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Abstract

This paper describes the development and application of a general domain integral method to obtain J -values along
crack fronts in three-dimensional configurations of isotropic, functionally graded materials (FGMs). The present work

considers mode-I, linear-elastic response of cracked specimens subjected to thermomechanical loading, although the

domain integral formulation accommodates elastic–plastic behavior in FGMs. Finite element solutions and domain

integral J -values for a two-dimensional edge crack show good agreement with available analytical solutions for both

tension loading and temperature gradients. A displacement correlation technique provides pointwise stress-intensity

values along semi-elliptical surface cracks in FGMs for comparison with values derived from the proposed domain

integral. Numerical implementation and mesh refinement issues to maintain path independent J -values are explored.

The paper concludes with a parametric study that provides a set of stress-intensity factors for semi-elliptical surface

cracks covering a practical range of crack sizes, aspect ratios and material property gradations under tension, bending

and spatially-varying temperature loads.
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1. Introduction

In structures composed of functionally graded materials (FGMs), the spatial variation of thermal and

mechanical properties influences strongly the response to loading (see Miyamoto et al., 1999, for a general
discussion). The presence of a functionally graded interface between two dissimilar materials, for example,

can lead to a relaxation in stresses associated with discontinuities at bi-material interfaces (Hasselman and

Youngblood, 1978; Lee and Erdogan, 1995; Ravichandran, 1995; Noda, 1999; Nomura et al., 2001).
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Because fracture remains a key failure mode of FGMs, successful application of these materials depends

upon an understanding of their fracture mechanics.

Eischen (1987) and Jin and Noda (1994) demonstrated the correspondence between near-tip fields in

homogeneous and nonhomogeneous bodies, which permits the application of standard analysis techniques
to cracks in FGMs. Delamination and cracking of FGMs at coating/substrate interfaces due to thermal

loads are the focus of investigations by Lee and Erdogan (1995), Bao and Cai (1997), Lee and Erdogan

(1998), Quian et al. (1998), and Gaudette et al. (2001). Takahashi et al. (1993) and Fujimoto and Noda

(2000, 2001) examine the influence of material gradation and thermal shock on crack propagation. Ravi-

chandran (1995), Jin and Batra (1996), Cai and Bao (1998), and Jin and Batra (1998), discuss residual

stresses, crack bridging, residual strength, fracture toughness and R-curve behavior. The edge crack in a

graded semi-infinite strip under thermal and mechanical loads is a case studied by Erdogan and Wu (1996),

Erdogan and Wu (1997), Gu and Asaro (1997), Noda (1997), and Noda and Jin (1993).
Analytical and numerical studies of fracture in FGMs reported in the literature focus primarily on plane

stress, plane strain and axisymmetric configurations (Delale and Erdogan, 1983; Eischen, 1987; Konda and

Erdogan, 1994; Dag et al., 1999; Li et al., 1999; Selvadurai, 2000). As understanding of the micromecha-

nical behavior of crack growth in FGMs progresses, computational techniques enable the analysis of

realistic configurations in three-dimensions for which analytical solutions do not exist. This work discusses

a formulation of the J -integral (Rice, 1968) for three-dimensional (3-D) models of FGMs with numerical

implementation using a domain integral approach. Applications focus on semi-elliptical surface cracks that

have received much attention for homogeneous materials, and that represent a common failure mechanism
in brittle materials and FGMs (Bahr et al., 1986; Kawasaki and Watanabe, 1993; Takahashi et al., 1993;

Kokini et al., 1996).

Techniques to obtain stress-intensity factors in components made of homogeneous and nonhomo-

geneous materials include the displacement correlation technique (DCT) (Shih et al., 1976; Kim and

Paulino, 2002a), the modified crack-closure integral (Rybicki and Kanninen, 1977; Kim and Paulino,

2002b), the interaction integral (Yau et al., 1980) and stress correlation (Raju and Newman, 1979). For

nonlinear behavior, the domain-integral technique (Li et al., 1985) based on the J -integral (Rice, 1968)

remains (strictly) valid for deformation plasticity and approximately valid for incremental plasticity. The
current study considers only linear-elastic behavior.

The next section examines the finite element analysis of uncracked bodies with smoothly-graded material

properties under thermomechanical loads, and verifies the numerical techniques by comparison with

published analytical solutions. A general, and numerically convenient, formulation of the domain integral

for nonhomogeneous materials and quasi-static thermomechanical loads is then developed, followed by a

description of the numerical evaluation in a finite-element setting. The literature provides examples to verify

this technique for two-dimensional (2-D) geometries, and the DCT confirms new stress-intensity factors

derived here using the J -integral approach for 3-D configurations. The paper includes an initial parametric
study and discussion of KI -values calculated for a number of semi-elliptical, surface-crack geometries in

functionally-graded plates under mode-I tension, bending and thermal loads. Some final remarks and

observations conclude the study.
2. Finite element analysis including graded material properties

With the finite element method, material properties can vary between elements or between integration

points. The term homogeneous element here describes an element with all integration points assigned a

common property value; the term graded element here describes an element with integration points that

may have different property values. Many researchers, including Williamson and Rabin (1992), Lee and
Erdogan (1995), Anlas et al. (2000), Li et al. (2000), Santare and Lambros (2000), Bruck and Gershon
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(2002), and Kim and Paulino (2002c) apply homogeneous and graded elements to model uncracked FGMs.

With increasing mesh refinement, solutions generated with homogeneous and graded elements converge at

a rate dependent upon the severity of material gradients and the quadrature schemes (Kim and Paulino,

2002c). In addition to the zero-energy modes and shear-locking mechanisms associated with homogeneous
elements (Bicanic and Hinton, 1979; Kim et al., 1990; Cook et al., 2002), property variation between

integration points may introduce additional sources of poor element behavior. For example, with full (four-

point) integration, spurious shear strains develop in a four-noded (bilinear) quadrilateral element under a

pure tension loading which acts perpendicular to a gradation in elastic modulus. This study employs tri-

quadratic (20-noded brick) elements with graded material properties and reduced (2 · 2 · 2) integration––a
combination shown here to yield good behavior.

Within graded elements, the calculation of stiffness, stress and other quantities requires the value of

properties at integration points. One technique to assign a spatially-varying property at integration points
employs temperature-dependent material properties. For example, we may define Young�s modulus, EðxÞ,
x ¼ ðx1; x2; x3Þ, as a function of temperature, and then define temperature as a function of spatial position

such that the expression oEðxÞ=oT ðxÞ � oT ðxÞ=oxi yields the desired value for oEðxÞ=oxi. The assignment of

a zero thermal expansion coefficient then eliminates unwanted thermal strains. Rousseau and Tippur (2001)

adopt this approach which is useful to verify other implementations including those described below. This

method permits only one form of spatial variation, oT ðxÞ=oxi, and is not suitable for thermomechanical

analyses where temperatures and material properties vary distinctly. The current study employs a more

general procedure.
To support multiple material gradients and simultaneous thermal and mechanical loads, element-level

routines can retrieve analyst-defined values of material properties at integration points or model nodes. An

explicit function that defines the spatial material variation (Konda and Erdogan, 1994), or a routine that

calculates properties according to a micromechanical model (Nemat-Nasser and Hori, 1993) are two

commonly-used methods to produce the required property values. With analyst-specified nodal values for

the properties, interpolation using element shape functions determines property values at integration

points. For its generality and accuracy (Li et al., 2000; Kim and Paulino, 2002c), the current study employs

the nodal-values approach.
2.1. Performance of graded 3-D elements

This section examines the accuracy of finite-element procedures for the analysis of uncracked bodies with

graded elastic moduli and graded coefficients of thermal expansion (CTE). Simple boundary-value prob-

lems for 2-D (plane-strain) graded solids that have analytical solutions available in the literature provide

benchmarks to assess the performance of the finite element analyses. To simulate plane-strain conditions,

the finite-element models described in this section have one layer of 20-noded bricks in the thickness

direction, and have out-of-plane displacements constrained to zero. Erdogan and Wu (1997) derive semi-
analytical solutions for stresses in an uncracked, semi-infinite graded strip (Fig. 1) subjected to fixed-grip

displacement, tension and bending loads. The strip has an exponential variation of Young�s modulus in the

form EðxÞ ¼ E1ebx. The constant of material nonhomogeneity, b, follows the relation
b ¼ 1

W
ln

E2

E1

� �
; ð1Þ
where W denotes the specimen width and E2=E1 is the ratio of Young�s modulus at x ¼ W and 0. Notice that

1=b represents the length scale of material nonhomogeneity. Poisson�s ratio, m, remains constant throughout

the specimen. In the semi-infinite strip, the plane-strain stress ryy due to a remotely applied axial force, N , is
(Erdogan and Wu, 1997)



(a)

(b)
(c)
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Fig. 1. (a) Schematic of a semi-infinite strip of width W , with material properties graded exponentially in the x-direction. Poisson�s
ratio, m, is constant, and Ei, ai, and ki, i ¼ 1; 2; are the Young�s moduli, coefficient of thermal expansion, and coefficient of heat

conduction at x ¼ 0 and W , respectively. The two load cases are: (1) an imposed, uniform axial stress, and (2) an imposed temperature

field, with T ðx ¼ 0Þ ¼ T1 ¼ 0:05T0 and T ðx ¼ W Þ ¼ T2 ¼ 0:5T0. (b) 40· 10 · 1 mesh of the uncracked strip (a ¼ 0) consisting of 20-

noded brick elements. (c) Mesh for the cracked strip: a=W ¼ 0:4. (d) Crack-front elements with quarter-point midside nodes and

collapsed faces. Dimension RD provides a measure of domain size, and Le indicates the size of crack-front elements.
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ryyðxÞ ¼ E0ebxðAxþ BÞ; ð2Þ
where values of A and B follow by enforcing the boundary conditions for axial force N and moment M :
Z W

0

ryyðxÞdx ¼ N and

Z W

0

ryyðxÞxdx ¼ M ¼ NW
2

: ð3Þ
Fig. 2(a) shows ryyðxÞ on each y¼ constant section of the strip given by Eq. (2). This curve corresponds

to the ratio E2=E1 ¼ 10, with normalization by the applied stress, rt. The symbols indicate finite-element

stresses at integration points along a constant y-value. They agree very well with the semi-analytical

solution. Fig. 2(b) shows the computed deformation of the finite-element model under tension loading.
Erdogan and Wu (1996) also determine the stress distribution in a functionally-graded, semi-infinite strip

subjected to thermal loading. They adopt an exponentially-varying Young�s modulus and constant Pois-

son�s ratio. For the thermal properties, they also adopt exponentially-varying coefficients of thermal

expansion, aðxÞ ¼ a1exx, and heat conduction, kðxÞ ¼ k1egx, where a1 and k1 denote the values of the

coefficients at x ¼ 0. Here, x and g set the material nonhomogeneity according to
x ¼ 1

W
ln

a2
a1

� �
and g ¼ 1

W
ln

k2
k1

� �
: ð4Þ
Accordingly, 1=x and 1=g represent the length scales of material nonhomogeneity associated with thermal

expansion and conductivity, respectively. The temperature distribution follows by solution of the one-
dimensional (1-D), steady-state diffusion equation with spatially-dependent conductivity, i.e.
o

ox
kðxÞ oT

ox

� �
¼ 0; ð5Þ



Fig. 2. (a) Analytical and finite-element solutions for ryyðxÞ in an uncracked semi-infinite strip (shown in Fig. 1) under axial tension

loading, steady-state thermal loading, and combined (thermal plus tension) loading, with E2=E1 ¼ 10, a2=a1 ¼ 2, k2=k1 ¼ 10,

T ðx ¼ 0Þ ¼ T1 ¼ 0:05T0 and T ðx ¼ W Þ ¼ T2 ¼ 0:5T0. (b) Deformed shape of the graded finite-element strip under tension loading,

(c) thermal loading, and (d) combined loading.
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which yields
T ðxÞ ¼ Ce�gx þ D; ð6Þ

where C and D denote constants of integration found by assigning values for k2=k1, T ðx ¼ 0Þ and T ðx ¼ W Þ.
With the known temperature distribution, Erdogan and Wu (1996) show that the plane-strain stress ryyðxÞ
has the form
ryyðxÞ ¼
EðxÞ

ð1� m2Þ ½Axþ B� ð1þ mÞaðxÞðT ðxÞ � T0Þ�: ð7Þ
Values for A and B follow upon application of the boundary conditions requiring, respectively, zero net

axial force and zero net moment:
Z W

0

ryyðxÞdx ¼ 0 and

Z W

0

ryyðxÞxdx ¼ 0: ð8Þ
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Fig. 2(a) shows the semi-analytical and finite-element stresses for this simple thermal loading in a model

with the following material properties: E2=E1 ¼ 10, a2=a1 ¼ 2, k2=k1 ¼ 10, T ðx ¼ 0Þ ¼ T1 ¼ 0:05T0, and

T ðx ¼ W Þ ¼ T2 ¼ 0:5T0 (see Fig. 1). The quantity r0 ¼ E1a1T0=ð1� mÞ defines the conventional normalizing

stress for thermal loading in plane strain. Fig. 2(c) shows the computed deformation of the finite-element
model for the above boundary conditions and material properties.

The semi-analytical solution for the combined tension and thermal loadings superposes the normalized

results from Eqs. (2) and (7). The corresponding finite element solution represents one analysis including

combined thermal and tension loading (see Fig. 2(a)). Fig. 2(d) shows the deformed shape of the finite-

element model under the combined loading. This 2-D example provides a partial verification of the 3-D

numerical procedures used in this study to model FGMs.
3. The domain integral for cracks in FGMs

Three-dimensional domain integral methods rely upon volume integrals to compute J -values pointwise
along crack fronts. Early works on the domain integral method (Li et al., 1985; Shih et al., 1986; Moran and

Shih, 1987a; Nikishkov and Atluri, 1987a; Nikishkov and Atluri, 1987b; Shivakumar and Raju, 1992)

formulate the procedure for 2-D (area) and 3-D (volume) domains, and apply the technique to cracks in

homogeneous solids under linear-elastic and elastic–plastic deformations arising from mechanical and

thermal loads. Gu et al. (1999), Chen et al. (2000), and Kim and Paulino (2002a, 2003) extend the domain-
integral method to 2-D FGM specimens under isothermal, linear-elastic loading. The interaction-integral

method, based upon the J -integral, is useful to obtain mixed-mode stress-intensity factors in linear-elastic

3-D solids (Nakamura and Parks, 1989). Dolbow and Gosz (2002) apply the interaction integral method to

FGM specimens under mechanical loading. These studies of simple 2-D models with through cracks in

FGMs determine stress-intensity factors that compare well with analytical values, but none of them

investigate 3-D configurations. The following sections describe the formulation of the 3-D domain integral

for FGMs.

3.1. The 3-D domain integral

The following derivation of the 3-D domain integral parallels those found in Shih et al. (1986) and

Moran and Shih (1987b) for homogeneous materials. The pointwise energy release rate along a generally-

curved, planar crack-front in 3-D has the form
JðsÞ ¼ lim
C!0

Z
C
ðW d1i � rijuj;1Þni dC; ð9Þ
where W is strain energy density, rij denotes stress, uj represents displacement, and ð�Þ;i ¼ oð�Þ=oXi, where Xi

refers to local coordinates defined at each point, s, along a crack front. Fig. 3 illustrates the local coordinate

system at location s, where X2 is normal to the crack plane, X3 defines the in-plane tangent to the crack, and

X1 defines the in-plane normal. The curve C encloses the crack-front in the X1–X2 plane. As written, Eq. (9)

remains valid for nonlinear-elastic material behavior, and equals the standard J -integral (Rice, 1968)

including effects of body forces, crack-face tractions, thermal strains and general material property gra-
dation only when r ! 0þ.

In global coordinates, xi, let vkðsÞ be defined as the unit normal to the crack-front at position s, lying in

the X1–X3 plane. Eq. (9) then represents the first component of the vector integral
JðsÞ ¼ JkðsÞvkðsÞ ¼ lim
C!0

Z
C
ðrijuj;k � W dikÞmivk dC; ð10Þ



Fig. 3. Schematic of CðsÞ in Eq. (9). The domain for the analogous 2-D integral is the area A, bounded by the contour

C ¼ C1 þ Cþ � CðsÞ þ C�.

Fig. 4. (after Shih et al., 1986) Virtual crack advance in the local X1–X3 plane at crack-front location s. Crack advance occurs in the

X1-direction, and is defined as dlðsÞ ¼ DalkðsÞvkðsÞ.
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where mi ¼ �ni on CðsÞ as shown in Fig. 3. A virtual displacement applied to a segment of the crack-front

takes the form
dlðsÞ ¼ DalkðsÞvkðsÞ; ð11Þ

as illustrated in Fig. 4. Here, Da is the amplitude of the arbitrary displacement, lk. A first-order approxi-

mation of the energy released due to the crack advance, �dp, is (Rice et al., 1973)
�dp ¼
Z
LC

JðsÞdlðsÞds; ð12Þ
where LC refers to a finite segment of the crack-front, as illustrated in Figs. 4 and 5. Eqs. (11) and (12)

together give
�dp ¼ JDa ¼ Da
Z
LC

JðsÞlkðsÞvkðsÞds; ð13Þ
where J represents the energy released when crack segment LC advances by dlðsÞ. By combining Eqs. (10)

and (13), one obtains
JDa ¼ Da
Z
LC

lkðsÞ lim
C!0

Z
C
ðrijuj;k � W dikÞmi dC

� �
ds ð14Þ



Fig. 5. Surface and volume domains used to calculate JðsÞ at crack-front location s ¼ b extend from point a to point c, a length equal to

LC. Surfaces St and S1 (cylindrical surfaces), S2 and S3 (flat lateral surfaces), and Sþ, and S� (top and bottom crack-face surfaces)

comprise surface S and enclose volume V of the domain integral. For general loading conditions, St must shrink to the crack tip, i.e.

r ! 0þ. Vector m is the outward normal to St, S1, Sþ, and S�.
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JDa ¼ Da lim
C!0

Z
St

ðrijuj;k � W dikÞlkmi dS; ð15Þ
where St, shown in Fig. 5, is the surface created by ‘‘extruding’’ CðsÞ in Fig. 3 over a distance LC along the

crack front. The radius of this surface shrinks to the crack-front in the limiting process. The divergence

of the integrand in Eq. (15) is zero for the same conditions that guarantee path independence of the 2-D

J -integral, i.e. quasi-static, isothermal loading, elastic constitutive behavior, and no body forces or inertia.
In the presence of general loading conditions, the integrand is not divergence free, and takes the form
rijuj;k
�

� W dik
�
;i ¼ rij;iuj;k

�
þ rijuj;ki � W ;k

�
: ð16Þ
In this expression, the definition of strain energy density, W , includes the effects of thermal strains, non-

linear (elastic) deformation and material gradients, as discussed in a following section. The present goal is

to obtain a volume integral equivalent to Eq. (15). To accomplish this, we multiply both sides of Eq. (16) by
an arbitrary, sufficiently smooth vector field qk, and integrate over any simply connected region V within

the loaded body to obtain
Z
V
ðrijuj;k � W dkiÞ;i qk dV ¼

Z
V
ðrijuj;ki � W ;k Þqk dV ; ð17Þ
where the present assumption of zero body forces and inertia causes rij;i uj;k to vanish. An alternative

expression for the left side of Eq. (17) is
Z
V
ðrijuj;k � W dkiÞ;i qk dV ¼

Z
V

ðrijuj;k
�

� W dkiÞqk
�
;i dV �

Z
V
ðrijuj;k � W dkiÞqk;i dV : ð18Þ
A surface integral results from applying the divergence theorem to the first integral on the right side of

Eq. (18). An expression for this surface integral follows from Eqs. (17) and (18):
Z
ðrijuj;k � W dkiÞqkmi dS ¼

Z
ðrijuj;k � W dkiÞqk;i dV þ

Z
ðrijuj;ki � W ;k Þqk dV : ð19Þ
S V V



Fig. 6. The arbitrary function qk is interpreted as a virtual crack-front displacement, and varies from unity on surface St at location
s ¼ b, to zero on surfaces S1, S2 and S3 (see Fig. 5).
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Because surface S of the above surface integral encloses an arbitrary volume V , a suitable definition is

S ¼ Sþ þ S� þ S1 � St þ S2 þ S3 (see Fig. 5). The arbitrary function qk varies smoothly within V as follows

(Shih et al., 1986):
qk ¼
lk on St;
0 on S1; S2; S3;
arbitrary elsewhere:

8<
: ð20Þ
Fig. 6 illustrates schematically a permissible definition of qk. According to this definition of S and qk, the
right-hand side of Eq. (19) equals the integral in Eq. (15), and one may write
J ¼
Z
V

rijuj;k
�

� W dki
�
qk;i dV þ

Z
V

rijuj;ki
�

� W ;k
�
qk dV ; ð21Þ
when body forces, inertia and crack-face tractions are absent. As mentioned previously, the second inte-

grand in this expression vanishes for a homogeneous body under isothermal, quasi-static loading and

elastic material behavior.

By assuming that the energy release rate varies little over the length, LC, of the domain under conside-

ration, JðsÞ may be moved outside the integrand in Eq. (13). Eqs. (13) and (21) then combine to yield an
expression for the pointwise value of JðsÞ:
JðsÞ ¼ JR
LC
lkðsÞvkðsÞds

: ð22Þ
The transformation of stresses and displacements to the crack-front coordinate system (Xi in Figs. 3–6)
simplifies the form of Eq. (21). In this case, vkðsÞ ¼ X1ðsÞ, and all subscripts ‘‘k’’ in Eqs. (21) and (22)

become ‘‘1.’’ The discussion below adopts this approach to evaluate JðsÞ.
3.2. Derivative of strain energy density: W ,1

The strain energy density, W , can be defined as a function of the total strain etij, temperature H, and

spatial position x ¼ ðx1; x2; x3Þ:
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W ðetij;H; xÞ ¼
Z emkl

0

rij de
m
ij ; ð23Þ
where for uncoupled, quasi-static thermomechanical analysis, mechanical strains, emij , equal total strains, e
t
ij,

minus thermal strains, ethij :
emij ¼ etij � ethij ¼ etij � aðxÞHðxÞdij: ð24Þ
Here, aðxÞ is the pointwise-isotropic coefficient of thermal expansion, HðxÞ is the relative change in tem-

perature, and dij represents the Kronecker delta. The derivative of strain energy density, W ;1, needed to

evaluate Eq. (21), becomes
W ;1 ¼
oW
oemij

emij;1 þ ðW ;1 Þexplicit; ð25Þ
which, combined with Eq. (24), yields
W ;1 ¼ rijðetij � ethij Þ;1 þðW ;1 Þexplicit ð26Þ

¼ rijðetij;1 � a;1 ðxÞHðxÞdij � aðxÞH;1 ðxÞdijÞ þ ðW ;1 Þexplicit; ð27Þ
where ðW ;1 Þexplicit denotes the derivative of strain energy density with respect to spatially-dependent
parameters. Substitution of Eq. (27) into Eq. (21) causes rijuj;1i to cancel with rijetij;1 and the result is
J ¼
Z
V
ðrijuj;1 � W d1iÞq1;i dV þ

Z
V

rijða;1 ðxÞHðxÞdij
h

þ aðxÞH;1 ðxÞdijÞ � ðW ;1 Þexplicit
i
q1 dV : ð28Þ
The second integral of (28) represents a correction term to account for the nonvanishing divergence of

the J -integral in the presence of thermal strains and material property gradients. Terms related to thermal

effects are easily calculated from known distributions of CTEs and temperature (Shih et al., 1986). Typically
for FGMs, ðW ;1 Þexplicit derives from a specific definition of strain energy density (Chen et al., 2000; Kim and

Paulino, 2002a, 2003). A description of two forms for this term follows in the next section.
3.3. Assessment of alternative forms of (W ,1)explicit

For small displacement gradients in a nonhomogeneous, linear-elastic isotropic material, Eq. (23) be-

comes
W ðetij;H; xÞ ¼
Z emrs

0

CijklðxÞemkl demij ; ð29Þ
where CijklðxÞ is the spatially-varying isotropic elastic constitutive tensor
CijklðxÞ ¼ kðxÞdijdkl þ lðxÞðdikdjl þ dildjkÞ; ð30Þ
in which dij is the Kronecker delta, and the spatially-varying Lam�ee constants kðxÞ amd lðxÞ are
kðxÞ ¼ EðxÞmðxÞ
ð1þ mðxÞÞð1� 2mðxÞÞ and lðxÞ ¼ EðxÞ

2ð1þ mðxÞÞ : ð31Þ
ðW ;1 Þexplicit is
ðW ;1 Þexplicit ¼
oW

oEðxÞE;1 ðxÞ þ
oW
omðxÞ m;1 ðxÞ: ð32Þ
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For homogeneous materials governed by Eq. (29), ðW ;1 Þexplicit ¼ 0, and under isothermal conditions, the

second integral of Eq. (28) vanishes completely. In graded materials where ðW ;1 Þexplicit 6¼ 0, Eq. (29) leads to

analytical expressions for oW =oEðxÞ and oW =omðxÞ. For material variations expressed by smooth analytical

functions, e.g. EðxÞ ¼ E1ebx1 , the evaluation of E;1 ðxÞ and m;1 ðxÞ becomes straightforward, e.g.
E;1 ðxÞ ¼ bEðxÞ.

Another example of nonzero ðW ;1 Þexplicit arises when a function such as the Ramberg–Osgood equation

describes the multi-axial nonlinear stress–strain relationship: eij ¼ emdij þ eeij þ 3=2� aðxÞ½re=r0ðxÞ�nðxÞ�1 �
Sij=EðxÞ, where em is the mean strain, dij the Kronecker delta, eeij the elastic deviator strain, re the

equivalent (Mises) stress, r0ðxÞ the yield stress, Sij the deviator stress, EðxÞ the Young�s modulus, and

aðxÞ and nðxÞ are the spatially-varying scalar parameters. In this case, one expression for strain energy

density is
W ðetij; x;HÞ ¼ 1þ mðxÞ
3EðxÞ r2

e þ
3

2

1� 2mðxÞ
EðxÞ p2 þ r2

enðxÞ
nðxÞ þ 1

aðxÞ
EðxÞ

re

r0ðxÞ

� �nðxÞ�1

; ð33Þ
where p is the hydrostatic pressure, i.e. p ¼ �ðrxx þ ryy þ rzzÞ=3. The explicit derivative ðW ;1 Þexplicit now
becomes difficult to evaluate, i.e.,
ðW ;1 Þexplicit ¼
oW
oE

E;1 ðxÞ þ
oW
om

m;1 ðxÞ þ
oW
oa

a;1 ðxÞ þ
oW
on

n;1 ðxÞ þ
oW
or0

r0;1 ðxÞ: ð34Þ
These two examples illustrate that although Eq. (23) is quite general, the analytical form of ðW ;1 Þexplicit is
material-specific and likely becomes tedious to evaluate when the ‘‘1’’ direction changes continuously along

a 3-D curved crack relative to the property gradient directions.

3.4. A general expression for (W ,1 )explicit

Rearrangement of Eq. (27) provides an expression for ðW ;1 Þexplicit that leads to more convenient

numerical evaluation:
ðW ;1 Þexplicit ¼ W ;1 �rijðetij;1 � a;1 ðxÞHðxÞdij � aðxÞH;1 ðxÞdijÞ: ð35Þ
Substitution of this expression into Eq. (28) gives
J ¼
Z
V

rijuj;1
�

� W d1i
�
q1;i dV þ

Z
V
ðrije

t
ij;1 � W;1Þq1 dV ; ð36Þ
which is equivalent to Eq. (21) since rijuj;1i ¼ rijetij;1. This expression yields JðsÞ when combined with Eq.

(22). This is an expected result because the terms in Eq. (35) are the same as those used to transform Eq.

(21) into Eq. (28). Eq. (36) now replaces Eq. (21) for numerical computation, and specifically accounts for

the effects of material gradients and thermal strains. The appearance in Eq. (36) of rijetij;1 rather than rijuj;1i
follows from the derivation rather than from a deliberate substitution. Both terms include second deriv-

atives of displacement, and provide similar accuracy. Eq. (36) is the three-dimensional equivalent of
Eq. (6.7) in Moran and Shih (1987b), which defines J for an elastic–plastic material.

Eq. (36) accounts for material gradients and thermal stresses, but omits other standard terms to account

for body forces, inertia and crack-face tractions (c.f. Anderson, 1995). The use of Eq. (36) to calculate J
remains valid for nonlinear elasticity (deformation plasticity), and leads to computational generality since

all quantities are available from standard finite-element calculations. For analyses using flow-theory con-

stitutive models with parameters that vary spatially, the proposed form of J does not retain strict validity –

this is the same issue of computing the ordinary J for incremental-flow theory of plasticity vs. deformation

plasticity. Another consideration regarding Eq. (36) is the replacement of analytically-defined derivatives
in the second integrand of Eq. (28) by derivatives (including eij;1) obtained via potentially less accurate,
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mesh-dependent interpolation schemes. For homogeneous materials, Eq. (28) yields greater accuracy than

Eq. (36) because ðW ;1 Þexplicit and a;1 vanish and the temperature derivative, H;1, is generally quite smooth.

The remainder of this study examines the implementation, accuracy and application of Eq. (36) for graded

materials under thermomechanical loading.
4. Numerical implementation

Numerical evaluation of the integrals in Eq. (36) uses the same quadrature schemes employed for ele-

ment stiffness computation. The discretized form of Eq. (36) is
J ¼
X
elems

X
p

ðrijuj;1
h	

� W d1iÞq1;i þ ðrije
t
ij;1 � W ;1 Þq1

i
det

oXk

og1

� �

p

wp: ð37Þ
For the equivalent expression derived from Eq. (28), ½�� in Eq. (36) is
ðrijuj;1
h

� W d1iÞq1;i þ ða;1 ðxÞHðxÞdij þ aðxÞH;1 ðxÞdij � ðW ;1 ÞexplicitÞq1
i
:

In both expressions, the outer sum includes all elements in the domain, and the inner sum ranges over each

element integration point p with corresponding weight wp. The determinant of the coordinate Jacobian,

det(�), relates local crack-front coordinates Xk to parent-element coordinates gk. Computation of spatial

derivatives for strain and strain energy density at integration points proceeds as follows:

• Use a standard procedure (e.g. Cook et al., 2002) to extrapolate strains and strain energy density from

element integration points to element nodes.
• Average these extrapolated nodal values with contributions from adjoining elements.

• Calculate derivatives at integration points using isoparametric interpolation, i.e.
oðetijÞp
ox1

¼
Xn

I¼1

X3

k¼1

oNI

ogk

ogk
ox1

ðetijÞI and
oWp

ox1
¼

Xn

I¼1

X3

k¼1

oNI

ogk

ogk
ox1

WI ; ð38Þ
where ðetijÞp and Wp denote integration point quantities, n is the number of element nodes, NI is the element

shape function corresponding to node I , gk are parent coordinates, and ðetijÞI and WI are the nodal values

of total strain and strain energy density.

The WARP3D fracture code used for this implementation is a free, open-source, general-purpose finite-

element software developed at the University of Illinois at Urbana-Champaign (Gullerud et al., 2000).

J -integral results reported here employ Eqs. (37) and (38) with 20-noded isoparametric ‘‘brick’’ elements

with reduced (2 · 2 · 2) integration.
5. Verification of the general J-formulation for 2-D configurations

Erdogan and Wu (1997) describe analytical solutions for a crack located in a semi-infinite strip and

subjected to tensile, fixed-grip and bending loads. Fig. 1(c) shows the cracked strip where a=W ¼ 0:4, and a

group of ten focused (collapsed) elements, shown in Fig. 1(d), surround the crack-front region. This mesh

employs quarter-point elements, and coincident crack-front nodes share the same x-displacement, i.e. they

have identical node numbers. The ratio of the length, Le, of crack-front elements on the crack plane to the
strip width, W , is Le=W ¼ 0:007 (see Fig. 1(d)). Thirteen semi-circular domains produce J -values in a mesh

consisting of 496 20-noded bricks and 3735 nodes. An exponential variation, EðxÞ ¼ E1ebx, describes the
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gradient of Young�s modulus, where E2=E1 ¼ 10, and b follows from Eq. (1). Poisson�s ratio remains

constant at m ¼ 0:3, and constrained out-of-plane displacements enforce plane-strain conditions. Eq. (36)

leads to JðsÞ for an imposed tensile stress rt. The conversion of J -values to KI -values here follows the

standard expression
Table

Norma

Ana

Refe

1st

2nd
KIðsÞ ¼ ðJðsÞE�ðsÞÞ1=2; ð39Þ
where E�ðsÞ ¼ EðsÞ=ð1� m2Þ for plane-strain conditions, E�ðsÞ ¼ EðsÞ for plane-stress conditions, and EðsÞ
denotes the value of Young�s modulus at crack-front location s. The use of EðsÞ follows from the identical

form of the asymptotic crack-front fields in homogeneous and functionally graded materials (Eischen, 1987;

Jin and Noda, 1994). For discussion, normalized KI -values equal
KIn ¼
KI

rt

ffiffiffiffiffiffi
pa

p ; ð40Þ
where rt is the applied tensile stress, and a is crack depth (see Fig. 1). Table 1 lists KIn-values for two

different analyses and compares them with those of Erdogan and Wu (1997). The first analysis employs

Eq. (36). To avoid the interpolations used to evaluate Eq. (36), the second analysis uses the analytical

expression for ðW ;1 Þexplicit given in Eq. (32), together with Eqs. (21) and (25). In all cases, an average of the

J -values from domains three through thirteen is inserted into Eqs. (39) and (40) to define a single KIn-value

shown in Table 1.

The influence of the two integrals in Eq. (36) becomes apparent in Fig. 7(a), which compares the value of

each integral vs. the radius, RD, shown schematically in Fig. 1(d), of the specific computational domain.
With increased domain size, the influence of the second integral increases steadily, and without this term,

the J -integral becomes proportionately inaccurate.

Through a two-step perturbation procedure, Erdogan and Wu (1996) obtain KI -values for a semi-infi-

nite, exponentially-graded, cracked strip subjected to thermal loading (see Fig. 1(a), and Wilson and Yu,

1979). Eqs. (1) and (4) describe the exponential material variation specified for the strip. In the first step of

the solution procedure, Erdogan and Wu determine the axial stress distribution, ryy , in an uncracked,

thermally-loaded strip. This stress, shown as the lower curve in Fig. 2(a), represents a crack-closure stress,

which, in the second step, produces crack-face tractions acting to drive crack opening in the cracked strip.
Integral equations then yield stress-intensity factors generated by these crack-face tractions. Values taken

from the graphical results of Erdogan and Wu (1996) enable comparisons with the present finite-element

analyses.

In the finite-element analysis procedure used here, thermal loads act directly upon the cracked strip. The

mesh used for this analysis, shown in Fig. 7(b), has a height-to-width ratio of four, a crack-length-to-width

ratio, a=W , of 0.5, and constrained out-of-plane displacements to enforce plane-strain conditions. As in the

previous example, a group of ten focused (collapsed) elements surround the crack-front region, the ratio of

crack-front element length, Le, to strip width, W , is 0.007, and all crack-front nodes have zero y-dis-
placement. This mesh employs quarter-point elements, and coincident crack-front nodes share the same x-
displacement, i.e. they have identical node numbers. The mesh consists of 50 820-noded brick elements and

3829 nodes. The following examples employ two material variations and two thermal loading conditions
1

lized KI -values for a plane-strain, semi-infinite strip under axial tension (see Fig. 1): E2=E1 ¼ 10, m ¼ 0:3, a=W ¼ 0:4

lysis Method KIn % Diff.

rence Erdogan and Wu (1997) 1.588 –

Eq. (36) 1.579 )0.57
ðW ;1 Þexplicit Eq. (32) 1.588 +0.00



Fig. 7. (a) Normalized components of Eq. (36) for tension loading of SE(T) specimen in Fig. 1(c) for a=W ¼ 0:4 and E2=E1 ¼ 10.

(b) Mesh used for thermally-loaded SE(T) specimen: a=W ¼ 0:5. (c) Normalized components of Eq. (36) for uniform thermal loading

for T1 ¼ T2 ¼ 0:05T0, E2=E1 ¼ 5, and a2=a1 ¼ 2 ðr0 ¼ E1a1T0=ð1� mÞÞ. (d) Scaled view of data in (c).
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selected from Erdogan and Wu (1996) which Table 2 describes. They include the application of two uniform

temperature loads to an exponentially-graded strip where E2=E1 ¼ 5, a2=a1 ¼ 2, and m ¼ 0:3, and two

exponentially-varying temperature loads to an exponentially-graded strip where E2=E1 ¼ 10, k2=k1 ¼ 10,

a2=a1 ¼ 2, and m ¼ 0:3. A common normalization for KI -values obtained from thermal loading is
Table

Norm

Mat

E2=E
a2=a
k2=k

E2=E
a2=a
k2=k
KIn ¼
KI

E0
1a1T0

ffiffiffiffiffiffi
pa

p ; ð41Þ
2

alized KI -values for a crack in a plane-strain, semi-infinite strip under thermal loads (see Figs. 1(a) and 7(b)): m ¼ 0:3, a=W ¼ 0:5

erial variation Thermal load (see Fig. 1) KIn

Erdogan and Wu

(1996)

Eq. (36) % Diff.

1 ¼ 5 T1 ¼ T2 ¼ 0:5T0 0.0125 0.0127 +1.6

1 ¼ 2

1 is arbitrary T1 ¼ T2 ¼ 0:05T0 0.0245 0.0241 )1.6

1 ¼ 10 T1 ¼ 0:2T0 0.0335 0.0335 +0.0

1 ¼ 2 T2 ¼ 0:5T0
1 ¼ 10 T1 ¼ 0:05T0 0.0410 0.0409 )0.2

T2 ¼ 0:5T0
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where a is crack depth, T0 is initial temperature, and a1 is the value of the CTE at the cracked surface. For

plane-strain conditions, E0
1 ¼ E1=ð1� mÞ, and for plane stress conditions, E0

1 ¼ E1, where E1 is the value of

Young�s modulus at the cracked surface. Table 2 lists stress-intensity factors obtained from each of the four

cases and their deviation from the solution obtained from Erdogan and Wu (1996). In each of the four
analyses, an average of the J -values from fourteen domains, inserted into Eqs. (39) and (41), leads to a

single value of KIn.

Fig. 7(c) shows the contribution to J of both integrals in Eq. (36). Both integrals show strong path

dependence with an increase in domain size to crack length ratio, RD=a (see Fig. 1(d)). Because inhomo-

geneity in both elastic properties and thermal expansion coefficients contribute to J , the path dependence is

more severe than for the mechanical loading studied above. Fig. 7(d) shows values of Eq. (36) with an

enhanced scale. The J -values for both mechanical and thermal loading show good domain independence.
6. Calculation of mode-I KI -values for surface cracks

Procedures for obtaining KI -values for 3-D cracks include the line-spring method (Rice and Levy, 1972),

the modified crack-closure integral (MCCI) (Rybicki and Kanninen, 1977; Ramamurthy et al., 1986; Raju,

1987; Narayana et al., 1994), the displacement correlation technique (DCT) (Shih et al., 1976), stress

correlation (Raju and Newman, 1979), the domain integral technique (Shih et al., 1986), the interaction

integral method (Nakamura and Parks, 1989), and the F -integral (Eriksson, 2002).
Raju and Newman (1979) and Newman and Raju (1979) apply the force method to surface cracks in

homogeneous plates under tension and bending loads. Although more recent works report stress-intensity

factors for surface cracks (e.g. Rajaram et al., 2000; Ayhan and Nied, 2002), the extensive solutions of

Newman and Raju remain a frequently-cited benchmark. For homogeneous materials, the current study

uses their results to verify mesh-refinement levels.

The methods listed above also apply to the analysis of FGMs (e.g. Kim and Paulino, 2002a). The MCCI,

DCT and stress correlation methods are particularly useful for linear-elastic analyses of FGMs because the

presence of material gradients does not influence their formulation. Erdogan and Wu (1997) suggest that
the line-spring method, combined with their semi-analytical solutions for the graded 2-D strip discussed in

Section 5, provides an approach for the calculation of stress-intensity factors in FGMs with surface cracks.

The current study employs the DCT to verify KI -values obtained through Eq. (36).

6.1. Crack geometries, material variations and loadings

Fig. 8(a) illustrates a plate with a semi-elliptical surface crack under tension, bending and thermal loads.

Material properties vary only in the thickness ðxÞ direction. The geometry, loading and material property

variations lead to mode-I conditions on the crack plane. Symmetry permits modelling of only one quarter

of the specimen. Variables of interest in this study include: crack depth, a; crack half-length, c; and plate

thickness t. Dimensions h and b remain fixed at five times the larger of a and c such that the KI -values
approximate those in a semi-infinite plate. The current work includes analyses of plates for a range of

practical crack geometries of a=c ¼ 1=3, a=c ¼ 1 and a=c ¼ 2 and crack depths of a=t ¼ 0:2, a=t ¼ 0:5 and

a=t ¼ 0:8. A specimen cross-section, illustrated in Fig. 8(b), indicates through-thickness material variation,

assigned to follow the form EðxÞ ¼ E1ebx, where E1 ¼ Eðx ¼ 0Þ, E2 ¼ Eðx ¼ tÞ, with b given by Eq. (1) such

that E2=E1 ¼ 0:2, 1.0 and 5.0. Poisson�s ratio remains constant at 0.25 in all cases. Fig. 8(b) also illustrates

the applied tensile stress, rt, and bending stress, rb, where rb ¼ 3M=bt2. Table 3 summarizes the surface-

crack geometries, material properties, and temperature variations employed in this study.

Thermal loading conditions follow those used by Erdogan and Wu (1996) who analyzed a zirconia/Rene-
41 composite with the properties listed in Table 4. Young�s modulus (E), CTE ðaÞ, and conductivity ðkÞ



Fig. 8. (a) Surface crack specimen showing axial, bending and thermal loads. The hatched area illustrates the potential region for the

‘‘boundary layer’’ (see Section 6.3). Symmetry permits analysis using one quarter of the model. (b) Cross-section of plate showing

unidirectional material variation from cracked face to uncracked face. Bending stress is calculated from total moment M as

rb ¼ 3M=bt2.

Table 3

Specified surface-crack geometries, material properties, and temperature loads

Quantity Specified values

a=c 1/3, 1, 2

a=t 0.2, 0.5, 0.8

E2=E1 0.2, 1.0, 5.0

m2=m1 1.0

T1=T2 5, 10, 20

Table 4

Properties for thermal loading of surface-crack specimens (Erdogan and Wu, 1996)

Material E (GPa) m a (K�1) k (Cal/mmsecK)

ðx ¼ 0Þ Zirconia 151 0.33 1.0�10�5 0.05

ðx ¼ tÞ Rene-4l 219.7 0.33 1.67�10�5 0.61
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vary exponentially according to EðxÞ ¼ E1ebx, aðxÞ ¼ a1exx, and kðxÞ ¼ k1egx, where (Æ)1 is the property value
at x ¼ 0. The coefficients of nonhomogeneity, b, x and g have values given by Eqs. (1) and (4). These

material properties are taken as temperature independent.

Fig. 8(a) shows the qualitative temperature distribution which follows solution of the 1-D diffusion

equation described in Section 2. The selected range of boundary temperatures includes: T1 ¼ 5T2, T1 ¼ 10T2
and T1 ¼ 20T2, where T1 ¼ T ðx ¼ 0Þ and T2 ¼ T ðx ¼ tÞ ¼ T0. To illustrate the application of Eq. (36) to

thermal loading, the present work includes analyses of plates with the three crack geometries listed in Table

3, each with a crack depth of a=t ¼ 0:2.
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6.2. Conversion of J to normalized stress-intensity factor, KIn, for surface cracks

This paper reports values of the domain integral, Eq. (36), calculated at the corner nodes of all crack-

front elements. Parametric angle, /, measured in radians, describes the location of crack-front nodes on the
crack-front for possible ranges of the ratio a=c (see Fig. 9). At each crack-front location /, Eq. (39) yields
KI -values from J and EðSÞ, the value of Young�s modulus at that location. For through-thickness material

variation and semi-elliptical cracks, EðSÞ at / equals EðxÞ at distance x ¼ a sin/ from the cracked surface.

A general form for mode-I stress-intensity factors for semi-elliptical surface cracks is
Fig. 9.

metric

this stu
KI ¼ S
ffiffiffiffiffiffi
pa
Q

r
F

a
t
;
a
c
;/; P

� 

; ð42Þ
where S ¼ rt for tension, and S ¼ rb for bending. For plane-strain thermal loading, S ¼ a1E1T0=ð1� mÞ,
and for plane-stress, S ¼ a1E1T0 (Erdogan and Wu, 1996). Fig. 1 defines a1, E1, and T0. The shape fac-

tor, Q, denotes the square of the complete elliptic integral of the second kind.
ffiffiffiffi
Q

p
equals half the arc

length of an ellipse divided by the length of the major axis (Merkle, 1973), a ratio commonly approximated
by
Q ¼ 1þ 1:464 a
c

� �1:65
for a=c6 1;

1þ 1:464 c
a

� �1:65
for a=c > 1:

(
ð43Þ
Function F in Eq. (42) includes the effects of plate dimensions, crack geometry, location along the crack-

front and material property variation, represented by P . A normalized stress-intensity factor expressed by
KIn ¼
KI

S
ffiffiffiffi
pa
Q

q ¼ F
a
t
;
a
c
;/; P

� 

; ð44Þ
represents a ‘‘shape factor’’ for the geometry, material and loading conditions under consideration.
6.3. Stress-intensity factors at the intersection of the crack-front with the free surface

Researchers employ analytical and numerical techniques to examine the change in the singular behavior

at the intersection of a 3-D crack-front with a traction-free surface (Hartranft and Sih, 1970; Benthem,

1977; Bazant and Estenssoro, 1979; Pook, 1994). These studies demonstrate the existence of a ‘‘boundary

layer’’ very near the free surface over which a generalized stress-intensity factor may vary sharply. The

change in singular behavior depends upon Poisson�s ratio and the angle of intersection between the crack-

front and the free surface, illustrated by w in Fig. 9(b). For FGMs, the length scale of material gradation
(a) (b)

Plan view of the crack plane shown in Fig. 8(a). (a) Measurement in radians of parametric angle, /, for a=c > 1:0. (b) Para-

angle, /, for a=c6 1:0, and intersection angle, w, describing the angle between the crack-front and free surface. For all models in

dy, w ¼ 90�.



Fig. 10. Crack-front mesh with 7 rings of elements in the radial direction, and 10 elements along the h direction. The ratio of Le to plate

thickness t, Le=t ¼ 7:66� 10�4, describes the level of mesh refinement. RD provides a measure of domain size.

Fig. 11. Comparison of normalized stress-intensity factors, KIn, obtained using Eqs. (36) and (45) for 3-ring and 10-ring crack-front

mesh refinements where a=c ¼ 2 and a=t ¼ 0:8.
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(e.g. parameter 1=b, where Eq. (1) defines b) should also affect the stress state and the size of the boundary
layer. For a crack front that intersects the free surface at w ¼ 90�, when Poisson�s ratio is greater than zero,

the stress singularity (r�k) in the boundary layer becomes weaker (k < 1=2), and the mode-I stress-intensity

factor tends toward zero at the surface (Pook, 1994).

Raju and Newman (1979) verify the decrease in stress-intensity factors near the free surface through a

detailed mesh-refinement study of a semi-circular surface crack. More importantly, their study shows that

the effects of the boundary layer are highly localized, and do not influence stress-intensity factors on the



(a)

(b)

(c)

Fig. 12. Typical discretization along front for surface-crack configurations.
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interior of the specimen. Chuntu and Yingzhi (1987), Li et al. (1998), Rajaram et al. (2000), Ayhan and
Nied (2002) and Frangi (2002) also demonstrate the localized influence of the boundary layer on stress-

intensity factors through numerical analyses of straight cracks and semi-circular, quarter-circular and

semi-elliptical surface cracks. Nakamura and Parks (1988) estimate the region of influence of the corner

singularity in semi-elliptical surface cracks as � 0:03� a2=c, where a and c are the crack dimensions

shown in Fig. 8. Because a detailed study of the boundary-layer influence in FGMs is not the focus of

this paper, the present work does not include sufficient mesh refinement in this region to determine

adequately the layer�s size, or to capture the true variation of stress-intensity factors within the boundary

layer. To acknowledge the effect of the weak corner singularity, however, for mechanical loading, the
plane-stress conversion applies here to J -values calculated at the free surface, i.e. / ¼ 0, and the plane-

strain conversion applies here for / > 0. Although stress-intensity factors near / ¼ 0 should tend toward

zero in order to conform with theory, the nonzero values reported here represent average stress-intensity

factors near the free surface (Raju and Newman, 1979). For thermal loading, plane-stress KIn-values

obtained using Eqs. (39) and (44), exceed plane-strain values by a factor of ½ð1� mÞ=ð1þ mÞ�1=2. To avoid



(a)

(b)

Fig. 13. Normalized KI -values, KIn, for surface-cracked plates with homogeneous material having a=c ¼ 1, 2, and a=t ¼ 0:2, 0.8.

Comparison of values generated using Eq. (36) with those of (a) Raju and Newman (1979) and (b) Newman and Raju (1979).
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reporting an increase in KIn-values in the boundary layer, we simply omit stress-intensity factors at / ¼ 0

for thermal loading.

6.4. Mesh refinement

A mesh that is adequately refined for the correct solution of a boundary-value problem of a homoge-

neous body may require further refinement in order to capture the effects of material gradients. To confirm

adequate refinement of meshes used in this study, values of KIn published in the literature and those ob-

tained here using the DCT verify values of KIn obtained from Eq. (36) for both homogeneous and non-
homogeneous specimens.



(a) (b)

(c) (d)

Fig. 14. (a) Comparison of normalized KI -values from the J -integral, Eq. (36) and DCT, Eq. (45), for tension and bending with

E2=E1 ¼ 5, a=t ¼ 0:2, 0.5, 0.8, and a=c ¼ 1=3; (b) a=c ¼ 1; (c) a=c ¼ 2; (d) thermal loading with T1=T2 ¼ 20, a=t ¼ 0:2 and a=c ¼ 1=3,

1, 2 (Material properties correspond to those for a zirconia/Rene-41 FGM. See Table 4).
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For 2-D cracked configurations, Eischen (1987) and Jin and Noda (1994) prove that the near-tip dis-
placement field for functionally graded materials has the same form as for homogeneous materials.

Hartranft and Sih (1969) show that the singularity along a 3-D crack-front in homogeneous material

(remote from boundaries) has the same form as the crack-tip singularity in a 2-D configuration. Based on

these two results, the opening displacement of the crack-face, normal to the crack plane, has the asymptotic

form
u2 ¼
4KI

E�
ðSÞ

ffiffiffiffiffiffi
r
2p

r
; ð45Þ
where u2 denotes the displacement in the X2-direction of the coordinate system shown in Fig. 3, KI is the

mode-I stress-intensity factor, and r is the distance behind and normal to the crack-front. The use of E�
ðSÞ in

Eq. (45) is justified by the equivalence of asymptotic crack-front fields in homogenous and functionally

graded materials (Eischen, 1987; Jin and Noda, 1994).
The DCT utilizes the relationship between displacement and KI expressed in Eq. (45) to estimate stress-

intensity factors based on u2 nodal displacements behind the crack front. Here, element boundaries on the

crack-face define approximate normals to the crack front. Values of u2 and r at several nodes along one

boundary, when inserted into Eq. (45), permit the calculation of a KI -value that corresponds to each node.

A plot of these KI -values vs. r yields an approximately linear relationship between KI and r. The intersection



(a) (b)

(c) (d)

Fig. 15. (a) Comparison of normalized KI -values from J , Eq. (36) and DCT, Eq. (45), for tension and bending with E2=E1 ¼ 0:2,

a=t ¼ 0:2, 0.5, 0.8, and a=c ¼ 1=3; (b) a=c ¼ 1; (c) a=c ¼ 2; (d) Specimen.
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of this line with r ¼ 0 provides the estimated crack-front KI -value for the DCT. Eq. (44) describes the

normalization of these values.

6.4.1. Effects of mesh refinement on KI -values for FGM specimens

Stress-intensity factor solutions from four different meshes of a plate with crack geometry a=t ¼ 0:8 and

a=c ¼ 2, and an exponential material variation where E2=E1 ¼ 5, provide insight into the effects of mesh

refinement on the values of KIn. Ten 20-noded, quarter-point, hexagonal elements with collapsed faces

immediately surround each crack front in the h direction (see Fig. 10). In the radial direction, the four

meshes have respectively 3, 5, 7, and 10 rings of elements surrounding the crack-front, corresponding to the

number of domains used to produce J -values. Sixteen elements lie along the crack-front between / ¼ 0 and

p=2. Fig. 10 shows a typical crack-front location in the local x1–x2 coordinate system for the 7-ring mesh.

Ratios of crack-front element length, Le, to plate thickness, t, Le=t, range from 1.47 · 10�2 for the 3-ring
mesh, to 5.41 · 10�5 for the 10-ring mesh. The 3-ring mesh has 7632 elements and 34 013 nodes, and the 10-

ring mesh has 8752 elements and 39 053 nodes. The number of nodes and elements in each model reflects

the large plate dimensions h and b. Increased mesh refinement in the four models focuses primarily on the

crack-front region. Fig. 11 shows normalized KI vs. location along the crack-front for 0 < / < p=2, and
compares KIn obtained through Eqs. (36) and (45) for the 3-ring and 10-ring models. The meshes yield

results which show little variation between refinement levels, and which show close agreement between the

two methods, i.e. Eqs. (36) and (45).

The reduced (2 · 2 · 2) integration triggers a small amount of hourglassing in crack-front elements for
the 7-ring model, which becomes more pronounced in the 10-ring model. Hourglassing does not signifi-



(a) (b)

(c) (d)

Fig. 16. Normalized J -values at three crack-front locations computed using Eq. (36) with and without the second integral. (a) Tension

loading for E2=E1 ¼ 5. (b) Tension loading for E2=E1 ¼ 0:2. (c) Bending load, for E2=E1 ¼ 5. (d) Thermal loading

(r0 ¼ E1a1T0=ð1� mÞÞ for T1=T2 ¼ 10 (see Fig. 8). Table 4 lists material properties.
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cantly affect KI in the 7-ring model––the refinement level selected to discretize all subsequent models of

surface-cracked plates. Fig. 12 shows typical mesh refinement in the crack region for the three crack

geometries analyzed in this study, i.e. a=c ¼ 1=3, 1 and 2. J -values obtained from all 7-ring meshes are an

average of domains three through seven.

6.4.2. Verification of KI -values for homogeneous specimens

A comparison of KI -values obtained from Eq. (36) with those reported by Newman and Raju (1979)

verifies the present solution of the boundary-value problem for the homogeneous plate specimens. Fig.

13(a) compares values of KIn derived from Eq. (36) with the Raju and Newman (1979) solutions for tension
loading of homogeneous material, crack geometries a=c ¼ 1 and 2, and crack depths a=t ¼ 0:2 and 0.8. Fig.

13(b) compares KIn-values from Eq. (36) with Newman and Raju (1979) solutions for the same models

under bending. Bending loads cause portions of the crack-face to close. Without contact surfaces, finite-

element solutions for these cases permit spurious crack-face displacements (i.e. crack-face interpenetration)

which cause some domains to produce negative J -values. Newman and Raju (1979) list the negative values;

here we report only positive values. Lee and Erdogan (1998) and Anifantis (2001) describe techniques to

include crack-face contact in 2-D cases. Fig. 13 shows agreement between KIn-values obtained from Eq. (36)

for both tension and bending loads with the Newman and Raju solutions.

6.4.3. Verification of KI -values for functionally-graded specimens

For FGM cases, the good agreement between KIn-values obtained using Eq. (36) and those obtained
using the DCT confirms that the adopted level of mesh refinement captures the effects of material property



(b)

(a)

Fig. 17. (a) Normalized KI -values along a front under remote tension loading for a crack with a=c ¼ 1=3 and a=t ¼ 0:2. (b) Normalized

values of J along the crack-front corresponding to the KIn-values in (a).
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gradients. Previous applications of the DCT to 2-D models for FGMs include Li et al. (1999), Marur and

Tippur (2000), Rousseau and Tippur (2001) and Kim and Paulino (2002a). For an exponential material

variation with E2=E1 ¼ 5, Fig. 14(a)–(c) compares tension and bending results for each crack geometry

and crack depth. Fig. 14(d) compares results for thermally-loaded plates with three crack geometries:

a=c ¼ 1=3, 1, and 2, each with crack depth a=t ¼ 0:2. The specified surface temperature ratio is T1=T2 ¼ 20,

with the through-thickness temperature distribution as described in Section 2 (and shown schematically in

Fig. 8).
KIn-values for all loading cases show good agreement between the two methods (i.e. from J and the

DCT), with the largest difference occurring along crack-front sections with high curvature. In Fig. 14(a), the

largest difference for a=c ¼ 1=3 is less than 7% of the smaller value. For a=c ¼ 2, the maximum difference in

Fig. 14(c) is less than 5% of the smaller value. Fig. 15(a)–(c) compares KIn-values derived from Eq. (36) with

KIn-values obtained via the DCT for all crack geometries and crack depths, for an exponential material

variation with E2=E1 ¼ 0:2. In this case, a maximum difference slightly greater than 7% occurs under

tension loading near / ¼ 0:25 for a=c ¼ 1=3 and a=t ¼ 0:8 (see Fig. 15(a)).



(b)

(a)

Fig. 18. Normalized KI -values along a crack-front under remote tension loading for a crack with a=c ¼ 1=3 and (a) a=t ¼ 0:5;

(b) a=t ¼ 0:8.
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6.5. Effect of material gradient terms on J -values

Fig. 16(a)–(d) shows J -values, calculated with and without the second integral of Eq. (36), at three

locations, /, along the crack front for four different combinations of crack geometry and loading. Each
curve in the figure has seven points that correspond to the seven domains used to calculate J -values. Here,

RD=a equals the radius of the domain, measured at / ¼ p=2, divided by the crack depth, a. Fig. 10 illus-

trates RD, which is measured ahead of the crack-front on the plane of symmetry. For the purpose of

interpreting the results shown in these figures, Eq. (28) is more intuitive than its equivalent used for

numerical implementation, Eq. (36). For tension and bending loads, the contribution of gradient terms at

small / is insignificant for all domains. This reflects the vanishing of E;1 ðxÞ as the crack-front normal X1,

becomes orthogonal to the direction of material variation. Fig. 16(a) and (c) shows that for E2=E1 ¼ 5,

omission of gradient terms leads to increased J -values as the domain size increases. This increase arises
from an increase in both oW =oEðxÞ and E;1 ðxÞ in the direction of the crack-front normal. For a softening

material, i.e. E2=E1 ¼ 0:2, J -values decrease as the domain size increases (see Fig. 16(b)). For the thermally-

loaded specimens, the second integrand of Eq. (36) shows a much greater influence on J than in the



(a)

(c)

(b)

Fig. 19. (a) Normalized KI -values along a crack-front loaded in remote tension, with a=c ¼ 1, E2=E1 ¼ 0:2, 5 and 1, and a=t ¼ 0:2,

(b) a=t ¼ 0:5, and (c) a=t ¼ 0:8.
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tension and bending cases, as seen in Fig. 16(d). Referring to Eqs. (28) and (32), when / ¼ 0, the gradient

terms E;1 ðxÞ, a;1 ðxÞ, and H;1 ðxÞ all vanish. At other front locations, the gradient terms become significant
as the domain size increases, reflecting the combined effects of thermal loading and material gradients

on J .
For all loading cases, the relative contribution of the second integrand increases with domain size, and

becomes necessary to maintain domain independence of the J -values. Because RD=a ratios are small for the

domains employed to generate the curves shown in Fig. 16, domain dependence of J -values is not as

significant as that shown in Fig. 7(c) and (d) for an SE(T) specimen where RD=a are larger. As domains

decrease in size, the magnitude of the second integral of Eq. (36) becomes much smaller than the first

(conventional) integral. This difference in relative magnitude is a function of the derivative (q;1) in the first
integral. Fig. 6 shows that q decreases from unity at the crack-front to zero at the outer boundary of the

domain. As the domain shrinks in size, the distance from the crack-front to the outer boundary of the

domain also shrinks, and causes the derivative of q to become very large, thereby heavily weighting the first

integral (Gu et al., 1999). This trend in J with decreasing domain size agrees with observations made by

Aoki et al. (1982), Tohgo et al. (1996) and Gu et al. (1999) who suggest that very small, near-tip domains

yield accurate values of J in an FGM without including gradient terms––at least for linear-elastic analyses.

This eliminates one advantage of the J -integral, however, which is good accuracy when evaluated over large

domains in a relatively coarse mesh. Path independence, which does not generally result without the use of
gradient terms, indicates an acceptable level of mesh refinement. The omission of gradient terms removes

these two advantages of J -integral calculations.



(a)

(c)

(b)

Fig. 20. (a) Normalized KI -values along a crack-front loaded in remote tension, with a=c ¼ 2, E2=E1 ¼ 0:2, 5 and 1, and a=t ¼ 0:2,

(b) a=t ¼ 0:5, and (c) a=t ¼ 0:8.
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7. Stress-intensity factors for surface cracks in FGM plates

7.1. Tension load

Figs. 17–20 show KIn-values for a selected range of specimen and crack geometries, all loaded by remote
tension. Because the plane-stress assumption applies to the J–KIn conversion at the free surface, and the

plane-strain assumption applies at interior points (see Eq. (39) and Section 6.3), each of the curves exhibits

a small kink between values of KIn at / ¼ 0 and the first interior point. To simplify discussions here, the

term ‘‘soft’’ applies to specimens with a material variation of E2=E1 ¼ 0:2, and ‘‘stiff’’ applies to specimens

with a variation of E2=E1 ¼ 5:0.
Fig. 17(a) shows that for a=c ¼ 1=3 and a=t ¼ 0:2, KIn-values at all points along the crack-front are

greater in the homogeneous material than in the soft material, and greater in the soft material than in the

stiff material. To explain this perhaps unexpected result, Fig. 17(b) shows the corresponding energy release
rates (J -values). The energy release rate along the deeper portion of the crack is higher in the soft material

than in the homogeneous material, as expected. In this figure, the values of J for E2=E1 ¼ 5:0 clearly show

that as Young�s modulus increases along the crack-front, the energy release rate decreases with respect to

the homogeneous material. As the modulus decreases along the crack-front, the energy release rate in-

creases with respect to the homogeneous material, as demonstrated by the J -values for E2=E1 ¼ 0:2. Be-
cause of the proximity of the J -curves for the soft and homogeneous materials, the values of EðSÞ used to

convert J into KIn drive the stress-intensity factors of the soft material below the stress-intensity factors of

the homogeneous material.



(a)

(b)

Fig. 21. Comparison of trends in J , KIn and E along a crack front under tensile loading for the geometry a=c ¼ 2 and a=t ¼ 0:8, in

material where (a) E2=E1 ¼ 0:2 and (b) E2=E1 ¼ 1. In FGMs, the location, /, of maximum J along the curved crack-front does not

necessarily correspond to the location of maximum KIn.
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For each ratio of a=c, an increase in crack depth in the soft material causes the magnitude of KIn near the

cracked surface to increase relative to the value of KIn at the deepest point along the crack. For all ratios of

a=c, an increase in crack depth in the stiff material causes the magnitude of KIn to increase overall, but
causes KIn near the cracked surface to decrease relative to the value of KIn at the deepest point along the

crack. In all materials, for a constant ratio of a=t, a decrease in a=c causes the value of KIn near the cracked

surface to increase relative to the value of KIn at the deepest point in the crack.

In all geometries of nonhomogeneous material examined here, Young�s modulus, EðSÞ, varies along the

curved crack front. Because EðSÞ influences the conversion from J to KI (see Eq. (39)), the crack-front

location, /, of maximum J does not necessarily correspond to the location of maximum KI . The curves in

Fig. 21(a) show trends in the variation of J , KIn and E along the front of a surface crack under remote

tension loading with a=c ¼ 2, a=t ¼ 0:8 and E2=E1 ¼ 5. Here Jnð/Þ ¼ Jð/ÞE1=ðr2
tpa=QÞ defines a normal-

ized value of J along the crack-front, and Enð/Þ ¼ Eð/Þ=E1 defines a normalized value of Young�s modulus.

In this figure, the maximum J -value occurs near 2/=p � 0:5, while the maximum KIn occurs near the free

surface. Fig. 21(b) shows trends in J , KIn and E for an identical crack in a homogeneous material. In this

case, the crack-front locations of maximum–minimum J correspond to locations of maximum–minimum

KI .



Table 5

Normalized stress-intensity factors, KIn, along the crack-front for specimens loaded in tension

a=c 2/=p Tension

a=t ¼ 0:2 a=t ¼ 0:5 a=t ¼ 0:8

E2=E1 E2=E1 E2=E1

0.2 1.0 5.0 0.2 1.0 5.0 0.2 1.0 5.0

1/3 0.000 0.660 0.725 0.548 1.164 0.925 0.598 1.838 1.289 0.767

0.125 0.669 0.744 0.589 1.076 0.932 0.685 1.502 1.255 0.922

0.250 0.739 0.822 0.673 1.098 1.013 0.819 1.378 1.321 1.155

0.375 0.813 0.901 0.760 1.131 1.100 0.964 1.298 1.395 1.413

0.500 0.882 0.972 0.840 1.158 1.176 1.104 1.228 1.452 1.670

0.625 0.944 1.035 0.912 1.183 1.243 1.233 1.172 1.487 1.896

0.750 0.990 1.080 0.966 1.195 1.291 1.334 1.128 1.498 2.052

0.875 1.016 1.106 0.997 1.199 1.319 1.396 1.102 1.495 2.126

1.000 1.027 1.117 1.011 1.200 1.327 1.420 1.094 1.490 2.141

1 0.000 0.997 1.140 0.917 1.351 1.240 0.907 1.720 1.421 0.988

0.125 0.957 1.122 0.919 1.238 1.209 0.965 1.475 1.361 1.109

0.250 0.936 1.082 0.923 1.161 1.155 1.019 1.297 1.275 1.217

0.375 0.930 1.061 0.936 1.109 1.124 1.075 1.171 1.220 1.320

0.500 0.931 1.046 0.950 1.071 1.101 1.125 1.073 1.176 1.400

0.625 0.933 1.038 0.963 1.041 1.087 1.166 1.001 1.145 1.451

0.750 0.935 1.034 0.974 1.019 1.078 1.197 0.951 1.123 1.475

0.875 0.936 1.029 0.979 1.004 1.070 1.212 0.922 1.105 1.470

1.000 0.938 1.027 0.981 0.997 1.067 1.213 0.912 1.100 1.465

2 0.000 0.612 0.763 0.615 0.736 0.782 0.596 0.849 0.823 0.602

0.125 0.623 0.755 0.636 0.746 0.774 0.656 0.836 0.806 0.698

0.250 0.608 0.716 0.625 0.719 0.731 0.677 0.775 0.755 0.748

0.375 0.595 0.677 0.610 0.690 0.689 0.685 0.712 0.707 0.774

0.500 0.574 0.637 0.588 0.651 0.646 0.679 0.643 0.659 0.772

0.625 0.547 0.595 0.561 0.606 0.603 0.659 0.577 0.612 0.746

0.750 0.516 0.554 0.529 0.561 0.560 0.629 0.519 0.566 0.700

0.875 0.486 0.516 0.499 0.522 0.521 0.595 0.475 0.525 0.648

1.000 0.473 0.499 0.484 0.506 0.504 0.580 0.457 0.507 0.625
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To tabulate these normalized stress-intensity factors, cubic-spline interpolation provides estimates of KIn

at equally spaced (/) crack-front locations in the range 06/6 p=2. Table 5 lists normalized KI -values for

the selected surface crack/material combinations under remote tension loading. Because the calculation of J
occurs at a larger number of crack-front locations than the tabulated data reflects, the tables do not

necessarily capture the exact maximum–minimum values of KIn. For example, Fig. 20(c) shows a maximum

value of KIn ¼ 0:857 at / ¼ 0:024 for E2=E1 ¼ 1, whereas Table 5 lists a maximum value of KIn ¼ 0:823 at

/ ¼ 0:0.
7.2. Bending load

Figs. 22–24 show KIn-values for selected crack geometries under remote through-bending load. For some

crack geometries, bending causes crack-face nodes to penetrate the crack plane, thereby producing negative

stress-intensity factors. Figures and tables for specimens under bending omit the unrealistic negative values.

Figs. 22–24 show that an increase in crack depth causes stress-intensity factors at the deepest part of the
crack to decrease, which reflects the decreased stress from bending. As expected, the decrease in KIn is most



(a) (b)

(c)

Fig. 22. (a) Normalized KI -values along a crack-front loaded in remote bending, with a=c ¼ 1=3, E2=E1 ¼ 0:2, 5 and 1, and a=t ¼ 0:2,

(b) a=t ¼ 0:5, and (c) a=t ¼ 0:8.
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pronounced in the soft material, and smallest in the stiff material. For crack geometry a=c ¼ 1=3 (Fig. 22),

the stress-intensity factor near the cracked surface increases slightly as crack depth increases. The increase is

largest in the soft material, and smallest in the stiff material. When a=c ¼ 1 (Fig. 23) and a=c ¼ 2 (Fig. 24),

the stress-intensity factor near the cracked surface decreases slightly with crack depth. The decrease is again

largest in the soft material, and smallest in the stiff material.
In Figs. 22–24, for a constant value of a=t, the variation in stress-intensity factor near the cracked surface

is not monotonic with increasing a=c, whereas KIn at the deepest point of the crack decreases monotonically

with increasing a=c. Near the cracked surface, the stress intensity increases when the crack geometry

changes from a=c ¼ 1=3 to 1 (from Figs. 22, 23), but decreases when the geometry changes from a=c ¼ 1 to

2 (from Figs. 23, 24). At the deepest point of the crack, the value of KIn decreases for each increase in crack

depth, i.e. from a=c ¼ 1=3 to 1 to 2 (Figs. 22–24). When a=c ¼ 1=3 and a=t ¼ 0:8, Fig. 22(c), the stress-

intensity factor reaches its maximum value at a point along the crack-front between the cracked surface and

the deepest point on the crack front.
Table 6 lists normalized KI -values for the selected surface crack/material combinations under bending

load. Dashes in the table replace otherwise negative stress-intensity factors. Cubic-spline interpolation

again yields estimates of KIn at evenly-spaced (/) crack-front locations in the range 06/6 p=2.
7.3. Thermal loading

The material properties and thermal boundary conditions for analyses performed here follow those used

by Erdogan and Wu (1996) as described in Section 2. At crack-front locations interior to the specimen,



(a) (b)

(c)

Fig. 23. (a) Normalized KI -values along a crack-front loaded in remote bending, with a=c ¼ 1, E2=E1 ¼ 0:2, 5 and 1, and a=t ¼ 0:2,

(b) a=t ¼ 0:5, and (c) a=t ¼ 0:8.
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Eqs. (39) and (41) here produce normalized KI -values using the plane strain conversion. We omit stress-

intensity factors at the free surface (/ ¼ 0) (see discussion in Section 6.3).

Fig. 25(a)–(c) shows normalized stress-intensity factors, KIn, for surface cracks under thermal loading,

where the crack geometry includes three ratios of a=c, and a fixed crack depth of a=t ¼ 0:2. Table 4 lists the

material properties, and Fig. 8 illustrates the thermal gradient where the temperature at the cracked surface,
T1, equals 5, 10 and 20 times the temperature at the uncracked face, T2. As the ratio of crack depth to crack

length, a=c, becomes larger, the variation in stress-intensity factor drops more steeply from a maximum

near / ¼ 0 to a minimum at 2/=p ¼ 1. As a=c increases from 1/3 to 1 to 2, the magnitude of KIn at the

deepest point of the crack, 2/=p ¼ 1, decreases monotonically. The value of KIn near the cracked surface

increases as a=c grows from 1/3 to 1, and then decreases as a=c grows from 1 to 2. Table 7 lists normalized

KI -values for the selected surface crack/material combinations under thermal loads.
8. Summary and conclusions

This paper describes a domain integral formulation suitable to compute J -integral values along 3-D

crack fronts in fracture specimens and components constructed of isotropic, functionally graded materials
(FGMs). Within a finite element setting, material property values are specified at the model nodes with

standard isoparametric interpolations to define integration point values. This approach coupled with the



(a) (b)

(c)

Fig. 24. (a) Normalized KI -values along a crack-front under remote bending, with a=c ¼ 2, E2=E1 ¼ 0:2, 5 and 1, and a=t ¼ 0:2,

(b) a=t ¼ 0:5, and (c) a=t ¼ 0:8.

1112 M.C. Walters et al. / International Journal of Solids and Structures 41 (2004) 1081–1118
proposed domain integral thus accommodates effectively arbitrary, smooth gradations of material

properties. The proposed numerical procedures to evaluate the domain integral use conventional quan-
tities generated in a finite element solution and may thus be implemented in a post-processor. The present

study explores the numerical implementation with applications to mode-I configurations in 2-D and 3-D

having linear-elastic response and subjected to thermomechanical loading. For simple 2-D configurations,

the available analytical solutions for an edge crack loaded remotely by tension and by temperature

gradients support verification of stress-intensity factors derived from J -values computed with the pro-

posed domain integral. In 3-D surface crack configurations, the displacement correlation technique yields

pointwise values of stress-intensity factors along crack fronts for verification of corresponding factors

computed with the domain integral procedure. The discussions also address mesh refinement levels re-
quired to resolve the solution gradients ahead of the crack-front in FGMs, to obtain path independence

of the J -values, and to evaluate various contributions of the domain integral. These results demonstrate

the utility and accuracy of using the proposed domain integral to derive 2-D and 3-D stress-intensity

factors for FGMs.

A parametric study provides stress-intensity factors along crack fronts derived using the proposed

domain integral for plates containing semi-elliptical surface cracks. This initial set of 3-D stress-intensity

factors covers a practical range of crack sizes, aspect ratios and gradations of isotropic material pro-

perties (elastic modulus and coefficient of thermal expansion). Loadings considered include remote ten-
sion, bending and through-thickness temperature gradients. All configurations reflect mode-I conditions



Table 6

Normalized stress-intensity factors, KIn, along the crack front for bending loads

a=c 2/=p Bending

a=t ¼ 0:2 a=t ¼ 0:5 a=t ¼ 0:8

E2=E1 E2=E1 E2=E1

0.2 1.0 5.0 0.2 1.0 5.0 0.2 1.0 5.0

1/3 0.000 1.261 0.684 0.364 1.461 0.758 0.377 1.572 0.856 0.433

0.125 1.160 0.680 0.387 1.141 0.710 0.417 1.028 0.752 0.494

0.250 1.141 0.721 0.434 0.939 0.699 0.476 0.682 0.676 0.570

0.375 1.136 0.762 0.482 0.787 0.687 0.533 0.442 0.597 0.635

0.500 1.121 0.793 0.525 0.651 0.661 0.579 0.250 0.494 0.667

0.625 1.104 0.816 0.562 0.537 0.629 0.612 0.098 0.375 0.656

0.750 1.086 0.830 0.588 0.453 0.597 0.632 – 0.263 0.605

0.875 1.073 0.837 0.603 0.403 0.576 0.641 – 0.181 0.546

1.000 1.068 0.838 0.608 0.384 0.565 0.643 – 0.143 0.510

1 0.000 1.884 1.067 0.607 1.805 1.025 0.570 1.712 1.001 0.568

0.125 1.614 1.012 0.599 1.286 0.908 0.582 0.984 0.815 0.594

0.250 1.380 0.934 0.591 0.878 0.762 0.581 0.480 0.592 0.581

0.375 1.210 0.876 0.589 0.603 0.643 0.576 0.187 0.405 0.543

0.500 1.070 0.827 0.587 0.398 0.535 0.560 0.054 0.232 0.465

0.625 0.968 0.788 0.586 0.259 0.447 0.539 – 0.087 0.359

0.750 0.899 0.762 0.585 0.171 0.385 0.520 – – 0.251

0.875 0.853 0.743 0.583 0.117 0.341 0.502 – – 0.155

1.000 0.838 0.735 0.582 0.098 0.324 0.494 – – 0.113

2 0.000 1.211 0.723 0.409 1.121 0.675 0.380 1.047 0.637 0.362

0.125 1.057 0.683 0.415 0.792 0.587 0.397 0.569 0.496 0.381

0.250 0.881 0.615 0.400 0.511 0.474 0.384 0.240 0.334 0.354

0.375 0.727 0.548 0.381 0.298 0.364 0.357 0.049 0.180 0.293

0.500 0.601 0.487 0.359 0.156 0.270 0.321 – 0.060 0.206

0.625 0.504 0.434 0.336 0.068 0.198 0.283 – – 0.115

0.750 0.430 0.389 0.312 0.015 0.145 0.247 – – 0.030

0.875 0.378 0.352 0.291 – 0.109 0.217 – – –

1.000 0.358 0.337 0.281 – 0.097 0.205 – – –

Dashes replace negative stress-intensity factors caused by interpenetration of crack faces.
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(geometry, boundary conditions and loadings) with material properties that vary only in the thickness

direction. The computed stress-intensity factors are presented in a standard nondimensional form for

surface cracks using both graphical and tabular formats. The presence of the material property grada-

tions introduces some unusual trends in KI -values along the crack fronts (compared to those for surface
cracks in homogenous materials as characterized by the Newman–Raju solutions). Moreover, unlike

configurations with homogenous material properties, the locations of maximum J and maximum KI do

not necessarily coincide in the presence of material property gradations. The present set of 3-D solutions,

while not exhaustive, does provide insights into the expected complexities of surface crack behavior in

FGMs.

Our ongoing work considers applications of the proposed domain integral to compute J -values in

surface cracks for metal-ceramic FGMs that undergo elastic–plastic deformations. The preliminary results

again show good path independence of the J -values. Such J -values may prove useful to characterize the
intensity of elastic–plastic crack-front fields in FGM specimens.



Table 7

Normalized stress-intensity factors, KIn, along the crack front for thermal loading

a=t 2/=p Thermal loading

a=c ¼ 1=3 a=c ¼ 1 a=c ¼ 2

T1=T2 T1=T2 T1=T2

5 10 20 5 10 20 5 10 20

0.2 0.000 – – – – – – – – –

0.125 0.393 0.884 1.866 0.582 1.309 2.765 0.395 0.888 1.874

0.250 0.377 0.847 1.789 0.476 1.072 2.264 0.310 0.698 1.473

0.375 0.362 0.814 1.719 0.394 0.888 1.874 0.231 0.520 1.097

0.500 0.341 0.767 1.619 0.324 0.730 1.541 0.168 0.377 0.796

0.625 0.318 0.716 1.513 0.270 0.609 1.286 0.122 0.274 0.577

0.750 0.299 0.673 1.420 0.234 0.526 1.111 0.089 0.201 0.424

0.875 0.287 0.645 1.361 0.210 0.472 0.997 0.068 0.154 0.325

1.000 0.281 0.633 1.336 0.201 0.453 0.957 0.062 0.139 0.292

Table 4 lists material properties, and Fig. 8 shows a schematic of the temperature distribution. Dashes replace stress-intensity factors

in the boundary layer (see Section 6.3).

(a) (b)

(c)

Fig. 25. Normalized KI -values for a specimen under thermal loading with a=t ¼ 0:2, T1=T2 ¼ 5, 10 and 20, and (a) a=c ¼ 1=3,

(b) a=c ¼ 1, and (c) a=c ¼ 2. Material properties are listed in Table 4.
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