip fields in a non-homogeneous material by

assuming that the material properties are continuous, differentiable and bounded. Fig. 1 shows a crack in a

two-dimensional non-homogeneous elastic body. The asymptotic stress field around the crack-tip in FGMs
is given by [17]
Fig. 1.

placem
rijðr; hÞ ¼
KIffiffiffiffiffiffiffi
2pr

p f I
ijðhÞ þ

KIIffiffiffiffiffiffiffi
2pr

p f II
ij ðhÞ þ T d1id1j; as r ! 0; ð1Þ
where rij denotes the stress tensor, KI and KII are the modes I and II stress intensity factors (SIFs),

respectively, T is the non-singular stress, and the angular functions fijðhÞ can be found in several references,

e.g. [19,20]. The above stress field has the same form as the Irwin–Williams [21,18] solution for homoge-

neous materials. The correspondence of the crack-tip behavior between homogeneous and FGMs provides

a basis for local homogenization near the crack-tip [22]. Thus based on the assumption that the graded

material is locally homogeneous near the crack-tip, this paper establishes the relationship between the

asymptotically defined interaction integral (M-integral) and T -stress, converts the M-integral to an

equivalent domain integral (EDI) using auxiliary fields, and calculates the T -stress using a finite domain.
For homogeneous materials, the fracture parameters (KI and KII, or T ) depend on the geometry, size and

external loading. However, for FGMs, the fracture parameters are also affected by material gradients

[17,23]. The material gradient does not affect the order of singularity and the asymptotic angular functions,

but does affect the fracture parameters [17,23]. The effect of material gradient on such parameters is

investigated in detail in Section 7.

For a crack under mode I conditions, the asymptotic stress field for FGMs is obtained from Eq. (1) with

KII ¼ 0. The T -stress can be best characterized by a non-dimensional parameter. Thus by normalizing the

T -stress by KIðpaÞ�1=2
, one obtains the (stress) biaxiality ratio b given by [24]
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Cartesian ðx1; x2Þ and polar ðr; hÞ coordinates originating from the crack-tip in an arbitrary FGM under traction (t) and dis-

ent boundary conditions.
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b ¼ T
ffiffiffiffiffiffi
pa

p

KI

; ð2Þ
where a is the crack length. As expected, the biaxiality ratio b does depend on the geometry and loading

type, but not the load magnitude, and, for FGMs, it also depends on material gradients [23]. Thus we

investigate the effect of material gradients on the biaxiality ratio (b) for various graded fracture specimens.

Under small scale yielding conditions which involve high degree of triaxiality at the crack-tip, a single
parameter (KI or J ) characterizes crack-tip conditions, and it can be used as a material property. The single

parameter fracture mechanics requires that the plastic zone size (a fraction of ðKIc=rYÞ2, where rY is the

yield stress [20]) be small compared with other dimensions of the cracked structure, e.g. crack length, size of

uncracked ligament, and thickness. However, under excessive plasticity, the single parameter is not suffi-

cient to represent crack-tip fields, and fracture toughness depends on the size and geometry of the specimen.

Such behavior is associated with the elastic T -stress, which affects the size and shape of the plastic zone,

crack-tip constraint and fracture toughness [25–27]. In this regard, the biaxiality ratio (b) can be used as a

qualitative index of the relative crack-tip constraint of various geometries [20].
The contribution of this paper includes a novel formulation of the interaction integral method to

evaluate T -stress in isotropic FGMs, and benchmark solutions for the biaxiality ratio considering graded

laboratory fracture specimens. The remainder of this paper is organized as follows. Section 1.1 presents a

motivation to this work. Next, a brief literature review and comments on higher-order fracture parameters

are presented. Section 2 provides the auxiliary fields chosen for evaluating the T -stress by means of the

interaction integral (M-integral) method. Section 3 presents the interaction integral method for FGMs.

Section 4 addresses the extraction of the T -stress from the M-integral. Section 5 presents some numerical

aspects of theM-integral. Section 6 addresses convergence and/or accuracy of the proposed T -stress method
by means of a boundary layer model. Section 7 presents several numerical examples, including verification

of the T -stress solutions. Some benchmark solutions are provided for graded laboratory fracture specimens,

which are useful to complement fracture testing. Finally, Section 8 concludes the work. Two appendices

supplement the paper.
1.1. Motivation

This work is motivated by experimental evidence that the T -stress affects crack initiation angles [28,29].

Moreover, these angles are also affected by material non-homogeneity [30]. Material gradation can also

change the sign and magnitude of the T -stress. These relevant aspects are briefly discussed below, and are

elaborated upon in the remainder of the manuscript.
T -stress has a significant influence on crack initiation angles in brittle fracture [31,30]. For instance,

Williams and Ewing [28] and Ueda et al. [29] performed fracture experiments on polymethylmethacrylate

(PMMA), and used the ‘‘generalized maximum hoop stress criterion’’, which incorporates T -stress and a

fracture process zone size rc:
KI sin h0 þ KIIð3 cos h0 � 1Þ � 16

3
T

ffiffiffiffiffiffiffiffiffi
2prc

p
sin

h0
2

cos h0 ¼ 0; ð3Þ
where h0 is the crack initiation angle. Based on such criterion, they found that negative T -stress decreases
the crack initiation angle, but positive T -stress increases the angle. Fig. 2 shows experimental evidence on

the T -stress effect on crack initiation angles. The experimental results obtained by Williams and Ewing [28]

and Ueda et al. [29] are compared with those from the ‘‘generalized maximum hoop stress criterion’’ using

the present finite element method (FEM), in which the SIFs and the T -stress are obtained by the interaction

integral method. Notice that the above argument on the influence of the T -stress on the crack initiation
angle is not restricted to a specific fracture criterion, and it is a general argument.
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Fig. 2. Effect of the T -stress on crack initiation angles for a homogeneous PMMA plate. Experimental results are obtained from

Williams and Ewing [28] and Ueda et al. [29]. The present FEM results are obtained considering an inclined center crack (2a ¼ 2) in a

homogeneous plate under constant traction.
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Fig. 3. Effect of material gradation on crack initiation angles predicted by the generalized maximum hoop stress criterion for the right

tip of the inclined center crack (2a ¼ 2) in an FGM plate under fixed-grip loading.
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On the other hand, material non-homogeneity has a significant influence on crack initiation angles [30].

Fig. 3 shows comparison of crack initiation angles for the right crack-tip between homogeneous and
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Fig. 4. Single edge notched bend (SENB) specimen: (a) geometry and boundary conditions (BCs); (b) the complete FEM mesh dis-

cretization for a=W ¼ 0:5.
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exponentially graded materials. There is not much effect of material non-homogeneity for a nearly hori-

zontal (a � 90�) or a nearly vertical (a � 0�) crack, however, such effect is more pronounced in the mid-

range of the plot (e.g. 10� < a < 70�). Notice that, for both homogeneous and FGM cases, negative T -stress
decreases the crack initiation angle, but positive T -stress increases the crack initiation angle.

Material gradation has a significant influence on the sign and magnitude of T -stress and in turn the

biaxiality ratio, as illustrated below for a single-edge notched bend (SENB) specimen. To further motivate
the present work, Fig. 4(a) shows a graded SENB with a crack parallel to material gradation. The beam is

subjected to a point load, i.e. P , at the point ðX1;X2Þ ¼ ð0;W Þ. Here we consider a state of plane stress.

Young�s modulus is an exponential function, i.e.
EðX2Þ ¼ E1e
cX2 ; ð4Þ
and the Poisson�s ratio is taken as constant. The following data are used for the FEM analyses (consistent
units):
E2=E1 ¼ EðW Þ=Eð0Þ ¼ ð0:1 to 10Þ;

E1 ¼ 1:0; m ¼ 0:3; S ¼ 4W ; W ¼ 1; t ¼ 1:0:
Fig. 4(b) shows the FEM mesh for the SENB beam. The mesh discretization consists of 408 eight-node

quadrilateral (Q8) elements, 170 six-node triangular (T6) elements, and 12 six-node quarter-point triangular

(T6qp) elements, with a total of 590 elements and 1200 nodes.
Fig. 5 shows the biaxiality ratio b ¼ ðT

ffiffiffiffiffiffi
pa

p
Þ=KI versus a=W obtained by the present interaction integral

method for the SENB specimen. Notice that, for the homogeneous SENB specimen (E2=E1 ¼ 1), the

transition point is around a=W ¼ 0:4. The transition point of the sign of biaxiality ratio (and T -stress) shifts
to the left as the ratio E2=E1 increases. For a fixed value of a=W considered here, the biaxiality ratio in-

creases with an increasing ratio E2=E1. This example shows that material non-homogeneity influences the

sign and magnitude of T -stress and consequently the biaxiality ratio, which in turn will affect the size and

shape of the inelastic zone, crack-tip constraint and fracture toughness.

1.2. Related work

The T -stress may influence crack path stability. Considering a slight imperfection under mode I
loading, Cotterell and Rice [32] found that the crack path is stable for negative T -stress, and unstable for
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positive T -stress. Melin [33] revisited the influence of T -stress on the directional stability of cracks in

conjunction with local versus global governing criteria. Such non-singular stress may also influence crack

growth under mixed-mode loading [28,29,31]. For instance, based on the maximum hoop stress criterion

incorporating T -stress and a fracture process zone size rc, Williams and Ewing [28], Ueda et al. [29], and

Smith et al. [31] found that negative T -stress decreases the crack initiation angle, but positive T -stress
increases the angle. T -stress has also been shown to have a significant influence on crack-tip constraint

and toughness [20,25–27].

The T -stress has been extensively investigated for homogeneous materials. Larsson and Carlsson [26]
investigated the T -stress in mode I loading, and found that it affects the size and shape of the plastic zone,

and specimens with negative T -stress have lower constraint than those with positive T -stress. They used a

stress substitution method to evaluate T -stress. The stress substitution method is simple, but the accuracy of

results depends on geometry, the level of mesh refinement and the radial distance considered for calcula-

tion. Leevers and Radon [24] used a variational formulation to evaluate the T -stress and biaxiality ratio.

The variational approach is relatively simple to analyze external cracks, but it becomes complicated for

interior cracks. Cardew et al. [34] and Kfouri [35] used the path-independent J -integral in conjunction with

the interaction integral to calculate T -stress in mode I crack problems. Kfouri [35] provided two forms of
Eshelby�s theorem: one is the case where the traction resisted by the boundary is equal to the loads induced

by the point force applied to the crack-tip, and the other is the case where the traction resisted by the

boundary is not equal to the loads induced by the point force. Sherry et al. [36] investigated two- and three-

dimensional cracked geometries, and provided T -stress and biaxiality ratio solutions for various laboratory

specimens. Sladek et al. [37] used another type of path-independent integral, based on the Betti–Rayleigh

reciprocal theorem, for evaluating T -stress in mixed-mode loading. Recently Chen et al. [38] investigated T -
stress under mode I loading by means of both the Betti–Rayleigh reciprocal theorem and Eshelby�s energy
momentum tensor (i.e. path-independent J -integral) using the p-version finite element method, and ad-
dressed the accuracy of numerical computations. The energy-based approaches mentioned above give

reasonably accurate results [34,35,37,38].
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For brittle FGMs (such as MoSi2/SiC [39]), the T -stress has been shown to have a significant influence in

crack initiation condition and crack initiation angle [30,40]. Becker et al. [40] investigated T -stress and finite

crack kinking by using a hyperbolic-tangent function with steep gradient of Young�s modulus. They found

that T -stress in FGMs is affected by both the far-field loading and the far-field phase angle, and that the
magnitude of T -stress in FGMs is, on average, greater than that for homogeneous materials with identical

geometry. They performed finite element analyses, and calculated T -stress using the stress difference along

h ¼ 0, i.e. rxx � ryy . The interaction integral method is an energy-based approach, and is an accurate and

robust scheme for evaluating T -stress in FGMs. Recently, Kim and Paulino [30] used the interaction

integral method in conjunction with the finite element method (FEM) to investigate T -stress and its effect

on crack initiation angle in FGMs, however, they used an incompatibility formulation [30]. This work

introduces a novel non-equilibrium formulation of the interaction integral method in conjunction with the

finite element method to evaluate T -stress in FGMs.
2. Auxiliary fields

The interaction integral method uses auxiliary fields, such as displacements (uaux), strains (eaux), and

stresses (raux). These auxiliary fields need to be suitably defined in order to evaluate T -stress in FGMs.

There are various choices for the auxiliary fields, which may be evaluated either analytically [30] or

numerically [35]. Here we adopt analytical fields originally developed for homogeneous materials and use a
‘‘non-equilibrium formulation’’ accounting for non-equilibrium due to the material mismatch between

homogeneous and graded materials. The auxiliary fields chosen in this paper are explained below.

2.1. Displacement and strain fields

For evaluating T -stress, we choose the auxiliary displacement field due to a point force in the x1
direction, applied to the tip of a semi-infinite crack in an infinite homogeneous body as shown in Fig. 6. The

auxiliary displacements and strains are given by Michell�s solution [41]
Fig. 6.

solutio
uaux1 ¼ � F ð1þ jtipÞ
8pltip

ln
r
d
� F
4pltip

sin2 h; ð5Þ
rrσ
aux

2

1

d
x

x

r

θcrack

2
π

=
r

F

F cos θ

A point force applied at the crack-tip in the direction parallel to the crack in an infinite homogeneous medium––Michell�s
n [41].
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uaux2 ¼ � F ðjtip � 1Þ
8pltip

hþ F
4pltip

sin h cos h ð6Þ
and
eauxij ¼ ðuauxi;j þ uauxj;i Þ=2 ði; j ¼ 1; 2Þ; ð7Þ
where F is the point force applied at the crack-tip, d is the coordinate of a fixed point on the x1 axis (see Fig.
6), ltip is the shear modulus evaluated at the crack-tip, and
jtip ¼
ð3� mtipÞ=ð1þ mtipÞ plane stress;
ð3� 4mtipÞ plane strain

�
ð8Þ
in which mtip denotes the Poisson�s ratio at the crack-tip location.

2.2. Stress field

The non-equilibrium formulation is based on the fact that the auxiliary stress field given by
raux
ij ¼ CijklðxÞeauxkl ð9Þ
does not satisfy equilibrium because it differs from
raux
ij ¼ ðCijklÞtipeauxkl ; ð10Þ
where CijklðxÞ is the constitutive tensor of FGMs, and ðCijklÞtip is the constitutive tensor evaluated at the

crack-tip (see Fig. 7). The derivatives of the auxiliary stress field (Eq. (9)) are
raux
ij;j ¼ Cijkl;jðxÞeauxkl þ CijklðxÞeauxkl;j

¼ ðCijklÞtipeauxkl;j þ Cijkl;jðxÞeauxkl þ ðCijklðxÞ � ðCijklÞtipÞeauxkl;j ; ð11Þ
where the underlined term in Eq. (11) vanishes because it satisfies equilibrium for homogeneous materials.

Thus Eq. (11) becomes
raux
ij;j ¼ Cijkl;jðxÞeauxkl

h
þ ðCijklðxÞ � ðCijklÞtipÞeauxkl;j

i
6¼ 0; ð12Þ
where the second term in Eq. (12) vanishes for the special case where the constitutive tensor CijklðxÞ is

proportional to ðCijklÞtip. This choice of the auxiliary fields has been discussed by Dolbow and Gosz [42], but
Illustration of the interaction integral formulation considering material non-homogeneity. Notice that CðxÞ 6¼ Ctip for x 6¼ 0.

ea A denotes a representative region around the crack-tip.
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the non-equilibrium formulation was not provided in their paper. The non-equilibrium in the stress field is

considered in the interaction integral formulation, which is discussed below.
3. The interaction integral: M-integral

The interaction integral (M-integral 1) is a two-state integral, which is derived from the path-independent

J -integral [47] for two admissible states of a cracked elastic FGM body. The standard J -integral [47] is
given by
1 H

Budian

integra
J ¼ lim
Cs!0

Z
Cs

ðWd1j � rijui;1Þnj dC; ð13Þ
where W is the strain energy density expressed by
W ¼ 1

2
rijeij ¼

1

2
Cijklekleij; ð14Þ
and nj is the outward normal vector to the contour Cs, as shown in Fig. 8. To convert the contour integral

into an equivalent domain integral (EDI) [48], the following contour integral is defined:
H ¼
I
C
ðW d1j � rijui;1ÞmjqdC; ð15Þ
where C ¼ Co þ Cþ � Cs þ C�, mj is a unit vector outward normal to the corresponding contour (i.e.

mj ¼ nj on Co and mj ¼ �nj on Cs), and q is a weight function, which varies from q ¼ 1 on Cs to q ¼ 0 on Co

(see Fig. 9). Taking the limit Cs ! 0 leads to [30]
lim
Cs!0

H ¼ lim
Cs!0

Z
CoþCþþC�

ðWd1j

�
� rijui;1ÞmjqdC�

Z
Cs

ðWd1j � rijui;1ÞnjqdC
�
: ð16Þ
Because q ¼ 0 on Co and the crack faces are assumed to be traction-free, Eq. (16) becomes
ere, the so-called M-integral should not be confused with the M-integral (conservation integral) of Knowles and Sternberg [43],

sky and Rice [44], and Chang and Chien [45]. Also, see the book by Kanninen and Popelar [46] for a review of conservation

ls in fracture mechanics.
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J ¼ � lim
Cs!0

H ¼ � lim
Cs!0

I
C
ðWd1j � rijui;1ÞmjqdC: ð17Þ
Applying the divergence theorem to Eq. (17) and using the weight function q, one obtains the EDI as
J ¼
Z
A
ðrijui;1 �Wd1jÞq;j dAþ

Z
A
ðrijui;1 �Wd1jÞ;jqdA: ð18Þ
The J -integral of the superimposed fields (actual and auxiliary fields) is given as:
J s ¼
Z
A

ðrij

�
þ raux

ij Þðui;1 þ uauxi;1 Þ �
1

2
ðrik þ raux

ik Þðeik þ eauxik Þd1j
�
q;j dA

þ
Z
A

ðrij

�
þ raux

ij Þðui;1 þ uauxi;1 Þ �
1

2
ðrik þ raux

ik Þðeik þ eauxik Þd1j
�

;j

qdA; ð19Þ
which is conveniently decomposed into
J s ¼ J þ J aux þM ; ð20Þ

where J aux is given by
J aux ¼
Z
A
ðraux

ij uauxi;1 �Wauxd1jÞq;j dAþ
Z
A

raux
ij uauxi;1

�
� 1

2
raux
ik eauxik d1j

�
;j

qdA; ð21Þ
and the resulting general form of the interaction integral (M) is given by
M ¼
Z
A

rijuauxi;1

�
þ raux

ij ui;1 �
1

2
ðrike

aux
ik þ raux

ik eikÞd1j
�
q;j dA

þ
Z
A

rijuauxi;1

�
þ raux

ij ui;1 �
1

2
ðrike

aux
ik þ raux

ik eikÞd1j
�

;j

qdA: ð22Þ
3.1. Non-equilibrium formulation

The specific interaction integral (M), based on the non-equilibrium formulation, is derived here. Using
the following identity:
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rije
aux
ij ¼ CijklðxÞekleauxij ¼ raux

kl ekl ¼ raux
ij eij; ð23Þ
one rewrites Eq. (22) as
M ¼
Z
A

rijuauxi;1

n
þ raux

ij ui;1 � rike
aux
ik d1j

o
q;j dAþ

Z
A

rijuauxi;1

n
þ raux

ij ui;1 � rike
aux
ik d1j

o
;j
qdA ¼ M1 þM2:

ð24Þ
Moreover, the last term of the second integral (M2) in Eq. (24) is expressed as
ðrike
aux
ik d1jÞ;j ¼ ðrike

aux
ik Þ;1 ¼ ðrije

aux
ij Þ;1 ¼ ðCijklekle

aux
ij Þ;1

¼ Cijkl;1ekle
aux
ij þ Cijklekl;1e

aux
ij þ Cijklekle

aux
ij;1

¼ Cijkl;1ekle
aux
ij þ raux

ij eij;1 þ rije
aux
ij;1 : ð25Þ
Substitution of Eq. (25) into Eq. (24) leads to
M2 ¼
Z
A

rij;juauxi;1

�
þ rijuauxi;1j þ raux

ij;j ui;1 þ raux
ij ui;1j

�
qdA�

Z
A

Cijkl;1ekle
aux
ij

�
þ raux

ij eij;1 þ rije
aux
ij;1

�
qdA: ð26Þ
Using compatibility (actual and auxiliary) and equilibrium (actual) (i.e. rij;j ¼ 0 with no body force), one

simplifies Eq. (26) as
M2 ¼
Z
A

raux
ij;j ui;1

n
� Cijkl;1ekle

aux
ij

o
qdA: ð27Þ
Therefore the resulting interaction integral (M) becomes
M ¼
Z
A

rijuauxi;1

n
þ raux

ij ui;1 � rike
aux
ik d1j

o
q;j dAþ

Z
A

raux
ij;j ui;1

n
� Cijkl;1ekle

aux
ij

o
qdA; ð28Þ
where the underlined term is a non-equilibrium term that appears due to non-equilibrium of the auxiliary

stress fields (see Section 2.2), which must be considered to obtain converged solutions. Other alternative

formulations are the incompatibility and the constant-constitutive-tensor formulations, which are discussed
in Appendix A.
3.2. Proof of the existence of the M-integral for FGMs

The second integral in Eq. (28) involves the extra terms arising due to material non-homogeneity. The

existence of the integral as the limit r ! 0 is proved below. The constitutive tensor involving material
properties Eðr; hÞ and mðr; hÞ must be continuous and differentiable function, and thus it can be written as

[17]
Cijklðr; hÞ ¼ ðCijklÞtip þ rCð1Þ
ijklðhÞ þ

r2

2
Cð2Þ

ijklðhÞ þOðr3Þ þ � � � ; ð29Þ
where CðnÞ
ijklðhÞ (n ¼ 1; 2; . . .) are angular functions. In Eq. (11), the first term vanishes because of equilib-

rium, the second term vanishes because of smoothness assumption of the constitutive tensor, and here we
focus on the third term only. For the auxiliary fields for T -stress (uaux ¼ Oðln rÞ, eaux ¼ Oðr�1Þ), the integral
involving the non-equilibrium term, as the limit r goes to zero, becomes
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lim
A!0

Z
A
raux
ij;j ui;1qdA ¼ lim

r!0

Z
h

Z
r
raux
ij;j ui;1qrdrdh

¼ lim
r!0

Z
h

Z
r
ðCijklðr; hÞ � ðCijklÞtipÞeauxkl;jui;1qrdrdh

¼ lim
r!0

Z
h

Z
r
OðrÞOðr�2ÞOðr�1=2Þqrdrdh

¼ lim
r!0

Oðr1=2Þ ¼ 0: ð30Þ
The integral involving material derivatives (Cijkl;1) in Eq. (28) vanishes for the following reason.

Derivatives of the elastic moduli are assumed to be bounded at the crack-tip, i.e. Cijkl;1 is OðraÞ with aP 0.

Therefore, as the limit r goes to zero, the integral becomes
lim
A!0

Z
A
Cijkl;1ekle

aux
ij qdA ¼ lim

r!0

Z
h

Z
r
Cijkl;1ekle

aux
ij qrdrdh

¼ lim
r!0

Z
h

Z
r
OðraÞOðr�1=2ÞOðr�1Þqrdrdh

¼ lim
r!0

Oðraþ1=2Þ ¼ 0: ð31Þ
Thus the limit exists and the proposed integral is well posed.
3.3. Exponentially graded materials

Materials with exponential gradation have been extensively investigated in the technical literature, e.g.

[23,42,49–65], and thus a specific form of the M-integral is derived for such type of material gradation. For

the sake of simplicity, we consider an exponentially graded material in which Poisson�s ratio is constant and

Young�s modulus varies in X1 direction (see Fig. 10), i.e.
EðX1Þ ¼ E0 expðcX1Þ; m ¼ constant; ð32Þ
where c is the material non-homogeneity parameter and 1=c denotes the length scale of non-homogeneity.
(XE exp( γ X1
)E

0
=)

crack

1

X

X

1

2

x2

x1

0. Crack parallel to material gradation in an exponentially graded material. The notation ðX1;X2Þ denotes global coordinate

, and the notation ðx1; x2Þ denotes crack-tip local coordinates.
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The derivatives of interest are (see Eq. (28))
raux
ij;j ¼ Cijkl;jðx1Þeauxkl þ Cijklðx1Þeauxkl;j

¼ craux
ij d1j þ apðCijklÞtipeauxkl;j

¼ craux
ij d1j; ð33Þ

Cijkl;1 ¼ cCijklðx1Þ; ð34Þ
where ap ¼ expðcx1Þ is a proportionality factor. Substitution of Eqs. (33) and (34) into Eq. (28) yields the

specific form of the interaction integral
M ¼
Z
A

rijuauxi;1

n
þ raux

ij ui;1 � rike
aux
ik d1j

o
q;j dAþ

Z
A

craux
ij ui;1d1j

n
� crije

aux
ij

o
qdA: ð35Þ
The derivatives of material properties are represented by the material non-homogeneity parameter c, and
the contribution of the non-equilibrium term to the M-integral is also related to the value of c. Notice that,

for this particular case of material variation (see Eq. (32)), a simpler expression than that for the general

case (Eq. (28)) is obtained.
4. Extraction of T-stress

The T -stress can be extracted from the interaction integral taking the limit r ! 0 of the domain A shown

in Fig. 8. By doing so, the contributions of the higher-order (i.e. Oðr1=2Þ and higher) and singular (i.e.

Oðr�1=2Þ) terms vanish.

Eq. (22) is rewritten as
Mlocal ¼
Z
A

ðrijuauxi;1

��
þ raux

ij ui;1Þ �
1

2
ðrike

aux
ik þ raux

ik eikÞd1j
�
q
�
;j

dA; ð36Þ
where Mlocal denotes the M-integral with respect to local coordinates ðx1; x2Þ (see Fig. 8). By applying the

divergence theorem to Eq. (36), one obtains
Mlocal ¼ lim
Cs!0

I
C

ðrijuauxi;1

�
þ raux

ij ui;1Þ �
1

2
ðrike

aux
ik þ raux

ik eikÞd1j
�
mjqdC: ð37Þ
Because mj ¼ �nj and q ¼ 1 on Cs, mj ¼ nj and q ¼ 0 on Co, and the crack faces are assumed to be traction-

free, Eq. (37) becomes
Mlocal ¼ lim
Cs!0

Z
Cs

1

2
ðrike

aux
ik

�
þ raux

ik eikÞd1j � ðrijuauxi;1 þ raux
ij ui;1Þ

�
nj dC: ð38Þ
Using the equality in Eq. (23), one reduces Eq. (38) to
Mlocal ¼ lim
Cs!0

Z
Cs

rike
aux
ik d1j

h
� ðrijuauxi;1 þ raux

ij ui;1Þ
i
nj dC: ð39Þ
The actual stress fields are given by
rij ¼ KIð2prÞ�1=2f I
ijðhÞ þ KIIð2prÞ�1=2f II

ij ðhÞ þ Td1id1j þOðr1=2Þ; ð40Þ
where the angular functions f I
ijðhÞ and f II

ij ðhÞ (i; j ¼ 1; 2) are given, for example, in Ref. [19]. As the contour
Cs (see Fig. 8) shrinks to the crack-tip region, the higher-order terms cancel out as mentioned above.

Moreover, there is no contribution from the singular terms Oðr�1=2Þ because the integrations from h ¼ �p
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to þp of angular functions (coefficients) of the three terms given in Eq. (39) are cancelled out, and become

zero regardless of the resulting singularity Oðr�1=2Þ.
According to the above argument, the only term that contributes to M is the term involving T .

Therefore, Eq. (40) simplifies to the following expression:
rij ¼ Td1id1j; ð41Þ

which refers to the stress parallel to the crack direction. Substituting Eq. (41) into Eq. (39), one obtains
Mlocal ¼ � lim
Cs!0

Z
Cs

raux
ij njui;1 dC ¼ � T

E�
tip

lim
Cs!0

Z
Cs

raux
ij nj dC: ð42Þ
Because the force F is in equilibrium (Fig. 6)
F ¼ � lim
Cs!0

Z
Cs

raux
ij nj dC; ð43Þ
and thus the T -stress is derived as
T ¼
E�
tip

F
Mlocal; ð44Þ
where
E�
tip ¼

Etip plane stress;
Etip=ð1� m2tipÞ plane strain:

�
ð45Þ
Similar arguments have been used by Kim and Paulino [30] to extract the T -stress in FGMs using an

incompatibility formulation.
5. Some numerical aspects

For numerical computation by means of the FEM, the M-integral is evaluated first in global coordinates

(Mglobal) and then transformed to local coordinates (Mlocal). Thus the global interaction integral ðMmÞglobal
(m ¼ 1; 2) is obtained as (m ¼ 1; 2):
ðMmÞglobal ¼
Z
A

rijuauxi;m

n
þ raux

ij ui;m � rike
aux
ik dmj

o oq
oXj

dAþ
Z
A

raux
ij;j ui;m

n
� Cijkl;mekle

aux
ij

o
qdA; ð46Þ
where ðX1;X2Þ are the global coordinates shown in Fig. 8. Therefore one obtains Mlocal as
Mlocal ¼ ðM1Þlocal ¼ ðM1Þglobal cos hþ ðM2Þglobal sin h: ð47Þ
For the sake of generality, we determine derivatives of material properties using shape function deriv-

atives of finite elements [23,62]. The derivatives of the auxiliary stress field are obtained as
raux
ij;j ¼ Cijkl;je

aux
kl þ Cijkle

aux
kl;j ; ð48Þ
which requires the derivatives of the constitutive tensor C. A simple and accurate numerical approach

consists of evaluating the derivatives of the C tensor (see Eqs. (46) and (48)) by means of shape function

derivatives. Thus the spatial derivatives of a generic material quantity P (e.g. Cijkl) are obtained as
oP
oXm

¼
Xn

i¼1

oNi

oXm
Pi ðm ¼ 1; 2Þ; ð49Þ
where n is the number of nodes in the graded element, and Ni ¼ Niðn; gÞ are the element shape functions

which can be found in many FEM references, e.g. [66]. The derivatives oNi=oXm are obtained as
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oNi=oX1

oNi=oX2

� �
¼ J�1 oNi=on

oNi=og

� �
; ð50Þ
where J�1 is the inverse of the standard Jacobian matrix relating ðX1;X2Þ with ðn; gÞ [66].
6. Boundary layer model

Here we investigate convergence and accuracy of T -stress by using a boundary layer model for homo-

geneous and functionally graded materials. Fig. 11(a) illustrates a boundary layer model, and Fig. 11(b)

shows the FEM mesh discretization which consists of 1802 Q8, 50 T6, and 18 T6qp elements, with a total of

1870 elements and 5689 nodes.
The circular boundary contour is subjected to the following near-tip displacements [17,18]:
u1 ¼
KI

4ltip

ffiffiffiffiffiffi
r
2p

r
ð2jtip

�
� 1Þ cos h

2
� cos

3h
2

�
þ Tr
Etip

cos h;

u2 ¼
KI

4ltip

ffiffiffiffiffiffi
r
2p

r
ð2jtip

�
þ 1Þ sin h

2
� sin

3h
2

�
� Trmtip

Etip

sin h:

ð51Þ
. A boundary layer model: (a) boundary layer model subjected to displacement (ui) loading (see Eq. (51)); (b) the complete finite

t mesh; (c) zoom of a crack-tip region; (d) zoom of (c) very near the crack-tip.



Table 1

Convergence and/or accuracy of T -stress using a boundary layer model. Displacements ui (i ¼ 1; 2) are applied along the circular

boundary considering KI ¼ 1:0 and T ¼ 1:0 (consistent units)

Domain Radius of

domain

T -stress

ca ¼ 0:0 ca ¼ 0:5

1 0.00101 0.9716 1.29590

2 0.00136 0.9760 1.24775

3 0.00186 0.9766 1.21322

4 0.00284 0.9800 1.18323

5 0.00411 0.9861 1.16557

6 0.00608 0.9937 1.15826

7 0.00800 0.9947 1.15657

8 0.01510 0.9958 1.15589

9 0.01836 0.9960 1.15589

10 0.03125 0.9965 1.15608

11 0.10833 0.9979 1.15701

12 0.20 0.9992 1.15847

13 0.40 1.0003 1.15965
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The Young�s modulus varies exponentially and the Poisson�s ratio is constant (see Fig. 11(a)):
EðX1Þ ¼ E0 expðcX1Þ; m ¼ constant; ð52Þ

where c is the material non-homogeneity parameter and 1=c denotes the length scale of non-homogeneity.

The following data are used for the FEM analyses:
plane stress; 2 � 2 Gauss quadrature;

a ¼ 1; R ¼ 1;

ca ¼ ð0; 0:5Þ;
E0 ¼ 1:0; m ¼ 0:3:

ð53Þ
Table 1 shows FEM results for the T -stress considering displacements ui (i ¼ 1; 2) in Eq. (51) applied

along the boundary with KI ¼ 1:0 and T ¼ 1:0 (consistent units) for homogeneous (ca ¼ 0:0) and graded

(ca ¼ 0:5) materials. For homogeneous materials, as the domain becomes large, the T -stress converges to
the exact solution (T ¼ 1:0), and thus its accuracy increases. For the FGM case, the exact solution is not

available, but the T -stress tends to converge. Notice that the T -stress shows larger domain dependence for

non-homogeneous than for homogeneous materials.
7. Numerical examples and discussions

To assess the non-equilibrium formulation of the interaction integral method for evaluating T -stress by
means of the FEM, the following numerical examples are presented:

• Inclined center crack in a plate:
(1) constant traction––homogeneous material case,

(2) fixed-grip loading––FGM case;

• Benchmark examples based on laboratory specimens:

(1) single edge notched tension (SENT),

(2) double edge notched tension (DENT),

(3) center cracked tension (CCT),
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(4) single edge notched bending (SENB),

(5) compact tension (CT);

• On scaling of FGM specimens;

• Internal crack in a strip;
• Slanted edge crack in a plate;

• Internal or edge crack in a circular disk;

• Three-point bending specimen with a crack perpendicular to material gradation.

The FEM code I-FRANC2D (Illinois-FRANC2D) is used for implementation of the interaction integral

formulation, and for evaluating T -stress in all the numerical results presented in this paper. The code

I-FRANC2D is based on the code FRANC2D (FRacture ANalysis Code 2D) [67,68], which was originally

developed at Cornell University. The extended capabilities of I-FRANC2D include graded elements to
discretize non-homogeneous materials, and fracture parameters such as T -stress and SIFs. The graded

elements are based on the ‘‘generalized isoparametric formulation’’ or GIF [23] and, in general, they show

superior performance to conventional homogeneous elements [62]. An alternative approach consists of

using direct Gaussian integration formulation, in which the material properties are evaluated directly at the

Gauss points (see [23,63]). Using graded elements and the GIF, the I-FRANC2D code can evaluate T -stress
for FGMs by means of the interaction integral.

Isoparametric graded elements are used to discretize all the geometry. Singular quarter-point six-node

triangles (T6qp) are used for crack-tip elements, eight-node serendipity elements (Q8) are used for a circular
region around crack-tip elements and over most of the mesh, and regular six-node triangles (T6) are used in

the transition zone between regions of Q8 elements. For T6 and T6qp elements, four-point Gauss quad-

rature is used. For Q8 elements, 2 · 2 reduced Gauss quadrature is used because of its efficiency in com-

putation time and cost. However, improved quadrature schemes can be also considered [38].

All the examples consist of T -stress results obtained by means of the non-equilibrium formulation of the

interaction integral method in conjunction with the FEM. In order to validate T -stress solutions, an in-

clined center crack in a homogeneous finite plate (a=W ¼ 0:1) is investigated, and the FEM results are

compared with analytical closed-form solutions. The same example is investigated for an FGM plate with
exponentially graded material properties and compared with reference solutions obtained by means of the

integral equation method by Paulino and Dong [65]. The second example investigates benchmark examples

which have been used for laboratory experiments, and provides numerical solutions for T -stress and

biaxiality ratio considering exponentially graded materials. The third example investigates the effect of

scaling of FGM specimens on the T -stress and biaxiality ratio. The fourth example investigates an internal

crack in an FGM strip. The fifth example consists of a slanted crack in a plate which was investigated by

Eischen [17] and Kim and Paulino [23] who used the path-independent J �
k -integral. The sixth example

consists of an internal or an edge crack in a circular disk with exponentially graded material properties in
the radial direction. The last example is provided to compare the present FEM results with experimental

(static fracture test) results obtained by Marur and Tippur [69].
7.1. Inclined center crack in a plate

Fig. 12(a) and (b) show an inclined center crack of length 2a located with angle a (counter-clockwise) in a

plate under constant traction and fixed-grip loading, respectively, Fig. 12(c) shows the complete mesh

configuration, and Fig. 12(d) shows mesh detail using 12 sectors (S12) and 4 rings (R4) of elements around

crack-tips. The displacement boundary condition is prescribed such that u2 ¼ 0 along the lower edge, and

u1 ¼ 0 for the node at the left-hand side. The mesh discretization consists of 1641 Q8, 94 T6, and 24 T6qp
elements, with a total of 1759 elements and 5336 nodes. The following data are used for the FEM analyses:
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Fig. 12. Example 1: Plate with an inclined crack with angle a: (a) geometry and BCs for homogeneous case; (b) geometry and BCs for

FGM case; (c) complete finite element mesh; (d) four different contours for the interaction integral and mesh detail using 12 sectors

(S12) and 4 rings (R4) around the crack-tips (a ¼ 30� counter-clockwise).
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plane stress; 2 � 2 Gauss quadrature;

a=W ¼ 0:1; L=W ¼ 1:0;

a ¼ ð0� to 90�Þ:
7.1.1. Constant traction––homogeneous material case

This example has analytical solutions in which an inclined center crack in a homogeneous plate is

subjected to far-field constant traction. The closed-form solutions are obtained by considering another

large plate such that its edges are parallel or perpendicular to the crack, as shown in Fig. 13 [31]. The far-

field stresses on the edges of the secondary boundary (see Fig. 13(b)) are
rx1x1 ¼ rðsin2 aþ k cos2 aÞ; rx2x2 ¼ rðcos2 aþ k sin2 aÞ; rx1x2 ¼ rð1� kÞ sin a cos a; ð54Þ
and the T -stress is given by [31]
T ¼ rðk� 1Þ cos 2a: ð55Þ
The applied loads correspond to r22ðX1; 10Þ ¼ r and r11ð�10;X2Þ ¼ kr, e.g. k ¼ ð0:0; 0:5Þ (see Fig. 12(a)).
Young�s modulus and Poisson�s ratio are E ¼ 1:0 and m ¼ 0:3, respectively. Table 2 shows good agreement
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Fig. 13. Example 1: An inclined crack in a biaxially loaded homogeneous plate.

Table 2

Example 1: T -stress for an inclined center crack in a homogeneous plate under far-field constant traction (angle a: counter-clockwise).
The exact solutions are obtained using Eq. (55). The parameter k refers to the applied loading (see Figs. 12 and 13)

a (�) k ¼ 0:0 k ¼ 0:5

Present Exact Present Exact

0 )1.0070 )1.0000 )0.5089 )0.5000
15 )0.8738 )0.8660 )0.4434 )0.4330
30 )0.5083 )0.5000 )0.2612 )0.2500
45 )0.0073 0.0000 )0.0103 0.0000

60 0.4933 0.5000 0.2394 0.2500

75 0.8605 0.8660 0.4229 0.4330

90 0.9951 1.0000 0.4907 0.5000
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between FEM results for T -stress obtained by the non-equilibrium formulation of the interaction integral

method and the closed-form solution given by Eq. (55). For homogeneous materials, the results for T -stress
for the right crack-tip are the same as those for the left crack-tip. This feature was observed in the FEM

results obtained with the I-FRANC2D code. By comparing the data reported in Table 2, one observes that

the numerical and analytical results agree quite well. For homogeneous materials, there is no difference in

the results obtained using ‘‘non-equilibrium’’ and ‘‘incompatibility’’ [30] formulations.
7.1.2. Fixed-grip loading––FGM case

This example consists of an inclined center crack in an FGM plate subjected to fixed-grip loading. The

applied load corresponds to r22ðX1; 10Þ ¼ e0E0e
cX1 (see Fig. 12(b)). This loading results in a uniform strain

e22ðX1;X2Þ ¼ e0 in a corresponding uncracked structure. Young�s modulus is an exponential function, i.e.
EðX1Þ ¼ E0e
cX1 ; ð56Þ
and the Poisson�s ratio is taken as constant. The following data are used for the FEM analyses (consistent

units):
ca ¼ ð0 to 0:5Þ; E0 ¼ 1:0; m ¼ 0:3; e0 ¼ 1:0:
Table 3 compares the FEM results for T -stress obtained by the non-equilibrium formulation of the
interaction integral method for various material non-homogeneity parameter ca with both those obtained



Table 3

Example 1: Comparison of T -stress for an inclined center crack in an FGM plate under fixed-grip loading (angle a: counter-clockwise).
Notice that ca ¼ 0:0 refers to homogeneous material

Method a (�) ca ¼ 0:00 ca ¼ 0:25 ca ¼ 0:50

T ðþaÞ T ð�aÞ T ðþaÞ T ð�aÞ T ðþaÞ T ð�aÞ
Non-equilibrium (present) 0 )0.9828 )0.9828 )0.9619 )0.9416 )0.8963 )0.8589

15 )0.8534 )0.8534 )0.8338 )0.8179 )0.7734 )0.7478
30 )0.4974 )0.4974 )0.4810 )0.4754 )0.4334 )0.4360
45 )0.0055 )0.0055 )0.0067 )0.0023 0.0361 0.0115

60 0.4912 0.4912 0.4987 0.4908 0.5133 0.4845

75 0.8592 0.8592 0.8625 0.8567 0.8685 0.8502

90 0.9950 0.9950 0.9949 0.9948 0.9945 0.9945

Incompatibility [30] 0 )0.9828 )0.9828 )0.9589 )0.9430 )0.8878 )0.8606
15 )0.8534 )0.8534 )0.8310 )0.8191 )0.7655 )0.7494
30 )0.4974 )0.4974 )0.4790 )0.4763 )0.4288 )0.4371
45 )0.0055 )0.0055 )0.0077 )0.0019 0.0391 0.0109

60 0.4912 0.4912 0.4992 0.4905 0.5146 0.4841

75 0.8592 0.8592 0.8625 0.8569 0.8684 0.8505

90 0.9950 0.9950 0.9949 0.9948 0.9946 0.9944

Paulino and Dong [65] 0 )0.9999 )0.9999 )0.9543 )0.9590 )0.8670 )0.8766
15 )0.8660 )0.8660 )0.8266 )0.8316 )0.7483 )0.7631
30 )0.5001 )0.5001 )0.4871 )0.4727 )0.4200 )0.4444
45 0.0002 )0.0000 0.0106 0.0048 0.0393 0.0109

60 0.4999 0.5000 0.5024 0.4981 0.5132 0.4905

75 0.8660 0.8660 0.8665 0.8643 0.8701 0.8585

90 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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by Paulino and Dong [65] using a singular integral equation method and FEM results obtained by Kim and

Paulino [30] using the incompatibility formulation. Table 3 shows good agreement between FEM results for

T -stress and the reference solutions. For homogeneous materials (ca ¼ 0:0), the results for T -stress for the
right crack-tip are the same as those for the left crack-tip. This feature was captured by the I-FRANC2D

code. Notice that as ca increases, T -stress for the right crack-tip (T ðþaÞ) increases within the range of angle

0�6 a < 45� and 45� < a < 90�, however, T -stress for the left crack-tip (T ð�aÞ) increases for the range of
0�6 a6 45�, and then decreases for the range of 45� < a < 90�. The same trend in the results is observed by

two very distinct methods, the FEM and the singular integral equation method.

Table 4 shows the breakdown of the J -integrals for the actual, auxiliary, superimposed fields, and theM-

integral (M ¼ J s � J � J aux) evaluated for the right tip of an inclined (a ¼ 30�) center crack under fixed-grip

loading considering ca ¼ 0:0 (homogeneous material case) and ca ¼ 0:5. Four different contours are used as

illustrated by Fig. 12(d). As expected, Table 4 shows path-independence of the M-integral as the domain

becomes relatively large. We observe that, for homogeneous materials, there is a numerical remnant for

J aux, which theoretically should be zero. A similar observation has also been made by Kfouri [35] (see
column for Jðf ; t0Þ in Table 1 of his paper). However, for FGMs, J aux involves the non-equilibrium term

(see Eq. (21)) for the non-equilibrium formulation or the incompatible term (see Eq. (A.1)) for the

incompatibility formulation, and thus it is non-zero. Fig. 14 shows comparison of T -stress results obtained
by including and neglecting the non-equilibrium term considering ca ¼ 0:5, a ¼ 30� and four different

contours as illustrated by Fig. 12(d). This plot clearly shows that in order to obtain converged solutions, the

non-equilibrium term must be considered in the M-integral formulation. Notice that as the domain be-

comes large, the difference between the two solutions (including versus neglecting the non-equilibrium term)

increases.
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Fig. 14. Example 1: Comparison of T -stress obtained by either including or neglecting the non-equilibrium term (see Fig. 12(d) for the
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Table 4

Example 1: Breakdown of J -integrals for the actual, auxiliary, superimposed fields, and the M-integral (M ¼ J s � J � J aux) for the

calculation of T -stress at the right tip of an inclined center crack in a plate under fixed-grip loading (a ¼ 30�)

Formulation ca Contour J s J J aux M T

Non-equilibrium and

incompatibility

0.0 1 1.8305 2.3321 )0.00455 )0.4969 )0.4969
2–4 1.8303 2.3307 )0.00223 )0.4974 )0.4974

Non-equilibrium 0.5 1 2.5137 2.8120 )0.01666 )0.2816 )0.4342
2–4 2.5143 2.8110 )0.01556 )0.2811 )0.4334

Incompatibility 0.5 1 2.5013 2.8120 )0.03262 )0.2780 )0.4287
2–4 2.5019 2.8110 )0.03100 )0.2781 )0.4288
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7.2. Benchmark examples based on laboratory specimens

This example investigates the following benchmark laboratory specimens:

• single edge notched tension (SENT),

• double edge notched tension (DENT),

• center cracked tension (CCT),

• single edge notched bending (SENB),

• compact tension (CT).

A similar study for homogeneous materials was conducted by Sherry et al. [36]. They investigated two

and three-dimensional cracked geometries, and provided T -stress and the biaxiality ratio for the above
specimen types, but the dimensions are different from those considered in this paper. Fig. 15(a)–(e) show

SENT, DENT, CCT, SENB, and CT specimens, respectively. Fig. 16(a)–(d) show the complete finite

element meshes for SENT or SENB, DENT, CCT and CT specimens, respectively, and Fig. 16(e) shows the

mesh detail of the CCT specimen using 12 sectors (S12) and 4 rings (R4) around the crack-tips. The applied

loads are as follows:
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Fig. 15. Example 2: Laboratory specimens of thickness t: (a) single edge notched tension (SENT); (b) double edge notched tension

(DENT); (c) center cracked tension (CCT); (d) single edge notched bending (SENB); (e) compact tension (CT). The load P is the point

force for the SENB and CT specimens or the resultant for the equidistributed tractions (r) on the boundary of the SENT, CCT, and

DENT specimens.
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r22ðX1;�LÞ ¼ r ¼ 1 for SENT;DENT; and CCT;
P ðW ; 0Þ ¼ 1 for SENB;
P ð0;�0:275Þ ¼ 1 for CT;
where r22 is equidistributed traction on the boundary of FGM specimens.

The displacement boundary condition is prescribed as follows:
ðu1; u2ÞðW ; 0Þ ¼ ð0; 0Þ; u2ða; 0Þ ¼ 0 for SENT and CT;

ðu1; u2Þða; 0Þ ¼ ð0; 0Þ; u2ð2W � a; 0Þ ¼ 0 for DENT;

ðu1; u2Þð0; 0Þ ¼ ð0; 0Þ; u2ð2W ; 0Þ ¼ 0 for CCT;

ðu1; u2Þð0; LÞ ¼ ð0; 0Þ; u1ð0;�LÞ ¼ 0 for SENB:

ð57Þ
Young�s modulus is an exponential function given by
EðX1Þ ¼ E1e
cX1 ; ð58Þ
where E1 ¼ Eð0Þ and E2 ¼ EðW Þ for SENT, SENB, and CT specimens and E1 ¼ Eð0Þ and E2 ¼ Eð2W Þ for
DENT and CCT specimens. The Poisson�s ratio is taken as constant for all the specimens. The following
data are used for the FEM analyses (consistent units):



Fig. 16. Example 2: Finite element meshes: (a) single edge notched tension (SENT) and single edge notched bending (SENB); (b)

double edge notched tension (DENT); (c) center cracked tension (CCT); (d) compact tension (CT); (e) mesh detail of the CCT

specimen using 12 sectors (S12) and 4 rings (R4) around the crack-tips.
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plane strain; 2 � 2 Gauss quadrature;

a=W ¼ ð0:1 to 0:8Þ; L ¼ 6:0; W ¼ 1:0;

E2=E1 ¼ ð0:1; 0:2; 1:0; 5; 10Þ;
E1 ¼ 1:0; m ¼ 0:3:

ð59Þ
Fig. 17 shows the biaxiality ratio (b ¼ T
ffiffiffiffiffiffi
pa

p
=KI) versus the ratio of crack length to width a=W for

various specimens considering homogeneous materials (E2 ¼ E1). The mode I SIF KI is calculated by the
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Fig. 17. Example 2: Biaxiality ratio (b ¼ T
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=KI) for a homogeneous material (E1 ¼ E2).
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non-equilibrium formulation of the interaction integral method using appropriate auxiliary fields for SIFs

[70]. The auxiliary fields consist of Williams�s asymptotic displacement and strain fields, and stress fields

constructed by Eq. (9). Notice that the sign of biaxiality ratio changes from negative to positive as the ratio

of crack length to width (a=W ) is about 0.22 for CT, 0.35 for SENB, and 0.60 for SENT specimen, however,

it remains negative for DENT and CCT specimens. Fig. 18 shows biaxiality ratio (b ¼ T
ffiffiffiffiffiffi
pa

p
=KI) versus

a=W for various specimens considering exponentially graded materials with E2=E1 ¼ 10. For the CCT and
DENT specimens, which have two crack-tips, the biaxiality ratio is calculated for the right crack-tip. By

comparing Figs. 17 and 18, we observe that the transition point of the sign of biaxiality ratio shifts to the

left due to the material gradation in the CT, SENB, and SENT specimens. Moreover, the behavior of the

biaxiality ratio for CCT and DENT is significantly different from that for a homogeneous material.

The T -stress and biaxiality ratio are evaluated for all the specimens considering various ratios of E2=E1.

Fig. 19 shows the biaxiality ratio (b ¼ T
ffiffiffiffiffiffi
pa

p
=KI) versus a=W for the SENT specimen. The transition point

of the sign of biaxiality ratio shifts to the left as E2=E1 increases. For a fixed value of a=W considered here,

the biaxiality ratio (b ¼ T
ffiffiffiffiffiffi
pa

p
=KI) increases with increasing E2=E1. Fig. 20 shows the biaxiality ratio

(b ¼ T
ffiffiffiffiffiffi
pa

p
=KI) versus a=W for the DENT specimen. For the range of a=W between 0.1 and 0.75, the T -

stress and biaxiality ratio are negative. For E2=E1 ¼ 0:1, as the ratio a=W increases from 0.75 to 0.8, the

biaxiality ratio becomes positive. For a fixed value of a=W considered here, the biaxiality ratio decreases

with increasing E2=E1. Fig. 21 shows biaxiality ratio (b ¼ T
ffiffiffiffiffiffi
pa

p
=KI) versus a=W for the CCT specimen. For

the range of a=W considered, the T -stress and biaxiality ratio are negative. For a fixed value of a=W , the

biaxiality ratio (b ¼ T
ffiffiffiffiffiffi
pa

p
=KI) increases with increasing E2=E1. Fig. 22 shows the biaxiality ratio versus

a=W for the SENB specimen. The transition point of the sign of biaxiality ratio shifts to the left as E2=E1

increases. For a fixed value of a=W considered here, the biaxiality ratio increases with increasing E2=E1. Fig.
23 shows biaxiality ratio (b ¼ T

ffiffiffiffiffiffi
pa

p
=KI) versus a=W for the CT specimen. The transition point of the sign

of biaxiality ratio shifts to the left as E2=E1 increases. For a fixed value of a=W , the biaxiality ratio increases

with increasing E2=E1. Based on the above investigations, we observe that the material gradation (repre-

sented by the ratio E2=E1) significantly influences the T -stress and biaxiality ratio for all the specimens

considered.
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Fig. 19. Example 2: Biaxiality ratio (b ¼ T
ffiffiffiffiffiffi
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p
=KI) for the single edge notched tension (SENT) specimen (see Fig. 15(a)).
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For graded laboratory specimens, the mode I SIF (KI) is associated with material non-homogeneity, and

it can be given by
KI ¼
P

t
ffiffiffiffiffi
W

p f
a
W

; c
� �

; ð60Þ
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=KI) evaluated at the right crack-tip for the center cracked tension (CCT) specimen.
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where t is the thickness of the specimen, and P is either the point force for the SENB and CT specimens or
the resultant for the equidistributed tractions (r) on the boundary of the SENT, CCT, DENT specimens

(see Fig. 15). For homogeneous specimens [20], c ¼ 0 (there is no effect of non-homogeneity). Using Eq. (2),

one obtains
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Fig. 22. Example 2: Biaxiality ratio (b ¼ T
ffiffiffiffiffiffi
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p
=KI) for the single edge notched bending (SENB) specimen (see Fig. 15(b)).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
–0.5

0

0.5

1

1.5

a/W

B
ia

xi
al

ity
 r

at
io

 (
β)

 

0.1 

0.2 

5 

E2 /E1 =10 

1

2

P

P

E E1

Fig. 23. Example 2: Biaxiality ratio (b ¼ T
ffiffiffiffiffiffi
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p
=KI) for the compact tension (CT) specimen.
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T ¼ bP

t
ffiffiffiffiffiffiffiffiffiffi
paW

p f
a
W

; c
� �

: ð61Þ
Notice that the T -stress is also a function of the material non-homogeneity parameter c.
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as large as specimen A. For both specimens, J is the same, and the Young�s modulus varies along the X1 direction from E1 on the left to

E2 on the right-hand-side.
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7.3. On scaling of FGM specimens

This section investigates the effect of scaling of FGM specimens on the T -stress and biaxiality ratio. Here

we consider the compact tension (CT) specimen with a fixed a=W ratio and two geometries where one is

twice as large as the other. The loads are applied considering a given value of J (or KI). Fig. 24(a) and (b)

show the geometry and BCs for the two specimens A and B, respectively. Fig. 16(d) shows the complete
finite element mesh adopted for these two CT specimens. For the large specimen (B) to have the same KI as

that for the small specimen (A), the applied load to specimen B should be
ffiffiffi
2

p
P (see Eq. (60)).

The Young�s modulus is taken as an exponential function given by
EðX1Þ ¼ E1e
cX1 ; ð62Þ
where E1 ¼ Eð0Þ, however, the present argument is independent of the specific material variation consid-

ered. Notice that as c ¼ log½EðW Þ=Eð0Þ�=W , the non-homogeneity parameter cB for specimen B is half of cA
for specimen A. Thus, for both specimens in Fig. 24 E2 ¼ EðW Þ ¼ E1e

cAW . The Poisson�s ratio is taken as

constant for the two specimens.

For these specific relations of non-homogeneity parameters, i.e. cA ¼ 2cB, the biaxiality ratio remains

unchanged. Using
T ¼ b
KIffiffiffiffiffiffi
pa

p ; ð63Þ
one observes that T -stress is proportional to 1=
ffiffiffi
a

p
. Thus
TA ¼
ffiffiffi
2

p
TB; ð64Þ
where TA and TB denotes the T -stress for specimens A (small) and B (large), respectively.

This theoretical argument is also observed in the numerical calculation. The following data are used for

the FEM analyses (consistent units):
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plane strain; 2 � 2 Gauss quadrature;

a=W ¼ 0:5; W ¼ 1:0; 2:0;

E2=E1 ¼ 10;

E1 ¼ 1:0; m ¼ 0:3; P ¼ 1:

ð65Þ
For specimen A, the mode I SIF (KI), T -stress, biaxiality ratio are obtained as (cf. Fig. 23)
ðKIÞA ¼ 7:130; TA ¼ 5:607; bA ¼ 0:985: ð66Þ
For specimen B, the mode I SIF (KI), T -stress, biaxiality ratio are obtained as (cf. Fig. 23)
ðKIÞB ¼ 7:130; TB ¼ 3:964; bB ¼ 0:985: ð67Þ
Notice that, numerically, TA=TB ¼ 1:4144, which is very close to
ffiffiffi
2

p
. Therefore the biaxiality ratio plays an

important role as a non-dimensional parameter not only for homogeneous materials and but also for

FGMs.

7.4. Internal crack in a strip

Fig. 25(a) and (b) show geometry and boundary conditions (BCs) used in the present FEM analysis and
the singular integral equation (SIE) method used by Paulino and Dong [65], respectively, for an internal

crack in an FGM strip. Fig. 25(c) shows complete mesh discretization and Fig. 25(d) shows mesh detail

using 12 sectors (S12) and 4 rings (R4) of elements around crack-tips. The displacement boundary con-

dition is prescribed such that u1 ¼ u2 ¼ 0 for the center node on the left edge, and u2 ¼ 0 for the center node

on the right edge. For the present FEM analyses, the applied load is prescribed on the upper and lower

edges with normal stress r22ð�W 6X1 6W ;�hÞ ¼ e0E0e
cX1 , and for the SIE approach, Paulino and Dong

[65] applied the load on the upper and lower crack faces with normal stress r22ð�a6X1 6 a;�0Þ ¼ e0E0e
cX1 .

These loads lead to the same SIF and T -stress.
Young�s modulus is an exponential function, i.e.
EðX1Þ ¼ E0e
cX1 ; ð68Þ
and the Poisson�s ratio is taken as constant. The mesh discretization consists of 1050 Q8, 209 T6, and 24

T6qp elements, with a total of 1283 elements and 3856 nodes. The following data are used for the FEM

analyses (consistent units):
plane strain; 2 � 2 Gauss quadrature;

a=W ¼ 0:1; W ¼ 10; h ¼ 1;

ca ¼ ð0; 0:25; 0:50Þ;
E1 ¼ 1:0; m ¼ 0:3; e0 ¼ 1:0:

ð69Þ
Table 5 compares T -stress obtained by the non-equilibrium formulation of the interaction integral

method with that obtained by Paulino and Dong [65] using the SIE method. The FEM results for T -stress
agree reasonably well with corresponding reference results. Notice that Paulino and Dong [65] used

ca ¼ 0:001 for the homogeneous case, and mode I SIF and T -stress for the right crack-tip are different from

those for the left crack-tip.

7.5. Slanted edge crack in a plate

Fig. 26(a) shows a slanted edge crack in a plate, Fig. 25(b) shows the coarse mesh discretization using

(S8, R2) at the crack-tip region, which is the same as the one used by Eischen [17] and Kim and Paulino
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Fig. 25. Example 4: An internal crack in an FGM strip: (a) geometry and BCs used for the FEM; (b) geometry and BCs used for the

singular integral equation (SIE) method [65]; (c) complete finite element mesh; (d) mesh detail using 12 sectors (S12) and 4 rings (R4)

around the crack-tips.

Table 5

Example 4: T -stress for an internal crack in strip. Paulino and Dong [65] used ca ¼ 0:001 for the homogeneous case

ca Present (FEM) SIE [65]

Kþ
I K�

I Tþ T� Kþ
I K�

I Tþ T�

0.00 1.8234 1.8234 )0.8989 )0.8989 1.8167 1.8143 )0.9431 )0.9447
0.25 2.1484 1.5408 )0.6586 )1.0571 2.1391 1.5352 )0.6913 )1.1087
0.50 2.5224 1.2959 )0.3325 )1.1410 2.5120 1.2923 )0.3450 )1.1950
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[23], and Fig. 26(c) shows the refined mesh discretization using (S12, R4) at the crack-tip region. The
applied load is prescribed on the upper edge with normal stress r22ðX1; 1Þ ¼ e0E0e

cðX1�0:5Þ. The displacement

boundary condition is specified such that u2 ¼ 0 along the lower edge, and u1 ¼ 0 for the node at the right

hand side.



= E
(

γ

)

( )

(

= 

1 0.5)

σ
2

x 
x 

x 

υ = 0.3

1

1

L
 =

 2

W = 1

2

1x 

x -
E e

E0ε
0

0

γ

(
e 1 )0.5x -

(a) (b) (c)

a=
0.4

Fig. 26. Example 5: Slanted edge crack in a plate; (a) geometry and BCs; (b) coarse FEM mesh using (S8, R2) at the crack-tip, which is

the same mesh used by Eischen [17]; (c) refined FEM mesh using (S12, R4) at the crack-tip.
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Young�s modulus is an exponential function, i.e.
Table

Examp

Disc

ca

0.00

0:04

0:10

0:20

0:30

0:40
EðX1Þ ¼ E0e
cðX1�0:5Þ; ð70Þ
and the Poisson�s ratio is taken as constant. The coarse mesh has 97 Q8, 30 T6, and 8 T6qp with a total of

135 elements and 412 nodes; and the refined mesh has 126 Q8, 145 T6, and 12 T6qp elements, with a total of
283 elements and 714 nodes. The following data are used for the FEM analyses (consistent units):
plane strain; 2 � 2 Gauss quadrature;

a=W ¼ 0:4
ffiffiffi
2

p
; L=W ¼ 2:0;

ca ¼ ð0 to 0:40
ffiffiffi
2

p
Þ;

E1 ¼ 1:0; m ¼ 0:3; e0 ¼ 1:0:

ð71Þ
Table 6 shows a comparison of T -stress obtained by the non-equilibrium formulation of the interaction

integral method using the coarse mesh (S8, R2) shown in Fig. 26(b) in comparison with those obtained by

Kim and Paulino [23] (using the J �
k -integral EDI) and Eischen [17] (using the J �

k contour integral). It also

shows comparison of T -stress obtained by the present method using the refined mesh (S12, R4) shown in

Fig. 26(c) in comparison with the results obtained by means of the J �
k -integral (EDI) [23]. The T -stress
6

le 5: T -stress for a slanted edge crack in a plate using (S8, R2) and (S12, R4) for the crack-tip region discretization

retization (S8, R2) (S12, R4)

Present Kim and Paulino [23] Eischen [17] Present J �
k -integral [23]

0.747 0.796 0.822 0.764 0.787ffiffiffi
2

p
0.720 0.769 – 0.737 0.760ffiffiffi

2
p

0.682 0.731 – 0.698 0.722ffiffiffi
2

p
0.625 0.673 – 0.641 0.663ffiffiffi

2
p

0.574 0.620 – 0.589 0.611ffiffiffi
2

p
0.529 0.572 0.588 0.544 0.564
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results in Table 6 indicate reasonable agreement between the present numerical results and corresponding

reference results.

7.6. Internal or edge crack in a circular disk

This example considers two crack geometries, i.e. internal and edge cracks. Fig. 27(a) and (b) show

geometry and boundary conditions for internal and edge cracks, respectively. Three different loadings are

considered, i.e. constant normal traction, point tensile load, and point compressive load. The applied loads

correspond to rn ¼ 1:0 for constant normal traction, and P ¼ 1:0 for point (tensile and compressive) loads.

The displacement boundary condition is prescribed such that ðu1; u2Þ ¼ ð0; 0Þ for the node at ðX1;X2Þ ¼
ðR; 0Þ and u2 ¼ 0 for the node at ðX1;X2Þ ¼ ð�R; 0Þ for an internal center crack, and such that ðu1; u2Þ ¼
ð0; 0Þ for the node at ðX1;X2Þ ¼ ðR; 0Þ and u2 ¼ 0 at the crack-tip node for an edge crack.

Young�s modulus is an exponential function of the radius r given by
EðrÞ ¼ E0e
cr; ð72Þ
and its derivatives are given by
oEðrÞ
oX1

¼ oEðrÞ
or

or
oX1

¼ ðc cos aÞE0e
cr;

oEðrÞ
oX2

¼ oEðrÞ
or

or
oX2

¼ ðc sin aÞE0e
cr: ð73Þ
Eqs. (72) and (73) are used in the interaction integral method, which involves the constitutive tensors C and

its derivatives. The following data are used for the FEM analyses (consistent units):
plane strain; 2 � 2 Gauss quadrature;

x ¼ a=R ¼ 0:1; 0:2 for an internal crack;

x ¼ a=ð2RÞ ¼ 0:1; 0:2 for an edge crack;

c ¼ ð�1:0;�0:5; 0:0; 0:5; 1:0Þ;
E0 ¼ 1:0; m ¼ 0:3; R ¼ 2:0:
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Fig. 27. Example 6: Geometry and BCs: (a) internal crack in a circular disk; (b) edge crack in a circular disk.
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(c) (S16, R4) (d) (S20, R4)

Fig. 28. Example 6: Sensitivity of crack-tip discretization on the accuracy of T -stress: (a) partial FEM mesh configuration with the

shaded region indicating the location where a mesh refinement study is conducted; (b) twenty sectors (S12); (c) sixteen sectors (S16);

(d) twenty sectors (S20). Four rings (R4) of elements are used along the radial direction for all three cases.
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Here we investigate the sensitivity of mesh discretization on the accuracy of T -stress by increasing the

number of sectors around the crack-tip, i.e. S12, S16, and S20. Fig. 28(a) shows the partial FEM mesh for

the internal crack in a disk in which the shaded region indicates the location where various mesh dis-
cretizations are applied. Fig. 28(b)–(d) illustrate mesh details using 12 sectors (S12), 16 sectors (S16), and 20

sectors (S20), respectively. Table 7 provides the mesh statistics for each case. Four rings (R4) of elements

are used along the radial direction for all three cases. Table 8 shows the influence of crack-tip discretization

on the accuracy of the T -stress considering S12, S16, and S20 sectors for the internal crack in a disk

subjected to the tension point load. According to Table 8, improved mesh refinement around the crack-tips

increases accuracy of the T -stress results.
Based on the sensitivity study, we use the crack-tip template with S20 sectors (S20) and 4 rings (R4) for

the examples investigated in this section. Table 9 shows the FEM results for the T -stress for an internal



Table 7

Example 6: Mesh discretization using three crack-tip templates

Mesh Crack-tip templates

(S12, R4) (S16, R4) (S20, R4)

Q8 441 659 686

T6 290 368 361

T6qp 24 32 40

Elements 755 1059 1087

Nodes 2048 2864 2944

Table 8

Example 6: Sensitivity of crack-tip discretization on the accuracy of T -stress for an internal crack in a circular disk (see Fig. 28). Four

rings (R4) of elements are used along the radial direction for all three cases, i.e. S12, S16, and S20

Loading x Sectors Fett [72]

S12 S16 S20

P (tens.) 0.1 )0.6294 )0.6281 )0.6266 )0.6257

Table 9

Example 6: T -stress for an internal crack in a circular disk considering the (S20, R4) crack-tip template (see Figs. 27(a) and 28(a and d))

Loading x c ¼ 0:0 c ¼ �1:0 c ¼ �0:5 c ¼ 0:5 c ¼ 1:0

Present Fett [72]

rn 0.1 )0.0228 )0.0216 )0.2292 )0.1115 0.0322 0.0585

0.2 )0.0795 )0.0805 )0.4549 )0.2412 0.0244 0.0789

P (tens.) 0.1 )0.6266 )0.6257 )0.8508 )0.7271 )0.5070 )0.3912
0.2 )0.6003 )0.5983 )0.8818 )0.7269 )0.4802 )0.3768
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crack considering the (S20, R4) crack-tip template. For a homogeneous material (c ¼ 0:0), the results for

the T -stress show relatively good agreement with those obtained by Fett [71–73] who used the boundary
collocation method. As c increases, the T -stress increases for constant normal traction and point tension

load. As expected, the T -stress for point tension load changes sign in comparison with the T -stress for point
compression load, while the magnitude is the same on both cases.

Fig. 29(a) shows the complete FEM mesh discretization for an edge crack in a circular disk, and Fig.

29(b) shows the mesh detail using the (S20, R4) crack-tip template discussed above. Table 10 shows the

FEM results for T -stress for an edge crack in a circular disk. As c increases, the T -stress decreases for

constant normal traction and point tension load. For the point compression load, the values of T -stress
change sign compared to those for the point tension load, while the magnitude is the same on both cases.
7.7. Three-point bending specimen with crack perpendicular to material gradation

This example is based on the experimental investigation by Marur and Tippur [74], who have fabricated

FGM specimens using gravity assisted casting technique with two-part slow curing epoxy and uncoated

solid glass sphere fillers. Fig. 30(a) shows specimen geometry and BCs, Fig. 30(b) shows the complete mesh

configuration, and Fig. 30(c) shows mesh detail using 12 sectors (S12) and 4 rings (R4) around the crack-

tip. Here we consider the material properties used in the experiments [74] and also small perturbations on
the Young�s modulus. Fig. 31 illustrates four different linear variations of Young�s modulus EðX1Þ in the



(a) (b)

Fig. 29. Example 6: An edge crack in a circular disk: (a) the complete mesh configuration; (b) mesh detail using 20 sectors (S20) and 4

rings (R4) around the crack-tip.

Table 10

Example 6: T -stress for an edge crack in a circular disk considering the (S20, R4) crack-tip template (see Figs. 27(b) and 29(a and b))

Loading x c ¼ 0:0 c ¼ �1:0 c ¼ �0:5 c ¼ 0:5 c ¼ 1:0

Present Fett [73]

rn 0.1 0.5812 0.5853 0.9718 0.7930 0.2619 )0.1428
0.2 0.7365 0.7407 1.4836 1.1389 0.2321 )0.3748

P (tens.) 0.1 )0.0718 )0.0714 )0.0314 )0.0471 )0.1061 )0.1544
0.2 )0.1830 )0.1819 )0.0801 )0.1257 )0.2602 )0.3600
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graded material region and a fixed linear variation of Poisson�s ratio mðX1Þ. The numerical values of the
material properties at the end points of the gradation region are given in Table 11.

The mesh discretization consists of 1891 Q8, 199 T6, and 12 T6qp elements, with a total of 2102 elements

and 6341 nodes. The following data are used for the FEM analyses:
plane strain; 2 � 2 Gauss quadrature;

a ¼ 6:6 mm; t ¼ 6:8 mm; P ¼ 100 N:
ð74Þ
For the material variation EðX1Þ in the range [3.490–10.790] GPa, Marur and Tippur [74] used the

experimental strain data and computed jKj ¼ 0:65 MPa
ffiffiffiffi
m

p
and w ¼ �3:45�, while their numerical (FEM)

results are jKj ¼ 0:59 MPa
ffiffiffiffi
m

p
and w ¼ �3:24�, where w ¼ tan�1ðKII=KIÞ is the mode-mixity parameter.

Table 12 shows T -stress and SIFs obtained by the non-equilibrium formulation of the interaction

integral method for four different material variations and also compares SIFs with those obtained by Marur

and Tippur [74] for the specific material variation, EðX1Þ, [3.490–10.790] GPa. Notice that, as the slope of

material variation becomes steeper, both T -stress and SIFs decrease, and the absolute value of the phase

angle w increases.

To further compare the present results for SIFs and mode-mixity with other available reference results,

Table 13 shows the results obtained by the M-integral, the results by three different methods (modified
crack closure, J �

k -integral, and displacement correlation technique) reported by Kim and Paulino [23], and
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Fig. 30. Example 7: Three-point bending specimen with a crack perpendicular to the material gradation: (a) geometry and BCs

(Units:N, mm); (b) the complete mesh configuration; (c) mesh detail using 12 sectors (S12) and 4 rings (R4) around the crack-tip.
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also the results obtained numerically and experimentally by Marur and Tippur [74] for Case 2 (E ¼ 3:490 to
10.790 GPa) of Table 12. There are differences in the results for SIFs and mode-mixity obtained by the

present approach (M-integral) and those by Marur and Tippur [74]. While we cannot comment on their

experimental results, their numerical results do differ from those obtained with the M-integral. However,

the present numerical results obtained by the M-integral agree well with those obtained by the three dif-
ferent methods used by Kim and Paulino [23] (see Table 13).
8. Concluding remarks

This paper develops the ‘‘non-equilibrium formulation’’ of the interaction integral method in conjunc-

tion with the FEM for evaluating the T -stress considering mixed-mode crack problems in two-dimensional

FGMs. From numerical investigations, we observe that the T -stress computed by the present method is
reasonably accurate in comparison with available reference solutions for mode I and mixed-mode prob-



Table 11

Example 7: Variation of Young�s modulus (EðX1Þ) and Poisson�s ratio (mðX1Þ) for graded region of the beam illustrated by Fig. 30(a).

Case 2 refers to the material properties used by Marur and Tippur [74]

Case E (0 mm) E (21 mm) m (0 mm) m (21 mm)

1 4.402 GPa 9.877 GPa 0.384 0.282

2 3.490 GPa 10.790 GPa 0.384 0.282

3 2.577 GPa 11.702 GPa 0.384 0.282

4 1.665 GPa 12.615 GPa 0.384 0.282
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Fig. 31. Example 7: Variations of Young�s modulus (E) and Poisson�s ratio (m) for Cases 1–4. The shaded portion in the insert indicates

the graded material region and the solid lines in the graph indicate the material properties used by Marur and Tippur [74].
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lems, and that material non-homogeneity influences the magnitude and the sign of the T -stress. The present
numerical investigations for the T -stress and/or the biaxiality ratio presented here provide a guideline for

fracture experiments on both monolithic (uniform composition) and FGM specimens (e.g. graded fracture

laboratory specimens), and may complement fracture testing.

As observed in the boundary layer model study, the T -stress has larger domain dependence in non-

homogeneous than in homogeneous materials (see Table 1). Moreover, we observe that the T -stress has

larger domain dependence than the mode I SIF. For instance, for all the domains considered in the

boundary layer model of Fig. 11, the T -stress varies within order Oð10�2Þ for homogeneous materials and

Oð10�1Þ for non-homogeneous materials with c ¼ 0:5, while the mode I SIF changes within the order
Oð10�4Þ for both materials (homogeneous and non-homogeneous). Such observation is consistent with the

following statement in the manual of the commercial FEM software ABAQUS [75]: ‘‘In general, the T -
stress has larger domain dependence or contour dependence than the J -integral and the stress intensity

factors.’’

It may be noted that it is difficult to obtain accurate T -stress results. As motivated by Example 6, the

accuracy of the T -stress can be improved with mesh refinement. In that example, a simple convergence

study for T -stress is conducted through h-version refinement by increasing the number of sectors around the



Table 13

Example 7: Comparison of SIFs for three-point bending specimen with crack perpendicular to material gradation (Case 2: E ¼ 3:490 to

10.790 GPa)

Parameters M-integral

(present)

Kim and Paulino [23] Marur and Tippur [74]

MCC J �
k -integral DCT FEM Experiment

KI 0.5581 0.557 0.557 0.558 0.589 0.6488

KII )0.0277 )0.028 )0.026 )0.026 )0.033 )0.0391
jKj 0.5587 0.5575 0.5576 0.5580 0.59 0.65

w )2.84� )2.87� )2.67� )2.64� )3.24� )3.45�

Table 12

Example 7: T -stress and SIFs for three-point bending specimen with a crack perpendicular to material gradation (Case 1: E ¼ 4:402 to

9.877 GPa; Case 2: E ¼ 3:490 to 10.790 GPa; Case 3: E ¼ 2:577 to 11.702 GPa; Case 4: E ¼ 1:665 to 12.615 GPa)

E Parameters M-integral Marur and Tippur [74]

Case 1 T )1.042 –

KI 0.5711 –

KII )0.0188 –

jKj 0.5714 –

w )1.88� –

Case 2 T )1.263 –

KI 0.5581 0.589

KII )0.0277 )0.033
jKj 0.5587 0.59

w )2.84� )3.24�

Case 3 T )1.558 –

KI 0.5410 –

KII )0.0390 –

jKj 0.5424 –

w )4.12� –

Case 4 T )1.996 –

KI 0.5176 –

KII )0.0550 –

jKj 0.5205 –

w )6.06� –
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crack-tip along the radial direction. Alternative approaches include improved numerical quadrature and
p-version refinement [38]. Therefore, a natural extension for computing T -stress may be achieved by

combining the present strategy with the p-version of Chen et al. [38] into a hp-version refinement.
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Appendix A. Alternative formulations for T-stress

In fracture of FGMs, the use of the auxiliary fields developed for homogeneous materials results in

violation of one of the three relations of mechanics: equilibrium, compatibility, and constitutive. The
auxiliary fields chosen accounting for each of the violations lead to three independent formulations, i.e.

non-equilibrium, incompatibility, and constant-constitutive-tensor formulations. For the sake of com-

parison with the non-equilibrium formulation addressed in this paper, the other two alternative formula-

tions are derived below.

A.1. Incompatibility formulation

The incompatibility formulation satisfies equilibrium (raux
ij;j ¼ 0 with no body forces) and the constitutive

relationship (eauxij ¼ SijklðxÞraux
kl , where SijklðxÞ is the compliance tensor of FGMs), but violates compatibility

conditions (eauxij 6¼ ðuauxi;j þ uauxj;i Þ=2). The expressions in Eqs. (22), (23), (25), and (26) are also valid for this

formulation. Using equilibrium (actual and auxiliary) and compatibility (actual), one simplifies M2 in Eq.

(26) as
M2 ¼
Z
A

rijðuauxi;1j

n
� eauxij;1 Þ � Cijkl;1ekle

aux
ij

o
qdA:
Therefore the resulting interaction integral (M) becomes
M ¼
Z
A

rijuauxi;1

n
þ raux

ij ui;1 � rike
aux
ik d1j

o
q;j dAþ

Z
A

rijðuauxi;1j � eauxij;1 Þ
n

� Cijkl;1ekle
aux
ij

o
qdA; ðA:1Þ
where the underlined term is an incompatible term, which appears due to incompatibility of the auxiliary
strain fields. The incompatibility formulation for the extraction of mixed-mode stress SIFs in isotropic

FGMs was first developed by Dolbow and Gosz [42]. It was also used by Rao and Rahman [76] (referred to

as Method II in their paper) in conjunction with the element-free Galerkin (EFG) method.

A.2. Constant-constitutive-tensor formulation

The constant-constitutive-tensor formulation satisfies equilibrium (raux
ij;j ¼ 0 with no body forces) and

compatibility conditions (eauxij ¼ ðuauxi;j þ uauxj;i Þ=2), but violates the constitutive relationship (raux
ij ¼

ðCijklÞtipeauxkl with ðCijklÞtip 6¼ CijklðxÞ). Notice that rijeauxij 6¼ raux
ij eij due to violation of the constitutive rela-

tionship. Thus Eq. (22) becomes
M ¼
Z
A

rijuauxi;1

�
þ raux

ij ui;1 �
1

2
ðrike

aux
ik þ raux

ik eikÞd1j
�
q;j dAþ

Z
A

rij;juauxi;1

�
þ rijuauxi;1j þ raux

ij;j ui;1

þ raux
ij ui;1j �

1

2
ðrij;1e

aux
ij þ rije

aux
ij;1 þ raux

ij;1 eij þ raux
ij eij;1Þ

�
qdA: ðA:2Þ
Using equilibrium and compatibility conditions for both actual and auxiliary fields, one obtains M as
M ¼
Z
A

rijuauxi;1

�
þ raux

ij ui;1 �
1

2
ðrike

aux
ik þ raux

ik eikÞd1j
�
q;j dA

þ
Z
A

1

2
rije

aux
ij;1

n
� rij;1e

aux
ij þ raux

ij eij;1 � raux
ij;1 eij

o
qdA: ðA:3Þ
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Notice that the resulting M involves derivatives of the actual strain and stress fields, which arises due to the

material mismatch, and may cause loss of accuracy from a numerical point of view. This formulation was

discussed by Dolbow and Gosz [42], and it was presented and implemented by Rao and Rahman [76]

(referred to as Method I in their paper) using a meshless method.

Appendix B. Nomenclature
a half crack length

Cijkl or C constitutive tensor; i; j; k; l ¼ 1; 2; 3
d the coordinate of a fixed point on the x1 axis
e natural logarithm base, e ¼ 2:71828182 . . .
E Young�s modulus

Etip Young�s modulus at the crack-tip
E0 Young�s modulus evaluated at the origin

E1 Young�s modulus at X1 ¼ 0 or X2 ¼ 0; E1 ¼ Eð0Þ
E2 Young�s modulus at X1 ¼ W or X2 ¼ W ; E2 ¼ EðW Þ
F point force applied to the crack-tip

fijðhÞ angular function

H contour integral

J path-independent J -integral for the actual field

J aux J -integral for the auxiliary field
J s J -integral for the superimposed fields (actual and auxiliary)

J Jacobian matrix

J�1 inverse of the Jacobian matrix

KI mode I stress intensity factor

KIc fracture toughness

KII mode II stress intensity factor

jKj norm of stress intensity factors, jKj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ K2
II

p
L length of a plate
M interaction integral (M-integral)

mi, ni unit normal vectors on the contour of the domain integral

Ni shape function for node i of the element; Ni ¼ Niðn; gÞ
P point force or load resultant

q weight function in the domain integral

r radial direction in polar coordinates

R radius of a disk

rc fracture process zone size
Sijkl or S compliance tensor for anisotropic materials; i; j; k; l ¼ 1; 2; 3
T T -stress
t thickness of specimens

ui displacements for the actual field; i ¼ 1; 2
uauxi displacements for the auxiliary field; i ¼ 1; 2
ui;j displacement derivatives for the actual field; i; j ¼ 1; 2
uauxi;j displacement derivatives for the auxiliary field; i; j ¼ 1; 2
W width of a plate
W strain energy density



Waux strain energy density for the auxiliary field

xi local Cartesian coordinates; i ¼ 1; 2
Xi global Cartesian coordinates; i ¼ 1; 2
a crack geometry angle
ap proportionality factor

b biaxiality ratio; b ¼ T
ffiffiffiffiffiffi
pa

p
=KI

c material non-homogeneity parameter

C contour for J and M integrals

C0 outer contour

Cs inner contour

Cþ contour along the upper crack face

C� contour along the lower crack face
dij Kronecker delta; i; j ¼ 1; 2
k a load factor for r11

eij strains for the actual fields; i; j ¼ 1; 2
eauxij strains for the auxiliary fields; i; j ¼ 1; 2
h angular direction in polar coordinates

j material parameter, j ¼ ð3� mÞ=ð1þ mÞ for plane stress and j ¼ 3� 4m for plane strain

jtip j evaluated at the crack-tip

l shear modulus
ltip shear modulus evaluated at the crack-tip

m Poisson�s ratio
mtip Poisson�s ratio at the crack-tip

w phase angle; w ¼ tan�1ðKII=KIÞ
rij stresses for the actual fields; i; j ¼ 1; 2
raux
ij stresses for the auxiliary fields; i; j ¼ 1; 2

rY yield stress

x a=R for internal crack and a=2R for an edge crack
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