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Abstract. Automatic simulation of crack propagation in homogeneous and functionally graded materials is performed

by means of a remeshing algorithm in conjunction with the finite element method. The crack propagation is performed

under mixed-mode and non-proportional loading. Each step of crack growth simulation consists of calculation of mixed-

mode stress intensity factors by means of a novel formulation of the interaction integral method, determination of crack

growth direction based on a specific fracture criterion, and local automatic remeshing along the crack path. The present

approach requires a user-defined crack increment at the beginning of the simulation. Crack trajectories obtained by the

present numerical simulation are compared with available experimental results.

Key words: functionally graded material (FGM), fracture mechanics, stress intensity factors, interaction integral, two-

state integral, finite element method (FEM), automatic crack propagation

1. Introduction

Functionally graded materials (FGMs) are new multifunctional composites with smoothly

varying volume fractions of constituent materials, which leads to a non-uniform microstructure

with continuously graded macroproperties (Hirai, 1993; Suresh and Mortensen, 1998; Paulino

et al., 2003). FGMs possess material non-homogeneity with regard to thermomechanical and

strength related properties including fracture toughness, yield strength, fatigue and creep

behavior. These materials were introduced to take advantage of ideal behavior of its material

constituents. For instance, partially stabilized zirconia (PSZ) shows a high resistance to heat and

corrosion, and CrNi alloy has high mechanical strength and toughness (Ilschner, 1996), which is

illustrated in Figure 1.

As the manufacturing of FGMs advances, knowledge of the behavior of cracks in FGMs

becomes very important for assessing and enhancing structural integrity. In this paper, crack

growth in both homogeneous and functionally graded materials is investigated and simulated by

means of a remeshing algorithm in conjunction with the finite element method considering

mixed-mode (I and II) and non-proportional loading.

The fracture parameters describing the crack tip fields in linear elastic FGMs include stress

intensity factors (SIFs), which are important for determining crack growth direction under

mixed-mode loading conditions. The mixed-mode SIFs (both KI and KII) in FGMs are func-

tions of material gradients, external loading and geometry (see, for example, Kim and Paulino,

2002a). The material gradients do not affect the order of singularity and the angular functions of

the singular crack-tip fields, but do affect the SIFs (Eischen, 1987). The correspondence of the

crack-tip behavior between homogeneous and compositionally graded materials provides a

International Journal of Mechanics and Materials in Design 1: 63–94, 2004.

� 2004 Kluwer Academic Publishers. Printed in the Netherlands.



basis for local homogenization near the crack tip (see Figure 2), as discussed by Gu and Asaro

(1997).

Based on the assumption that the graded material is locally homogeneous near the crack tip,

this paper establishes the relationship between the asymptotically defined interaction integral

(M-integral) and SIFs, converts the M-integral to an equivalent domain integral (EDI) using

auxiliary fields, calculates SIFs using a finite domain, and predicts crack growth direction by

extending a fracture criterion originally developed for homogeneous materials. In this paper, we

use the maximum energy release rate criterion (Hussain et al., 1974) to check crack initiation

condition and to determine crack initiation angles (Kim, 2003). Crack increment also has an

effect on simulation of crack growth. The present approach is based on a user-defined crack

increment, which is provided at the beginning of each step.

The contribution of this paper includes the numerical simulation of mixed-mode crack propa-

gation in FGMs, and accurate evaluation of mixed-mode SIFs in FGMs using a novel interaction

integral method, which accounts for material non-homogeneity effects. The remainder of this

paper is organized as follows. The next subsection presents a motivation to this work. Next, a

brief literature review and comments on previous related work are presented. Section 2 presents

details of automatic crack propagation in FGMs including finite element mesh generation and a

Figure 1. Micrograph illustrating graded transition region between CrNi alloy and PSZ (after Ilschner, 1996).

K-field (KI,KII)
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Figure 2. Local homogenization near the crack tip in an FGM. A locally homogenized material is subjected to the

K-field (KI;KII) of the main crack.
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remeshing algorithm. Section 3 presents the interaction integral method for evaluating SIFs in

FGMs. Section 4 presents a fracture criterion and its extension to FGMs. Section 5 provides

numerical examples on simulation of crack propagation in FGMs. Finally, Section 6 presents

concluding remarks and potential extensions of this work.

1.1. MOTIVATION

Compared to standard composite materials, FGMs may offer potential advantages such as

reduction of residual stress (Lee and Erdogan, 1995), increased bonding strength (Kurihara

et al., 1990), and reduction of stress concentration or stress intensity factors (Erdogan, 1995;

Kim and Paulino, 2002b). Material non-homogeneity has a significant influence on SIFs, which

in turn will influence subsequent crack trajectory (Kim, 2003). For instance, under mode-I

symmetric loading conditions, a crack in FGMs with material gradation perpendicular to the crack

line tends to deviate from the projected path parallel to the crack line, as illustrated below. In this

case, the stronger the material variation, the more the crack deviates.

To motivate the present work, let’s consider the FGM plate of Figure 3(a). The plate has 6

mm thickness, and it is subjected to tension loads, i.e. rcr (MPa), on the top and bottom edges.

The critical load rcr is defined as the load required to propagate the crack at each step of crack

propagation. Here we consider a state of plane stress. The basic FGM constituents adopted here
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Figure 3. Motivation: FGM plate (units: N, mm): (a) geometry and boundary conditions; (b) the complete FEM mesh.

Table 1. Material properties (Young’s modulus E, Poisson’s ratio m, and fracture toughness KIc) at interior points in the

graded region

n E (MPa) m KIc (MPa
ffiffiffiffi
m

p
)

0.00 3000 0.35 1.2

0.17 3300 0.34 2.1

0.33 5300 0.33 2.7

0.58 7300 0.31 2.7

0.83 8300 0.30 2.6

1.00 8600 0.29 2.6
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are epoxy and glass with volume fraction 50%, which were fabricated by Rousseau and Tippur

(2000). The numerical values of material properties in the graded region (0 � n � 1) are illus-

trated in Table 1. Young’s modulus and Poisson’s ratio vary with the Cartesian coordinate X2

(see Figure 3(a)). For the homogeneous case, material properties for epoxy are used. Figure 3(b)

shows the FEM mesh for the plate. The mesh discretization consists of 818 eight-node quad-

rilateral (Q8) elements, 106 six-node triangular (T6) elements, and 12 six-node quarter-point

triangular (T6qp) elements, with a total of 936 elements and 2827 nodes.

Figure 4(a) shows comparison of crack trajectory for the homogeneous plate with that for the

graded plate obtained by the interaction integral method and the maximum energy release rate

criterion considering the crack extension increment Da ¼ 1 mm (constant). For the homoge-

neous case, as expected, the crack grows along the direction parallel to the crack line because of

symmetry (KII ¼ 0), however, for the FGM case, the crack turns to the lower (compliant) side of

the plate due to material gradation, i.e., KII > 0. Figure 4(b) shows comparison of critical loads

rcr for the homogeneous plate with those for the graded plate obtained by the present numerical

simulation. Notice that the critical loads (rcr) in all the steps for the FGM plate are greater than

those for the homogeneous plate. This is due to increased fracture toughness for the FGM plate.

Thus crack initiation is delayed due to material gradation. In summary, this example shows that

material non-homogeneity has a significant influence on crack trajectory and critical loads

required to propagate the crack. Moreover, if properly used, FGMs can delay crack initiation.

1.2. RELATED WORK

Accurate determination of SIFs in FGMs is crucial for predicting crack initiation and direction

of propagation. The interaction integral method is an accurate and robust scheme for evaluating

SIFs in FGMs. For instance, Dolbow and Gosz (2002) considered the plane problem of an

arbitrarily oriented crack and used the extended finite element method (X-FEM), Rao and

Rahman (2003) used the element-free Galerkin (EFG) method, and Kim and Paulino (2003a, b)

used the FEM to investigate cracked FGMs with material properties determined by means of

either continuum functions (e.g., exponentially graded materials) or micromechanics models
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Figure 4. Motivation: comparison of numerical results between homogeneous and epoxy/glass FGM plates: (a) crack

trajectories (Da ¼ 1 mm); (b) critical loads versus crack extension. The stronger the material gradient the bigger the crack

deviation effect.
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(e.g., self-consistent or Mori–Tanaka method). For the reasons described above, the interaction

integral method is chosen for this work.

Gu and Asaro (1997) investigated crack deflection in brittle FGMs by considering exponential

gradation perpendicular to the crack, and used the KII ¼ 0 criterion (Cotterell and Rice, 1980).

They investigated the effect of material non-homogeneity on kink angles for three-point

bending, double cantilever, four-point bending, and center-cracked specimens. Becker et al.

(2001) investigated finite crack kinking by considering a hyperbolic-tangent material gradation

with steep gradient of Young’s modulus. They used the maximum energy release rate (Palan-

iswamy and Knauss, 1978) and KII ¼ 0 (Cotterell and Rice, 1980) criteria. On the other hand,

there are an increasing number of fracture experiments on crack growth in FGMs in the

literature. Lin et al. (1994) investigated mode I fracture of aluminium alloy 2124/SiC FGMs

where the crack is parallel to material gradation. Moon et al. (2002) investigated crack growth

resistance (R-curve) behavior of multilayer graded alumina–zirconia FGMs considering a crack

parallel to the material gradation. Carpenter et al. (1999) performed fracture testing and

analysis of a layered functionally graded Ti/TiB beam subjected to three-point bending.

Rousseau and Tippur (2000) investigated crack kink angles and crack growth for a crack

normal to the material gradient in FGM beams (made of solid A-glass spheres dispersed within

a slow curing epoxy matrix) subjected to four-point bending. Lambros et al. (2000) and Abanto-

Bueno and Lambros (2002) investigated mode I crack growth for an edge crack in FGMs

subjected to fixed-grip loading. The FGMs were fabricated using a polyethylene 1% carbon

monoxide co-polymer (ECO) which was subjected to controlled ultraviolet (UV) irradiation

time throughout the specimen. Recently, Kim (2003) performed numerical simulation of mixed-

mode crack propagation in FGMs, and investigated the effect of material gradation on crack

trajectory and critical loads.

2. Automatic crack propagation in FGMs

Automatic crack propagation in FGMs is performed by means of the I-FRANC2D (Illinois-

FRANC2D) code, an interactive graphics program for simulating 2D fracture analysis. The

crack representation is based on the discrete crack approach. The present code is based on

FRANC2D (FRacture ANalysis Code 2D) (Wawrzynek, 1987; Wawrzynek and Ingraffea,

1991), which was originally developed at Cornell University. The extended capabilities of

I-FRANC2D consist of special graded elements to model non-homogeneous materials (see

Figure 5), and fracture parameters for FGMs (such as SIFs) which are used to determine crack

GP4 GP3GP2
GP1

P (X)

Figure 5. Generalized isoparametric formulation (GIF) (Kim and Paulino, 2002a, b) using graded finite elements. The

above figure illustrates a graded Q8 element and PðXÞ denotes a generic material property. The material properties at the

Gauss points ðPGPÞ are interpolated from nodal material properties ðPiÞ by PGP ¼
P

NiPi where N are element shape

functions.
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initiation and to predict crack initiation angles. The I-FRANC2D code uses graded quarter-

point six-node triangular (T6qp) elements to capture the stress singularity of Oðr�1=2Þ, and it can

perform mesh refinement around the crack tip in both radial (rings) and hoop (sectors) direc-

tions for each step of crack propagation (see Figure 6).

The basic framework for finite element simulation of automatic crack propagation in the

I-FRANC2D code is identical to that of FRANC2D, and it involves successive steps. Each step

consists of an automatic crack propagation cycle as illustrated in Figure 7. The I-FRANC2D

code uses the standard direct stiffness approach of the FEM within the framework of linear

elasticity. After the linear analysis involving a crack is performed, the code computes mixed-

mode SIFs with high accuracy using the interaction integral method. The computed SIFs are

used to check crack initiation condition by comparison with fracture toughness function, and

are also used to predict crack growth direction based on a fracture criterion (e.g. maximum

energy release rate). When the new crack tip location is determined according to the user-defined

crack increment, the code deletes elements along the incremental crack path, updates crack

geometry, and performs automatic local remeshing.

2.1. FINITE ELEMENT MESH GENERATION

Discrete crack growth analysis requires modification of the FEM mesh at each step of crack

propagation. The geometry update of crack propagation is modeled based on the winged-edge

Figure 6. Crack-tip discretization for a crack in a non-homogeneous material.
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Figure 7. Automatic crack propagation cycle used in the I-FRANC2D code.
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data structure (Wawrzynek, 1987), which uses the FEM mesh topology such as vertices, edges

and faces. Figure 8 illustrates the procedure for local remeshing. The remeshing sequence is as

follows (Bittencourt et al., 1996):

� Crack geometry is identified by the user in the initial geometrical configuration (see Figure 8(a)).

� A remeshing region is created by deleting elements near the crack in the polygon pattern, and

the crack geometry is updated (see Figure 8(b)).

� Quarter-point six-node triangular (T6qp) elements are created around the crack tip (see

Figure 8(c)).

� Triangular elements are generated by a triangulation algorithm (see Figure 8(d)).

� The local mesh refinement is done around the crack tip by increasing the number of elements

in the radial and hoop directions (see Figure 8(e)).

2.2. REMESHING ALGORITHM

An algorithm for performing automatic crack propagation should satisfy two conditions (Bit-

tencourt et al., 1996). First, the algorithm should keep compatibility between the new mesh and

the existing mesh. Second, the algorithm should generate well-shaped elements with good aspect

ratios, especially in the transition zone between the crack-tip and the far-field regions.

The present remeshing algorithm used in I-FRANC2D is the recursive spatial decomposition

(RSD) algorithm, which was originated in the code FRANC2D (Wawrzynek, 1987; Wawrzynek

and Ingraffea, 1991). The algorithm takes a region and subdivide it into smaller regions. The

current algorithm uses the quadtree and the boundary-contraction scheme. The procedure for

the overall remeshing algorithm is as follows (see Figure 9) (Bittencourt et al., 1996):

� The geometry data on the boundary, i.e. nodes and edges, are given (see Figure 9(a)).

� The quadtree configuration is generated. The given boundary data is used to determine a

local subdivision level (see Figure 9(b)).

(a)

(d) (e)

(b) (c)

Figure 8. Sequential procedure for geometry updating and remeshing (Bittencourt et al., 1996): (a) initial geometry; (b)

deletion of nearby elements and construction of crack geometry; (c) meshing of singular crack-tip elements; (d) meshing

of transition elements; (e) local refinement of crack-tip elements.
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� The quadtree is refined to make interior cells smaller than the largest cell around the

boundary (see Figure 9(c)).

� The quadtree is additionally refined to minimize the size difference between adjacent cells (see

Figure 9(d)).

� Internal nodes are generated at the center of the quadtree cells (see Figure 9(e)).

� A boundary-contraction procedure is used to produce a trial mesh. (see Figure 9(f)).

� The size and shape of neighboring elements is regularized by moving internal nodes to the

centroid of the adjacent nodes (see Figure 9(g)).

It is worth mentioning that the above techniques have also been used by Paulino et al. (1999)

and extended to self-adaptive finite element analysis using the h-version of the FEM.

3. The interaction integral for FGMs: stress intensity factors

The singular stress fields around the crack tip in FGMs take the form (Eischen, 1987) (see

Figure 10)

(g)

(a) (b)

(c) (d)

(e) (f)

Figure 9. Procedure for RSD remeshing (Bittencourt et al., 1996): (a) input of boundary nodes and edges; (b) initial

quadtree subdivision; (c) minimum subdivision of interior cells; (d) graded subdivision; (e) internal nodes generated at

the center of the cells; (f) elements generated before smoothing; (g) elements generated after smoothing.
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rijðr; hÞ ¼
KIffiffiffiffiffiffiffi
2pr

p fIijðhÞ þ
KIIffiffiffiffiffiffiffi
2pr

p fIIij ðhÞ; ð1Þ

where rij denotes the stress tensor, KI and KII are the mode I and mode II SIFs, respectively, and

the angular functions fijðhÞ can be found in several references, e.g. Eftis et al. (1977).

SIFs are important fracture parameters to characterize crack behavior. In this paper, we use

the interaction integral (M-integral1) method to evaluate SIFs in FGMs. The auxiliary fields and

the relationship between SIFs and M-integral are explained below.

3.1. AUXILIARY FIELDS

The interaction integral uses auxiliary fields, such as displacements (uaux), strains (eaux), and

stresses (raux). These auxiliary fields have to be suitably defined in order to evaluate mixed-mode

SIFs. There are various choices for the auxiliary fields. Here a non-equilibrium formulation is

adopted, which uses displacement and strain fields developed for homogeneous materials, and

employs the non-equilibrium stress fields given by (Kim, 2003).

raux ¼ CðxÞeaux; ð2Þ

where CðxÞ is the stiffness tensor. The auxiliary displacement and strain fields are chosen as

(Williams, 1957):

uaux ¼ KI

ltip

ffiffiffiffiffiffi
r

2p

r
gIðhÞ þ KII

ltip

ffiffiffiffiffiffi
r

2p

r
gIIðhÞ; ð3Þ

eaux ¼ ðsymrÞuaux; ð4Þ

where Kaux
I and Kaux

II are the auxiliary mode I and mode II SIFs, respectively, and ltip is the shear
modulus at the crack tip. The representative functions gIðhÞ and gIIðhÞ can be found in many

references, e.g. Eftis et al. (1977).

Figure 10. Cartesian ðx1;x2Þ and polar ðr; hÞ coordinates originating from the crack tip in an arbitrary FGM under

traction (t) and displacement boundary conditions. The crack initiation angle is h0, and Da denotes the crack extension.

1Here, the so-called M-integral should not be confused with the M-integral (conservation integral) of Knowles and

Sternberg (1972), Budiansky and Rice (1973), and Chang and Chien (2002). Also, see the book by Kanninen and Popelar

(1985) for a review of conservation integrals in fracture mechanics.
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3.2. FORMULATION OF THE INTERACTION INTEGRAL FOR FGMS

The interaction integral is derived from the path-independent J-integral (Rice, 1968) for two

admissible states of a cracked elastic FGM body. The standard J-integral is given by

J ¼ lim
Cs!0

Z
Cs

ðWd1j � rij ui;1Þ nj dC; ð5Þ

where W is the strain energy density expressed by W ¼ rijeij=2 and nj is the outward normal

vector to the contour Cs, as shown in Figure 11. Applying the divergence theorem and using the

weight function q, the EDI is obtained as

J ¼
Z
A

ðrij ui;1 �Wd1jÞ q;j dAþ
Z
A

ðrij ui;1 �Wd1jÞ;j q dA: ð6Þ

The J-integral of the superimposed fields (actual and auxiliary fields) is decomposed into

Js ¼ Jþ Jaux þM ð7Þ

where Jaux is given by

Jaux ¼
Z
A

ðrauxij uauxi;1 �Wauxd1jÞ q;j dAþ
Z
A

rauxij uauxi;1 � 1

2
rauxik eauxik d1j

� �
;j

q dA; ð8Þ

and the resulting form of the interaction integral (M), based on the non-equilibrium formula-

tion, is given by

M ¼
Z
A

frijuauxi;1 þ rauxij ui;1 � rike
aux
ik d1jgq;j dAþ

Z
A

frijuauxi;1 þ rauxij ui;1 � rike
aux
ik d1jg;jq dA

¼ M1 þM2:

ð9Þ

Moreover, the last term of the second integral (M2) in Eq. (9) is expressed as

ðrikeauxik d1jÞ;j ¼ ðrikeauxik Þ;1 ¼ ðrijeauxij Þ;1 ¼ ðCijklekle
aux
ij Þ;1

¼ Cijkl;1ekle
aux
ij þ rauxij eij;1 þ rije

aux
ij;1 : ð10Þ
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Figure 11. Conversion of the contour integral into an EDI. Here C ¼ Co þ Cþ � Cs þ C�, mj ¼ nj on Co and mj ¼ �nj
on Cs.
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Substituting Eq. (10) into Eq. (9), and using compatibility (actual and auxiliary) and equilibrium

(actual) (i.e. rij;j ¼ 0 with no body force), one obtains the resulting interaction integral (M) as

M ¼
Z
A

riju
aux
i;1 þ rauxij ui;1 � rike

aux
ik d1j

n o
q;j dA

þ
Z
A

rauxij;j ui;1 � Cijkl;1ekle
aux
ij

n o
q dA; ð11Þ

where the underlined term is a non-equilibrium term, which appears due to non-equilibrium of

the auxiliary stress fields, and must be considered to obtain converged solutions. The last term is

due to material non-homogeneity and involves the material gradient. The derivatives of the

auxiliary stress field in Eq. (2) are

rauxij;j ¼ Cijkl;jðxÞ eauxkl þ CijklðxÞ eauxkl;j

¼ ðCijklÞtip eauxkl;j þ Cijkl;jðxÞ eauxkl þ ðCijklðxÞ � ðCijklÞtipÞ eauxkl;j ; ð12Þ

where the underlined term in Eq. (12) vanishes.

The existence of the integral involving the non-equilibrium term as r goes to zero is proved

below. The stiffness tensor involving material properties Eðr; hÞ and mðr; hÞ must be continuous

and differentiable function, and thus it can be written as (Eischen, 1987)

Cijklðr; hÞ ¼ ðCijklÞtip þ rC
ð1Þ
ijklðhÞ þ

r2

2
C

ð2Þ
ijklðhÞ þOðr3Þ þ � � � ð13Þ

where C
ðnÞ
ijklðhÞ ðn ¼ 1; 2; . . .Þ are angular functions. In Eq. (12), the first term vanishes because of

equilibrium, and here we focus on the third term only. For the auxiliary fields for SIFs

(uauxi ð
ffiffi
r

p
; hÞ, eauxij ðr�1=2; hÞ), the integral, as the limit r goes to zero, becomes

lim
A!0

Z
A

rauxij;j ui;1 q dA ¼ lim
r!0

Z
h

Z
r

rauxij;j ui;1 q r dr dh

¼ lim
r!0

Z
h

Z
r

ðCijklðr; hÞ � ðCijklÞtipÞ eauxkl;j ui;1 q r dr dh

¼ lim
r!0

Z
h

Z
r

OðrÞ Oðr�3=2Þ Oðr�1=2Þ q r dr dh

¼ lim
r!0

OðrÞ ¼ 0: ð14Þ

Thus the limit exists and the proposed integral is well-posed.

3.3. EVALUATION OF STRESS INTENSITY FACTORS IN FGMS

The relationship between J-integral and the mode I and mode II SIFs is given as

Jlocal ¼
K2

I þ K2
II

E�
tip

ð15Þ

where E�
tip ¼ Etip for plane stress and Etip=ð1� m2tipÞ for plane strain. For two admissible fields,

which are the actual (u, e, r) and auxiliary (uaux, eaux, raux) fields, one obtains (Yau et al., 1980)
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Jslocal ¼
ðKI þ Kaux

I Þ2 þ ðKII þ Kaux
II Þ2

E�
tip

ð16Þ

¼ Jlocal þ Jauxlocal þMlocal ð17Þ

where Jlocal is given by Eq. (15), Jauxlocal is given by

Jauxlocal ¼
ðKaux

I Þ2 þ ðKaux
II Þ2

E�
tip

ð18Þ

and Mlocal is given by

Mlocal ¼
2

E�
tip

ðKIK
aux
I þ KIIK

aux
II Þ ð19Þ

The mode I and mode II SIFs are decoupled and are evaluated as follows:

KI ¼
E�
tip

2
M

ð1Þ
local; ðKaux

I ¼ 1:0;Kaux
II ¼ 0:0Þ ð20Þ

KII ¼
E�
tip

2
M

ð2Þ
local; ðKaux

I ¼ 0:0;Kaux
II ¼ 1:0Þ ð21Þ

The relationships of Eqs. (20) and (21) are the same as those for homogeneous materials (Yau

et al., 1980) except that, for FGMs, the material properties are evaluated at the crack-tip

location (Dolbow and Gosz, 2002; Rao and Rahman, 2003; Kim and Paulino, 2003b).

4. A fracture criterion

Based on the concept of local homogenization (see Figure 2), fracture criteria originally

developed for homogeneous materials can be extended to non-homogeneous materials such as

FGMs (Konda and Erdogan, 1994; Gu and Asaro, 1997; Rousseau and Tippur, 2000; Kim and

Paulino, 2003a; Kim, 2003). For instance, these criteria may include maximum hoop stress

(Erdogan and Sih, 1963), maximum energy release rate (Hussain et al., 1974; Palaniswamy and

Knauss, 1978), minimum strain energy density (Sih, 1974), KII ¼ 0 criterion (Cotterell and Rice,

1980), and criteria related to the minimum plastic zone radius (Golos and Wasiluk, 2000;

Wasiluk and Golos, 2000; Khan and Khraisheh, 2004). As indicated in the introduction of this

paper, the maximum energy release rate criterion is the method of choice in this work.

The maximum strain energy release rate, or ½GðhÞ�max, criterion was proposed by Hussain

et al. (1974) for homogeneous materials. They postulated that the crack subjected to combined

loads will grow in the direction along which strain energy release is maximum and the crack will

start to grow when the maximum strain energy release rate reaches a critical value. As men-

tioned in the introduction, here we consider a local (homogenized) version of the criterion by

Hussain et al. (1974), which is appropriate for FGMs. The energy release rate for combined

mode I and mode II loading in FGMs is given by

G ¼ K2
I þ K2

II

E�
tip

; ð22Þ

74 J.-H. Kim and G.H. Paulino



where E�
tip ¼ Etip for plane stress and Etip=ð1� m2tipÞ for plane strain. Eq. (22) is obtained by

assuming that a crack under mixed-mode loading moves along its own plane. However, in

general, the crack grows in a direction which is not parallel to its initial plane. Hussain et al.

(1974) obtained an elasticity solution for a straight main crack and a branch crack extended at

an arbitrary angle, and computed the energy release rate in the limit as the propagation branch

vanishes. The energy release rate, based on the solution by Hussain et al. (1974), is given by

GðhÞ ¼ 4

E�
tip

1

3þ cos2 h

� �2
1� p=h
1þ p=h

� �h=p

� ½ð1þ 3 cos2 hÞK2
I þ 8 sin h cos hKIKII þ ð9� 5 cos2 hÞK2

II�: ð23Þ

Then the crack initiation angle h0 is obtained from

oGðhÞ=oh ¼ 0 ) h ¼ h0: ð24Þ

Once the crack initiation angle is determined, the crack initiation condition is given by

Gðh0Þ ¼ GcrðxÞ; ð25Þ

where GcrðxÞ is the critical energy release rate, and is a function of spatial coordinates given by

GcrðxÞ ¼
K2

IcðxÞ
E�
tip

; ð26Þ

where KIcðxÞ is the fracture toughness function for FGMs.

5. Numerical simulation of crack propagation in FGMs

Fracture analysis and crack propagation are conducted using the FEM code I-FRANC2D. The

geometry is discretized with isoparametric graded elements (Kim and Paulino, 2002b). The

specific elements used consist of singular quarter-point six-node triangles (T6qp) for crack-tip

discretization, eight-node serendipity elements (Q8) for a circular region around crack-tip ele-

ments, and regular six-node triangles (T6) in a transition zone to Q8 elements at the outer

region. For the calculation of SIFs by means of the interaction integral, we use the domain

involving 12 sectors (S12) and four rings (R4) at each step of crack propagation (see

Figure 8(e)). Quasi-static automatic crack propagation in FGMs are performed in the following

examples:

(1) A crack in a beam subjected to four-point bending.

(2) A crack in a beam subjected to three-point bending.

(3) A crack in a beam with holes subjected to three-point bending.

(4) A crack in a double cantilever beam under non-proportional loading.

In order to validate the numerical results against available experimental results, we adopt the

experimental data reported by Rousseau and Tippur (2000). The first example involves mixed-

mode crack propagation in a graded glass/epoxy beam under four-point loading. The second

example is based on the experimental and numerical investigation on a homogeneous poly-

methyl-methacrylate (PMMA) three-point bending beam performed by Galvez et al. (1996), and

it is extended to a graded beam. The third example investigates a crack in a PMMA beam with

three holes under three-point bending, and it is extended to a graded material system. The last

example is based on PMMA double cantilever beam subjected to non-proportional loading
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performed by Galvez et al. (1996), and it is also extended to a graded specimen. For the last

three examples, we have adopted material variations for the FGM specimen which are similar to

those obtained in the experiments by Rousseau and Tippur (2000).

5.1. A CRACK IN A BEAM SUBJECTED TO FOUR-POINT BENDING

Rousseau and Tippur (2000) investigated crack growth behavior of a crack normal to the

material gradient in a graded glass/epoxy subjected to four-point bending, and applied dis-

placement controlled loading at a cross-head speed of 0.25 mm/min using the Instron Universal

Testing Machine. The FGM beam was made of solid A-glass spheres of mean diameter 42 lm
dispersed within a slow curing epoxy matrix, and was fabricated by gravity assisted casting

technique with two-part slow curing epoxy and uncoated solid glass sphere fillers.

Figure 12(a) shows specimen geometry and boundary conditions (BCs) for a crack located at

n ¼ 0:17 (n is a normalized length variable), Figure 12(b) shows the complete mesh configura-

tion, and Figure 12(c) shows mesh detail using 12 sectors (S12) and 4 rings (R4) around the

crack tip. The typical mesh discretization consists of 1067 Q8, 155 T6, and 12 T6qp elements,

with a total of 1234 elements and 3725 nodes. The following data are used for the FEM

analyses:

plane stress; 2� 2 Gauss quadrature;

a=W ¼ 0:25; t ¼ 6mm; P ¼ Pcrðaþ nDa;XÞ;
ð27Þ

where n refers to the number of crack propagation increments, and X ¼ ðX1;X2Þ.
Figure 13 illustrates variations of Young’s modulus E and Poisson’s ratio m, and Figure 14

illustrates the variation of fracture toughness KIc in the graded material region. The numerical

values of material properties at interior points in the graded region are illustrated in Table 1.

Figure 15 shows comparison of crack trajectories and crack initiation angles (h0) between the

experimental results reported by Rousseau and Tippur (2000) and the present FEM results. The

numerical results are obtained by considering the crack increment Da ¼ 1 mm (constant). There

is good agreement in crack initiation angles and crack trajectories between numerical and

experimental results.

Due to the lack of information on the critical load Pcr and load history in the paper by

Rousseau and Tippur (2000), here we calculated the critical load at each step based on a specific

fracture criterion, i.e., maximum energy release rate, and applied the calculated critical load to

the corresponding step. Notice that there is no effect of the load magnitude on the crack

trajectory within the framework of linear elastic analysis. Table 2 shows critical load Pcr, SIFs,

and the phase angle (w ¼ tan�1ðKII=KIÞ) at the initial step. Because KII < 0, the crack initiation

angle is counter-clockwise with respect to the local coordinate x1 (see Figure 15).

Figure 16(a)–(e) shows finite element discretization and remeshing for initial, intermediate,

and final steps of crack propagation considering the crack located at n ¼ 0:17 and Da ¼ 1 mm.

One can observe that local mesh refinement is done around the crack tip at each step. Figure

16(f) shows the fixed crack-tip template (S12,R4) used in every step of crack propagation.

To investigate the effect of the crack increment Da on crack trajectory, Figure 17 shows

comparison of crack trajectories obtained by considering Da ¼ 0:5, 1.0, and 2.0 mm. There is

not much difference in the crack trajectory for the crack increments Da considered here.

However, inappropriate large values of the crack increment may lead to accumulative deviation

of crack trajectory.
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Figure 12. Example 1: A crack in a graded epoxy/glass beam subjected to four-point bending: (a) geometry and

boundary conditions for a crack located at n ¼ 0:17 (6.29 mm); (b) the complete mesh configuration; (c) mesh detail

using 12 sectors (S12) and 4 rings (R4) around the crack tip.
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Figure 13. Example 1: Variations of Young’s modulus E (MPa) and Poisson’s ratio m along the graded region

(0 � n � 1).
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5.2. A CRACK IN A BEAM SUBJECTED TO THREE-POINT BENDING

Galvez et al. (1996) investigated crack growth behavior of a crack in a homogeneous PMMA

beam subjected to three-point bending considering three different loading controls such as crack

tip opening displacement (CMOD), displacement, and load (P). The material properties of the

PMMA beam used are as follows:

E ¼ 2890 MPa; m ¼ 0:4; KIc ¼ 1:09 MPa
ffiffiffiffi
m

p
: ð28Þ

In this example, we consider both homogeneous and graded (along the X2 direction) beams.

Figure 18(a) and (b) shows the specimen geometry and BCs for two different boundary con-

ditions: Cases 1 and 2, respectively; Figure 18(c) shows the complete mesh configuration; and

Fig. 18(d) shows mesh detail using 12 sectors (S12) and 4 rings (R4) around the crack tip. Notice

that the mesh of Figure 18(c) is valid for both cases, but the boundary conditions change.
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Figure 14. Example 1: Variation of fracture toughness KIc (MPa
ffiffiffiffi
m

p
) along the graded region (0 � n � 1).

Figure 15. Example 1: Comparison of crack trajectories and crack initiation angles (h0) obtained (a) experimentally by

Rousseau and Tippur (2000) who considered the crack located at n ¼ 0:17 in an FGM beam with (b) the present FEM

simulation using the maximum energy release rate criterion (Da ¼ 1 mm).
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Table 2. Example 1: Numerical results for the critical load Pcr, SIFs, and phase angle (w ¼ tan�1ðKII=KIÞ) at the initial
step

n Pcr (N) KI (MPa
ffiffiffiffi
m

p
) KII (MPa

ffiffiffiffi
m

p
) w ¼ tan�1ðKII=KIÞ

0.17 253.3 2.122 )0.129 )3.484

(a) Initial step (b) Step 3

(c) Step 9 (d) Step 12

(e) Step 16 (final) (f) Crack-tip template (shaded)

Figure 16. Example 1: finite element discretization and remeshing on each step of crack propagation considering

n ¼ 0:17 and Da ¼ 1 mm: (a) Initial step (Step 0); (b) Step 3; (c) Step 9; (d) Step 12; (e) final step (Step 16); (f) fixed crack-

tip template (S12, R4) used in every step of crack propagation.
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The mesh discretization consists of 741 Q8, 239 T6, and 12 T6qp elements, with a total of 992

elements and 2875 nodes. The following data are used for the FEM analyses:

plane stress, 2� 2 Gauss quadrature;

a=W ¼ 0:4; t ¼ 18mm;P ¼ Pcrðaþ nDa;XÞ:
ð29Þ

For the homogeneous beam, we use the material properties of PMMA given by expressions

(28). For the graded beam, we assumed linear variation of Young’s modulus, Poisson’s ratio,

and fracture toughness, and these properties at the end points are given in Table 3. Figure 19

shows comparison of crack trajectories for a homogeneous PMMA beam obtained by the

present numerical simulation with experimental (averaging) results reported by Galvez et al.

(1996) for the Case 2. The numerical results are obtained by considering Da ¼ 1:5 mm (constant)

and twenty-two steps including the initial step. There is reasonably good agreement between

numerical and experimental results. Figure 20 shows comparison of crack trajectories for a

homogeneous PMMA beam with those for a graded beam obtained by the present numerical

simulation for the Case 2 considering Da ¼ 1:5 mm and twenty-two steps including the initial

step. Notice that, in this case, the material gradation has almost no effect in the crack trajectory.

Figure 21 shows comparison of load versus crack mouth opening displacement (CMOD)

curve for a homogeneous beam with that for a graded beam obtained by the present numerical

simulation for Case 1 (mode I cracking) considering Da ¼ 1:5 mm. As expected, the linear

relationship between load and CMOD is observed up to the initial step. Notice that the critical

load (Pcr) and corresponding CMOD at the initial step for the FGM are greater than those for

the homogeneous beam. This indicates that the crack initiation is delayed due to material

gradation.

Figure 22 shows comparison of load versus CMOD curve for a homogeneous beam with that

for a graded beam obtained by the present numerical simulation for Case 2 (mixed-mode

cracking), which also considers Da ¼ 1:5 mm. Notice that the critical load (Pcr) and

corresponding CMOD for the FGM at the initial step are also greater than those for the

∆a=0.5mm 

1.0mm 

2.0mm 

Figure 17. Example 1: Sensitivity of the crack trajectory with respect to the crack increment Da, and comparison of

solutions obtained with Da ¼ 0:5, 1.0, and 2.0 mm.
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homogeneous beam. By comparing Figures 21 and 22, one can observe that, for both homoge-

neous and graded beams, the critical load (Pcr) forCase 2 is over twice as much as that forCase 1.

Figure 23(a) shows finite element discretization and remeshing for the final step of crack

propagation considering Da ¼ 1:5 mm for both homogeneous and graded beams of Case 1.

Notice that the crack grows vertically because of symmetry. Figure 23(b) shows finite element

discretization and remeshing for the final step of crack propagation considering Da ¼ 1:5 mm

Units: N, mm
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W
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120

P

t=1 8
X1

X2

(a)

t=1 8

15 120

W
=

60

20
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20 115

P

(b)

(c)

(d)

Figure 18. Example 2: A crack in a beam subjected to three-point bending (Units: N, mm): (a) Case 1: geometry and

boundary conditions considering symmetric loading; (b) Case 2: geometry and boundary conditions considering offset

loading; (c) the complete mesh configuration; (d) mesh detail using 12 sectors (S12) and 4 rings (R4) around the crack-

tip.
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for the homogeneous beam of Case 2. The final mesh for the FGM beam is almost identical to

the Figure 23(b).

5.3. A CRACK IN A BEAM WITH HOLES SUBJECTED TO THREE-POINT BENDING

Bittencourt et al. (1996) provided experimental and numerical results for a crack in a homo-

geneous PMMA beam with three holes subjected to three-point bending. Here material prop-

erties for the homogeneous beam are as follows:

E ¼ 1; m ¼ 0:3; KIc ¼ 1; ð30Þ

where E and KIc are normalized quantities. The actual material properties are not available in

the reference by Bittencourt et al. (1996).

In this example we consider both homogeneous and graded beams. Figure 24(a) and (b)

shows specimen geometry and BCs, and the complete mesh configuration, respectively, and Fig.

24(c) shows mesh detail using 12 sectors (S12) and 4 rings (R4) around the crack tip.

The mesh discretization consists of 680 Q8, 145 T6, and 12 T6qp elements, with a total of 837

elements and 2490 nodes. The following data are used for the FEM analyses:

Table 3. Example 2: Material properties (Young’s modulus E, Poisson’s ratio m, and fracture toughness KIc) at the end

points in the graded region. The material gradation varies linearly in between the end points. The material properties at

the middle point (X2 ¼ 30 mm) are the same as those for the homogeneous PMMA beam

X2 (mm) E (MPa) m KIc (MPa
ffiffiffiffi
m

p
)

0 1780 0.41 0.99

60 4000 0.39 1.19
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Figure 19. Example 2, Case 2: comparison of crack trajectories for homogeneous PMMA beam obtained by the present

numerical simulation with experimental (averaging) results reported by Galvez et al. (1996). The numerical results are

obtained considering Da ¼ 1:5 mm (constant).

82 J.-H. Kim and G.H. Paulino



plane stress; 2� 2 Gauss quadrature;

a=W ¼ 0:1875; t ¼ 25:4mm ð1 in:Þ; P ¼ 4:45 Nð1 lb:Þ:
ð31Þ

For the homogeneous beam, we use the material properties of PMMA given by the expres-

sions in (30). For the graded beam, we consider three regions, and in the middle region assume

linear variation of Young’s modulus, Poisson’s ratio, and fracture toughness, as shown in Figs.

25 and 26, respectively. Figure 27(a) shows comparison of crack trajectories obtained by the

present numerical results with experimental results reported by Bittencourt et al. (1996) for the

homogeneous beam. The numerical results are obtained by considering Da ¼ 7:62 mm (0.3 in.),

as adopted by Bittencourt et al. (1996), and 12 steps. There is excellent agreement between

numerical and experimental results. Figure 27(b) shows comparison of crack trajectories
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Figure 20. Example 2, Case 2: comparison of crack trajectories for a homogeneous beam with those for a graded beam

obtained by the present numerical simulation. The numerical results are obtained considering Da ¼ 1:5 mm (constant).
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Figure 21. Example 2, Case 1: comparison of P-CMOD curve for a homogeneous beam with that for a graded beam

obtained by the present numerical simulation. The numerical results are obtained considering Da ¼ 1:5 mm (constant).
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obtained by the present numerical results for the graded beam with those for the homogeneous

beam. The numerical results are obtained by considering Da ¼ 7:62 mm and 11 steps. As one

would expect, there is significant difference in crack trajectories. Note that, for the FGM beam,

Young’s modulus on the left-hand side is less than that on the right-hand side. Thus the crack

growth direction is naturally inclined to the left. Figure 28(a) and (b) shows finite element

discretization and remeshing for the final step of crack propagation considering Da ¼ 7:62 mm

for both homogeneous and graded beams, respectively. Figure 28(c) and (d) shows the contour

plots for the maximum principal stress for the homogeneous and graded beams.

Figure 29 shows SIFs history for both homogeneous and graded beams with respect to crack

extension (Da ¼ 7:62 mm). There is a monotonic increasing behavior of mode I SIF (KI) for the

FGM beam, however, this behavior is not observed for the homogeneous beam, which shows

decreasing SIFs from steps 5 and 6. For the homogeneous beam, this behavior is due to the hole

adjacent to the crack. For both homogeneous and graded beams, the mode II SIF KII oscillates

around zero thus changing the sign of the crack initiation angles.
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Figure 22. Example 2, Case 2: comparison of P-CMOD curve for a homogeneous beam with that for a graded beam

obtained by the present numerical simulation. The numerical results are obtained considering Da ¼ 1:5 mm (constant).

(a) (b)

Figure 23. Example 2: finite element discretization and remeshing considering Da ¼ 1:5 mm: (a) Case 1: homogeneous

and FGM beams; (b) Case 2: homogeneous beam; it is interesting to observe that, in this case, the final mesh for the

FGM beam is almost identical to this one (cf. Figure 20).
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5.4. A CRACK IN A DOUBLE CANTILEVER BEAM UNDER NON-PROPORTIONAL LOADING

This example investigates crack propagation considering non-proportional loading. The

external loading at the crack propagation step t can be written as

PiðtÞ ¼ aiðtÞP0
i ; i ¼ 1; . . . ; n ð32Þ

where i represents n different loads, P0
i is a constant for the ith load, and PiðtÞ is the ith load

applied at the crack propagation step t. In this paper, the definitions of proportional and non-

proportional loadings are made comparing the ratio of the loads between the initial step t1 and

the step tm (m ¼ 2; . . . ; s where s is the number of steps considered) for both the ith and the jth

loads. For instance, let’s consider two loadings, i.e. P1ðtÞ and P2ðtÞ. If

2R=12.7

P

X1

X2

Graded region

Units: N, mm
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Figure 24. Example 3: A crack in a beam with three holes subjected to three-point bending (Units: N, mm): (a) geometry

and boundary conditions; (b) the complete mesh configuration; (c) mesh detail using 12 sectors (S12) and 4 rings (R4)

around the crack tip.
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a1ðtmÞ
a1ðt1Þ

6¼ a2ðtmÞ
a2ðt1Þ

; for m ¼ 2; . . . ; s ð33Þ

then the loads P1ðtÞ and P2ðtÞ are non-proportional to each other. On the other hand, if

a1ðtmÞ
a1ðt1Þ

¼ a2ðtmÞ
a2ðt1Þ

; for m ¼ 2; . . . ; s ð34Þ

then the loads P1ðtÞ and P2ðtÞ are proportional to each other.

To show the procedure for searching the critical load, let’s consider a fracture envelope for a

crack subjected to two independent loadings: varying load P1 and constant load P2 as shown in

Figure 30. The mixed-mode SIFs are denoted by Ki
I and Ki

II for the corresponding load Pi

(i ¼ 1; 2). Superposition of the two fields P ¼ P1 þ P2 leads to SIFs located at the point A inside

a fracture envelope. To achieve critical SIFs at the point B for crack growth, one needs to

increase P1, for instance P1 to Pcr ¼ P1 þ DP1, which results in the increase of the SIFs by
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Figure 25. Example 3: Variations of Young’s modulus E (normalized) and Poisson’s ratio m in the three regions.
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Figure 26. Example 3: Variations of fracture toughness KIc (normalized) in the three regions.
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Simulation 
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FGM Homog.

(a) (b)

Figure 27. Example 3: Comparison of crack trajectories: (a) the present numerical results (dotted line) for the homo-

geneous beam versus experimental results (solid line) reported by Bittencourt et al. (1996). (b) the present numerical

results for the graded beam (solid line) versus those for the homogeneous beam. The numerical results are obtained by

considering Da ¼ 7:62 mm.

Figure 28. Example 3: finite element remeshing considering Da ¼ 7:62 mm, and the contour plots of the maximum

principal stress (MPa): (a) homogeneous beam; (b) graded beam. The color scale for stress ranges from �0.0068 MPa

(�1.0 psi) to 0.01378 MPa (2.0 psi).
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ðK1
II=K

1
I Þ � DP1. This scheme is used to search for the critical load Pcr and its corresponding

SIFs for non-proportional loading at each step of crack propagation.

Galvez et al. (1996) performed experimental and numerical investigations on crack growth

behavior of a crack in a double cantilever PMMA beam subjected to non-proportional loading.

The material properties of the PMMA beam used are the same as those for the second example,

and are given in Eq. (28). In this example, we consider both homogeneous and graded beams.

Figure 31(a) shows specimen geometry and BCs, Figure 31(b) shows the complete mesh con-

figuration, and Figure 31(c) shows mesh detail using 12 sectors (S12) and 4 rings (R4) around

the crack tip. In the context of previous discussion (see Figure 30), P is variable (analogous to

P1) and Q is constant (analogous to P2).

The mesh discretization consists of 2101 Q8, 286 T6, and 12 T6qp elements, with a total of

2399 elements and 6970 nodes. The following data are used for the FEM analyses:

plane stress; 2� 2 Gauss quadrature;

a ¼ 30mm; t ¼ 18mm; P ¼ Pcrðaþ nDa;XÞ;Q ¼ 79:4 N (constant).
ð35Þ
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Figure 29. Example 3: History of mixed-mode SIFs (KI or KII)� 103 MPa
ffiffiffiffi
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p
with respect to crack extension (Da ¼ 7:62

mm). The twelve and eleven steps are performed for the homogeneous and graded beams, respectively.
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Figure 30. Example 4: procedure for crack initiation in a fracture envelope based on maximum energy release rate

criterion considering non-proportional loading.
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For the homogeneous beam, we use the material properties of PMMA given by Eq. (28). For

the graded beam, we adopted variation of material properties from the first example considering

the graded region �15 mm � X2 � 15 mm, which corresponds to 0 � n � 0:81 (cf. Figures 13

and 14) in the first example. Here we assume two cases (Cases 1 and 2) of material variation as

shown in Figure 32 (cf. Figure 12(a)).

Figure 33 shows comparison of crack trajectories for homogeneous PMMA double cantilever

beam obtained by the present numerical simulation with those for both CMOD-controlled

and displacement-controlled experiments performed by Galvez et al. (1996). For the present

Figure 31. Example 4: A crack in a double cantilever beam: (a) geometry and boundary conditions; (b) the complete

mesh configuration; (c) mesh detail using 12 sectors (S12) and four rings (R4) around the crack-tip.
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simulation and the displacement-controlled experiment (Galvez et al., 1996), the load Q ¼ 79:4

N is used, however, the load Q ¼ 79:9 N is used for CMOD-controlled loading (Galvez et al.,

1996). The present simulation result is similar to the CMOD-controlled experiment result.

Figure 34 shows comparison of crack trajectories for homogeneous PMMA double cantilever

beam obtained by the present numerical simulation with those for the FGM beams (Cases 1 and

2). The variation of Young’s modulus shows much influence on crack trajectories. For Case 1,

the crack grows to the weaker part of the material, and for Case 2, the crack deflects towards the

left side of the crack trajectory for the homogeneous case due to the influence of the material

variation. Figure 35 compares load versus CMOD curve for a homogeneous double cantilever

beam obtained by the present numerical simulation with that for the FGM cases (Cases 1 and 2)

considering Da ¼ 2:0 mm. As expected, the linear relationship between load and CMOD is

observed up to the initial step. Notice that, for the homogeneous case, as the crack grows by Da,
the load Pcr decreases and its corresponding CMOD generally shows an increasing behavior;

however, for the FGM case, this behavior of CMOD is not observed for steps 9–13 in the FGM

Case 1 and for steps 8–11 in the FGM Case 2 (see Figure 35). This is due to the steep gradient of

fracture toughness in the graded region (see Figures 14 and 34). Due to higher fracture
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Figure 32. Example 4: two cases of FGM double cantilever beams: (a) Case 1; (b) Case 2. The variations of material

properties are adopted from the first example considering the material gradation in the X2 direction along the region �15

mm� X2 �15 mm (cf. Figures 13 and 14).
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Figure 33. Example 4: comparison of crack trajectories for homogeneous PMMA double cantilever beam obtained by

the present numerical simulation with those for CMOD-controlled and displacement-controlled experiments performed

by Galvez et al. (1996). For the present simulation and the displacement-controlled experiment, the load Q ¼ 79:4 N is

used, however, the load Q=79.9 N is used for CMOD-controlled loading. The numerical results are obtained by

considering Da ¼ 2:0 mm.
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toughness in the FGM beams, the critical load Pcr at the initial step for the FGM beams is

increased, and thus crack initiation is delayed.

6. Concluding remarks and extensions

This paper investigates fracture behavior of FGMs by performing automatic simulation of

crack propagation by means of a remeshing scheme in conjunction with the finite element

method. This paper focuses on accurate evaluation of mixed-mode SIFs in FGMs using the

interaction integral method tailored for FGMs and subsequent prediction of crack trajectory.

The crack propagation is performed under mixed-mode loading conditions (naturally induced

by material non-homogeneity) and also under non-proportional loading.

Based on local homogenization, we use the maximum energy release rate criterion (Hussain

et al., 1974). Crack trajectories obtained by this fracture criterion agree well with available

experimental results for homogeneous and FGMs. Moreover, we observe that history of SIFs

and critical loads for FGMs is significantly different from that for a homogeneous material. The
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Figure 34. Example 4: comparison of crack trajectories for homogeneous PMMA double cantilever beam obtained by

the present numerical simulation with those for the FGM beams (Cases 1 and 2). The numerical results are obtained by

considering Da ¼ 2:0 mm.
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Figure 35. Example 4: comparison of load versus CMOD curve for a homogeneous double cantilever beam obtained by

the present numerical simulation with those for the FGM beams (Cases 1 and 2). The numerical results are obtained by

considering Da ¼ 2:0 mm and Q ¼ 79:4 N.
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present approach requires a user-defined crack increment at the beginning of simulation. In the

first example of this paper, a brief convergence study was presented to investigate the sensitivity

of the crack trajectory with respect to the crack increment. For homogeneous materials, Hori

and Vaikuntan (1997) proposed a formulation to determine the curvature and length of a small

crack extension. Thorough investigation on crack increment in FGMs is needed in conjunction

with experiments. The computational scheme developed here serves as a guideline for fracture

experiments on homogeneous and FGM specimens (e.g. initiation toughness and R-curve).

Potential extension of the present work consists of investigating the effect of T-stress (non-

singular stress) on crack initiation angles in brittle FGMs (Kim and Paulino, 2003a) and

assessing various fracture criteria for crack propagation in FGMs. Another potential extension

involves developing nonlinear material models for FGMs, evaluating fracture parameter

(J-integral), and simulating crack propagation in elastic-plastic FGMs.
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