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The free-space Green function for a two-dimensional exponentially graded elastic 
medium is derived. The shear modulus p is assumed to be an exponential func- 
tion of the Cartesian coordinates (x, y), i.e. 

p- 
up(x, y) = poe2(1?x+02Y), where Po, 

/31, and 32 are material constants, and the Poisson ratio is assumed constant. The 
Green function is shown to consist of a singular part, involving modified Bessel func- 
tions, and a non-singular term. The non-singular component is expressed in terms 
of one-dimensional Fourier-type integrals that can be computed by the fast Fourier 
transform. 

Keywords: functionally graded materials; Green's function; 
boundary-element methods 

1. Introduction 

The goal in this paper is to obtain the Green function for a class of functionally 
graded materials (FGMs) in two dimensions. Specifically, it is assumed that the 
Poisson ratio v of the medium is constant and that the Lame moduli A and p of the 
material are exponentially graded, 

p(x) = p(x, y) 

=_poe2(0Q1z+2y) 

oe20-x A(x) = 
o•e23x, 

(1.1) 

where Po, A0, and 3 = (P31, 32) are material constants. Martin et al. (2002) employed 
a Fourier transform method to solve this problem in three dimensions and found that 
the Green function, G3, is the sum (Martin et al. 2002, eqn (2.12)) 

G3(x; x') = e-3' (x+x')[Go(x; x') + G x')], (1.2) 

where Go is the well-known three-dimensional (3D) Kelvin solution (Mukherjee 1982; 
Mura 1987) for a homogeneous solid, and the grading term G is a bounded well- 
behaved function of the distance between the field point x and the source point x', 
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|rI = Ix 
- x'|. It might therefore be reasonably expected that the Green function in 

two dimensions would be of the form 

G2 (X; ') e-0-(X+X')[Go(x; ') + G(x; x')], (1.3) 
where G' is the two-dimensional (2D) Kelvin's solution, and G9 is a corresponding 
grading term. However, if G2 is written in this form, Gg is not bounded (see ? 5 d). It 
turns out that in order to correctly split off the singularity, G2 should be decomposed 
as the sum 

G2(x; x') = e-,3(X+X')[Gs (/3 r) + 
G•s(x; x/)], (1.4) 

where G' and G"s stand for the singular and non-singular parts, respectively, 

3 =1•31 /31•2+, 
and Irl = I - x'|. As both singular and non-singular parts contain the grading 
parameter /3, naming either one of them as a grading term is no longer appropri- 
ate. The singular part, Gs, contains the modified Bessel functions Ko(lP3lrl) and 

K(1| ( 1 r), and the appearance of Bessel functions is consistent with the Green func- 
tion for the 2D heat equation found by Gray et al. (2003) for graded materials. 

As the 2D situation is of interest herein, the subscript in equation (1.4) is dropped 
and it will be shown that 

G(x; x') = e- ("+X') [Ko(|l•llrl)Co + Ki (1/|rl)Ci + Gns(x; x')], (1.5) 
where (K = 3 - 4v for plane strain), 

Co = 2 K 1( + 1) (0 -1- 
) 1 (1.6) 

27to(,4 +1) 0 14po(r + 1) 0 -i ' 

and 
(X1 

- 
/x)2 _( x2 

2 2 
/ 

_ 2 

Irl -110 1 Ir . 
It is worth noting that while Ko(l/3jrl|) shares with the 2D Kelvin solution the 
necessary logarithmic singularity as Ir 

-- 
0, it also dies off exponentially as r - 00 o. 

A scalar analogue is the graded Laplace equation (Gray et al. 2003) 

V2 
+/31 /2 - =0, (1.7) 

09X ay) 
and the corresponding Green function 

O(x; x') = Ko(ol3lrl) (1.8) 2r 

also decays exponentially at infinity. The exponential decay of the modified Bessel 
function K0 at infinity (see Appendix B) will make the Fourier analysis straightfor- 
ward. 

The paper is organized as follows. The motivation for investigating this problem 
and a discussion of related work is given in ? 2. The governing partial differential 
equations for the exponentially graded FGM and the definition of the Green function 
are presented in ? 3. A Fourier transform method is used in ? 4 to translate the partial 
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differential equations into a system of algebraic equations. The solution of the Green 
function for a normal (diagonal) term is obtained in ? 5; the shear (off-diagonal) term 
is considered in ? 6. In addition, an analysis of the singularity of the derived Green 
function is provided in ? 5; in both ? 5 and ? 6, numerical evaluation of the non- 
singular terms using the fast Fourier transform algorithm is considered. A summary 
of the formulae for all components of the Green function is presented in ? 7 and the 
last section contains some concluding remarks. Two appendixes, providing useful 
double Fourier transform formulae and asymptotics of the modified Bessel functions, 
supplement the paper. 

2. Motivation and brief literature review 

Many applications (e.g. coatings) involve dissimilar materials jointed at an interface. 
However, it is well known (Erdogan 1995) that stress concentration near the inter- 
face may result. FGMs are of interest in the materials community primarily because 
a continuous change in the material composition may avoid these local stress con- 
centrations. Moreover, by controlling the gradation, the material performance can 
possibly be tailored and optimized to fulfil particular service requirements. FGMs 
have been investigated for many applications: thermal barrier coatings for aerospace 
applications, graded refractive index materials in optical devices, and biomaterials 
for dental and other implants. Good introductions to the general field of FGMs are 
found in the review articles by Hirai (1996) and Paulino et al. (2003), and the books 
by Suresh & Mortensen (1998) and Miyamoto et al. (1999). Erdogan (1995) pro- 
vides a good review of fracture mechanics in FGMs, and Eischen (1987) discusses 
the crack-tip fields in FGMs. 

As the study of FGMs is relatively new, it is not surprising that the literature 
on computational fracture analysis in these materials is not extensive, especially in 
regards to the boundary-element method (BEM). Using a singular integral-equation 
method, Konda & Erdogan (1994) have solved the mixed-mode plane elasticity crack 
problem. Kim & Paulino (2002a) have proposed graded elements for modelling bulk 
FGMs by the finite-element method (FEM) and have also employed this idea to 
evaluate mixed-mode stress intensity factors and T-stress in FGMs (Kim & Paulino 
2002b, 2003). Although singular integral-equation methods can capture the crack- 
tip singularity for crack problems and provide accurate numerical results (Erdogan 
1995), the extension to general boundary-value problems is very limited. For the 
FEM, the task of re-meshing for problems involving moving boundaries such as crack 
propagation is, in general, substantial. Thus, a specific motivation of the present work 
is to develop the 2D Green function for exponentially graded materials, which will 
allow boundary-integral fracture-analysis simulations using boundary-only meshing 
and discretization. 

The boundary-integral approach can have advantages in treating FGMs, and espe- 
cially fracture problems. The required mesh is for a lower-order dimensional sur- 
face, and the stress singularity at the crack tips can be easily captured in the /,rl 
behaviour of the displacements on the crack surfaces (Cruse 1988). The Green func- 
tion is essential for formulating boundary-integral equations, and the ability to do 2D 
simulations is important. Two-dimensional analyses are commonly used in engineer- 
ing practice and they are often a good starting point for many practical applications. 
Previous works on Green's functions for non-homogeneous materials can be found 
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in Gray et al. (2003), Martin et al. (2002) and Sutradhar et al. (2002, 2003). The 
books by Banerjee (1994) and Bonnet (1995) give access to the extensive references 
on boundary-integral-equation methods. 

3. Green's function equations 

In classical linear elasticity, if the Lame moduli A and p are functions of x = (x, y, z), 
the equilibrium equations (in the absence of body forces) are 

p(x)V2u + [A(x) + i(x)]VV U + (Vu ? VUT)V/u(x) + (V u)VA(x) = 0, (3.1) 

where u is the displacement vector, V, V., and V2 are the gradient, divergence, and 
Laplacian operators, respectively, and VuT is the transpose of Vu. If a 2D plane 
problem is considered and the Lame moduli p and A are assumed to be exponential 
functions of (x, y), as in equation (1.1), then (3.1) can be written as the following 
system of partial differential equations (Konda & Erdogan 1994): 

[c = (LO +g) = 0, (3.2) 

where the linear differential operator C has been split as a sum of the operator for 
homogeneous materials, 

o_ Po 
(K + 

1)02 
+ ( -1)ay2 

2xy 2x1 (3.3) 
-1 2",xy (K_- 1)x2 + (K + 1), ' 

and the operator for the grading part, 

g= 2p0 
1( + 

1)O3 x 2( - 
-1)Oy 32( 

- 
1)Ox/3 

1(3 - )Oy (3.4) S 
- 1 

/ 2(3- K)ax + P1( 
- I), 

01(• 
- 

1)a, +0 2( + l)aly 

with Ox = 0/Ox, Oy, = O/y. From equation (1.1), we have assumed that the ratio 

A Ao 3 - 

P Po - 1 

is constant. Moreover, K = 3-4v if plane strain is considered, and = (3 - v)(1 + v) 
for a plane stress problem. A constant Poisson ratio, v, is widely invoked in the FGM 
literature, and appears to be physically reasonable (Erdogan 1995). In particular, for 
a crack problem, v may not have significant effect on the stress intensity factor (Delale 
& Erdogan 1983; Konda & Erdogan 1994). Finally, if 31 and 32 are set to 0, then the 
system of partial differential equations (3.2) becomes the standard Navier-Cauchy 
equations for homogeneous elastic materials. 

The free-space Green function is obtained by solving the above partial differential 
equations in the plane x = (x, y) under a concentrated point force, at x' = (x', y'). 
Let 

G = 8 j ,2 Ul U2 

-Vl V2- 

where u, and v,, a = 1, 2, denote the first and second displacement components, 
respectively, at the point x due to a force in the a-direction at point x'. The Green 
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function components u, and v, satisfy 

S uK =-e- e2P x: 
6 x )]' 1: -]U -e- 2,3. [ x , (3.5) 

Vl 
0 v2 6(x - 

X') 

where 6(x) denotes the 2D Dirac delta, and we have moved the common factor e20,x 
from the left-hand side of the equals sign to the right. Clearly, in case of homogeneous 
materials, by setting31 = /32 = 0, the equations (3.5) reduce to 

Lo 

I 

v6(x 
- 

X')O [2o 0 
(3.6) 

vo 0 
A4 6(x - X') 

and the corresponding Green's function components uo and vo (a = 1, 2) are Kelvin's 
solution. 

4. Fourier transform 

The Green function equations in (3.5) will be solved by using the method of Fourier 
transforms (Sneddon 1972). The Fourier transform is defined by 

()(l, 
j2) ( f(x,y)ei(x(?+y2) 

dx dy, (4.1) 
oc OO 

and the inverse Fourier theorem by 

•1(f)(xy) 
= f(x) = 

47r2 1j• 
f 2)e-i(x1+y2) 

dl 
d62. (4.2) 

- OO -O 

Taking the Fourier transform of equation (3.5), one obtains 

( 11 q12 0 0 bi1 
bl2 

0 0 l ei 

q21 q22 0 0 b21 b22 0 0 0 1 e2)3x' 0 

0 0 q33 q34 0 0 b33 b34 [2 0 
0 0 q43 q44 0 0 b43 b44/ V2 eig' 

(4.3) 
where 

qll -= q33 
+ 2 

22 
q22 = q44 • 2 

-1 22-1 

q12 = q21 = 34 - q43 =- 
n--1 

bil 
= b33= 2i ( 15+ + 

• 
~2321 

, bl2= b34 =2i 6 

2+1-31 

-3 

b21--b43=-2i[ 
0/3(6 

b2= 

b•4•2i 

i-01 
] ( 

+3 
+ 

-2 

4 i0 
1 

• 
1 

+/12 
, b22 

-- 
b44 

-- 
2i 

pig1 
+ 32 

2-1 

+ 

The equations for (ul, vi) are of course independent of those for (u2, v2), and thus 
the 4 x 4 matrices in equation (4.3) have a diagonal block structure; instead of solving 
a 4 x 4 linear system, it suffices to consider the 2 x 2 subsystem. 
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1694 Y.-S. Chan and others 

Denoting 

Q qll q12 
1 q33 q34 B 

[bi5 b121 
b33 b34 

q21 q22] q43 q44J' b21 b22J Lb43 b44J (4.4) 
S-Q = + B, 

we observe that matrix Q is symmetric, while matrices B and S are not symmetric. 
Thus, it is not clear at this point if the symmetry 

vi(x; X') = U2(x'; x), (4.5) 
which holds for Go, still holds for the graded Green function G. Martin et al. (2002) 
have proposed a neat way to verify the symmetry by rewriting the right-hand side 
of equation (3.5) as 

e-2 - 

••( e_-(x+x~)6(x - x'), (4.6) 
so that the non-singular term of G is symmetric after decomposition as in equa- 
tion (1.3). The proof of equation (4.5) for an anisotropic inhomogeneous elastic 
medium can be found in Ben-Menahem & Singh (1981); the re-formulation (4.6) 
is easily justified by the integral rules for the Dirac delta function. The symmetry is 
important in the numerical implementation of the symmetric Galerkin approxima- 
tion in boundary-element methods. 

Substituting (4.6) into equations in (3.5), and also recalling that it suffices to 
handle only the 2 x 2 subsystem, we obtain 

C )[1] -L- [~1] 
(CI 

+ C'I) [u 
2 

-- 
[ ,2 (4.7) (cII 

+ 
LI) 

Vl9 

f, 
I v 0 , V9 'C-I v 0 4.7 

where the second-order linear differential operator is 

1 (N 
+ 

[ 1)2 + 
(n- 1)y2 21xO1(4.8) 

K-1 2axay ( -1) 2+(K+1) ' ( 
and the first-order operator is 

2 - [02(K + 1) + 2 ,- 1)] (n - 2)(020x - l10y) 
- /1 /32 

I = 
__ 

2(K-1+ 
/32(K + 1)] " 

(4.9) 
S 

- 1 (K - 2)(010y, - 020x) - 0102 --12 
From this point on, only the details of deriving ug and vg will be given, as finding ur 
and v9 follows exactly the same route. Taking the Fourier transform of equation (4.7), 
we get 

(l + 
l) 

= 
-I Hr1 (4.10) 

(•II 

v 
I ~J k1j 

where 

II 
= Q, 

and 

o2K+ o1 2 2[i(K - 2) (21 

•_- 

+12) 31032] 
-1 K2 

2[i(n 
- 2)(01(2 - /32~l) +132] 

•2 

2 
K + 1 

<-1 '2n-1 
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Equation (4.10) combined with 

V 0 I I eO 
Q?]?1 [o 

leads to the following system of algebraic equations 

g {-(Q +Li)1iQ-1} 
[ ex'1 (4.11) vii?2 

which is the same equation as that derived for the 3D case (Martin et al. 2002, 
eqn (3.2)). 

It is worth pointing out that the matrix in the curly brackets in equation (4.11) is 
actually the difference between matrices (Q + L•I)-1 and Q-1, that is, 

-(Q + 
_i)-1IQ-1 

= (Q 
• 

+ -- Q-1. (4.12) 

Thus, equation (4.11) can be viewed as the general Green function equation for an 
exponentially graded medium from which the Kelvin solution is taken away. Although 
splitting off the singularity of the Green function for the 3D case according to equa- 
tion (4.12) is appropriate, such is not the case for 2D Green function. 

5. Green's function solution for u, 

The solution of ul will be obtained as 

e-4w 
.(1+)') 

ul (X; X') 
= 

'- 

(X; X') + u"ns(X; X')], (5.1) 
47rpo (r, + 1) lul I 

where the singular part 

u~(X; x') 
= 2Ko(lll~rl ) 

+ (X - xx')2 2~ 2 •)~~ I] I~I 
contains the modified Bessel functions Ko (x) and KI (x), and the non-singular part 
uns (; x') can be expressed as the linear combinations of single Fourier-type integrals 
(see ? 

5 b). We shall give a detailed derivation of (5.1) and also discuss the numerical 
evaluation of uny(x; x') (see ? 5 c). 

(a) Splitting-off the modified Bessel function 

By inverting the Fourier transform of (4.3), and after somewhat lengthy algebra, 
we obtain 

ul(X; - 

(7 +-) 

x~ 
00 00 ( - 1)( 2 +/32) + ( + 1)( + )/32) 

ei.(m-') did2, i-2,0 1- A52 

(5.2) 
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where 

= (| 02 )2 2 4(3 - K) 21- 1)2 112 - 2 +2 1 132 = 2 __ 2 + (i1(0+6 
- 

i"+•211- 
Gray et al. (2003) suggest that instead of subtracting the Kelvin solution, one should 

split off a modified Bessel function, and this can be accomplished by decomposing 
the fraction of the integrand in equation (5.2): 

( - 1) 
(12 

+ 12) + (K + 1) (U + U22) 
= Us + UA , (5.3) A 

where the singular term is 

S 
(2 

- 1( + ) ( + 1)2(2 + (5.) U (= 
1)(1+ 

12 (5.4) 

U1 --(1 
12 l)12 

• 
2 

and the remaining term (which will be seen to be non-singular) is 

, 
-1)(12 

+ 2) + () +1)(2 ++ ) ( (2 
-1)(12 

+/32) + (K+1)(( +02) (ns 12 2- 1 1 2 2 U A (1?12 + I1312)2 
(5.5) 

By the formulae provided in Appendix A, we obtain 

1 6)e0 -- 
Us 

(1, 2)e-i" 
(m-s') 

dgldg2 71 _oo -oo 

(x1 - x')2 _ 2 2 
2 

= 2KKo(lf|lr ) - K|ol|r|IK1(1P ||r|) + 101 
|(xl KI(|(l|r-) 

Irl 
(K - 

1)02 + (K + 1)P0 + 
2 

|rlKl(l| llrl) ,(5.6) 

v1 + 2 
the term u's(x; x') in equation (5.1). Note that Ko(13Plrl) has the desired logarithmic 
singularity as rI --+ 0. 

(b) Contour integral for the non-singular part 

The next step is to show that 

1 F0 
- 

1( = 
- fo Uo S( 1 i2)e-'i'(x-x') d1 d2 (5.7) ??s(,; •,) S_ 

• • 
? 

is well behaved, and to obtain a better form for numerical computation. By using 
contour integration to integrate out one of the variables, (1, the double Fourier trans- 
form can be reduced to a single Fourier integral. For simplicity, it can be assumed 
that /2 = 0; otherwise, by a simple change of variables (a rotation of arctan(/32/31)) 

/1 /32 /2 /1 
1 

= s 1 S2, 2 = 

--Sl• 
S2, 

1 101 101 IP 

and thus the term (/021 - /312)2 becomes 1012s2, equivalent to letting /32 = 0. 
At /2 = 0, the double Fourier integral in equation (5.7) can be written as 

I 
00 

J 
2 

-r/ [(+ 
- 

1)( +/32) + (n + 1)( )]-i. d d2 (5.8) 
- [0 -0 

[(1 
+ + 32)2 

+?10•](2 
+ +/32)2edld2 ( 
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where r = 4(3 - ,)/(i + 1), and we have abbreviated (x - x') as r = (rl, r2) 
We choose to integrate with respect to (1 first, and, as (2 is fixed, the fraction in 
equation (5.8) has three poles located in the upper half-plane: they are two simple 
poles 

Pl = 1 
' 

(P + iQ), P2 2(i - 
P), 

and one pole of order 2, 

p3i 

with 

2 = \ + ) 2 
2 

-- 
2 

_ 
- 

12, (5.9) 

S 
(• 

+ 

12)2 + 
t 

+2 
+ 

2 
. 

(5.10) 

As a function of (2, P has the following asymptotics as 121 -> 0: 

71 
/( + 01)2 +722 

2 _ 2 

V/@•l{2_ 

(4 + rl) 2 -22 (4+ 13 + 0(1215) (5.11) 

The numerator in equation (5.8) is the linear combination of terms a, and 
4 , and the individual integrals are 

00 00 

(2e-i.-r 00o J [(?+?2 + 0)2 + 2 2 + f 2 +• 0/ 

7" 
\-2e-rl 

/2 [ -2[ cos( 
1v/2r1) 

- 
- sin( TP)] 

eloo 

2 2 
[|r, ( 2 

2) 
2 2 

L21 

+ 
e 2 

[ 2 1 2 e-i2 2 d?2 (5.12) 

00f 00 
e-i.r 

0o - go 
[(12 

+ 
2 

+ 
2)2 

+ 

_22 

1 2 

{2](12 

+ ?2 22 d+1 d32 

SV '21 
/ 2 e/i' /22[ COS('2P) 

- sin(s VrP) 

2/3 J-00L 2 N/4j7(3 I ? 
V )2?r1731 2 

e2 r1 +2 [rl1(2 
? 

1+2) - 
2 ? 

1/3 
+ 2 -ir+ er r(+ )2 1 J ]e-i22 d?2 (5.13) (t? + •1•)2; 
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00 00 
? ~~•12e-i?- 

L Lr t2 . R212 2 2 2 d( d?2 

x 
er 

1/2-COS( 

T1) - Q sin( 

1V/2'P)] 
-217 

er2 1[r( + ~) + - + e } i2 2 dd 2. (5.14) 2( ?+ ) ) 
Examining each single Fourier integral in equations (5.12)-(5.14) together with the 

asymptotics of P provided in (5.11), one readily sees that the double Fourier integral 
in (5.7) is indeed non-singular. 

(c) Numerical evaluation of us 

Implementing the FGM Green function in a boundary-integral analysis will obvi- 

ously require computation of the integrals expressing the non-singular terms. The 

purpose of this subsection is to illustrate that there is no fundamental difficulty in 

achieving a reliable evaluation of un, in equation (5.1). However, the important issue 
of what is an efficient algorithm is left for future work. 

The results of numerical integration of the non-singular term u~s using fast Fourier 
transform algorithms (Brigham 1974; Walker 1991) are presented in this subsection. 
In order to compute the Fourier-type integral 

H(r) = h(()e-ier d( 

numerically, we approximate it by its discrete version, 
N-1j 

2H hL •• h- 
e-Ei2Nnk /N 

I_ 

= 1, 2, 1... , N, 
n- o 

where [0, L] is some appropriate truncation interval and N is the number of consec- 
utive sampled values. In practice, N is often chosen to be a power of 2, and this will 
reduce the operation count from O(N2) to O(N log2 N) (Cooley & Tukey 1965). 

As an example, the single integral in equation (5.12) is considered. By the sym- 
metry of the integrand in the argument of (2, we can rewrite the single integral 
as 

00 

v/2Oe'v 

rl Q 
1 2/pcos(_ 

JZ,p) 
- Q 

sin(1X//•p1)] o / 24 2 2 + 0 
2 2 

f(rl, r2) 
j- 

{i_•eln 

1Qa/2pcs(P +/ r) + 

rTa2•2 

+ 
e3 + C1S) 

( , (5.15) 
( (2 +32)2 

where P and Q are defined in equations (5.9) and (5.10), respectively. 
In figure 1, we plot a convergence test for f(rl = 0.20, r2) as a function of r2, 

where the parameters were chosen as 01 = 0.25, v = 0.30. For the truncation interval 

[0, L], L = 28, three sampled values N = 216, 217 and 218 were employed. Thus, the 

integration interval sizes, A - L/N, are set to be 1 1 and 1 Figure 1 shows 256' 512' 1024 
the convergence of the numerical integrals evaluated by fast Fourier transform as A( 
gets finer. In figure 2, a 3D surface plot is given for f(rl, r2) as a function of (rl, r2). 
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0.5 

integration interval size 

-0.5 - -1/256 (dots) . ........ . .......... 

A = LI/N = 1/512 (broken line) 
1/1024 (solid line) 

-1.0 
10 20 30 40 50 60 70 80 90 100 

r2 

Figure 1. Convergence of the numerical integration. 
The parameters were chosen as 01 = 0.25, v = 0.30. 
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Figure 2. A three-dimensional plot of the function f(ri, r2) 
defined in equation (5.15); 31 - 0.25 and v 0.30. 
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(d) Splitting-off the Kelvin solution 

In this subsection we show that if the 2D Kelvin solution is subtracted from ul, 
according to equation (1.3), then the remaining term ug is not bounded at infinity. 
The expression for ug can be derived directly by inverting the Fourier transform of 
(4.11): 

u (x; x') = 42 j j U 1(E( 2)e-i'(x') d l d 2, (5.16) 

where 

1 
Uf (~1, i2) 

P O(A + 1) 

-n -1)(( + 2) + (K + 1)( +02) (_- 
1)(12 

+ (K + 1)( 

(5.17) 

To show that the double Fourier integral (5.17) is unbounded, express U1 as 

Ug (51, (2) 
=2 

P0oo(?12 + lI)32) 12 
2 [2 + /3 0 2(3- K)(0261 - 31 2 )21 

Lo(a + 1) |4 A (I12 + 1/312)A 

and evaluate each integral in the expression. By using formulae (A 1) and (A 5) in 
Appendix A, the first fraction on the right-hand side of equation (5.18) has logarith- 
mic unboundedness at infinity after the double Fourier integral, 

_1 

0 

1e-i- 
d?. 

d 2 = - [Ko(l lrl) + log Irl]. (5.19) 2Ip/o ~I2 

1•i ++)i22 1•12d 
d /- 

The first fraction inside the square brackets on the right-hand side of equation (5.18) 
becomes 

1 
P1 

f 
+e-ie'-(-x')dcld?2 = - 1[log r 1 -2x 

(5.20) 
where we have used formula (A 3). The remaining fractions inside the brackets on 
the right-hand side of equation (5.18) can be shown to have finite double Fourier 
integrals by using residue calculus to evaluate the integral with respect to 1I (see 
S5 b). 

Summarizing all the above, we conclude that ug is not bounded at infinity. As 
indicated in the previous subsections, the key point is to take away a modified Bessel 
function Ko(l~3lrl), instead of the Kelvin solution. 

6. The Green function solution for vi 

The shear term 

1 (x1 - X')(X2 - ) 
v?(X; 

X')- 
2-po0(n 

+ 1) r 12 
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of the 2D Kelvin solution is not singular. It is therefore expected that the Green 
function solution vl for the exponentially graded materials can be written as 

v1 (x; x) = 
e-3"(x+x') [V(X; x') + vg(X; xt'), (6.1) 

where the grading part v9 is a linear combination of single Fourier-type integrals (see 
? 6 b). 

(a) Double Fourier integral 

By inverting the Fourier transform of equation (4.3), and after some algebra, we 
obtain 

e-•.(x+x') 
VXX2) 

-271.2o( 

( + 1) 

x 
[00 [00 i(2 - 

( 
)(/321- 1A2) - (12+ /11/12) ie-i(x-x') d1 

d•2- SJ-00 A 
(6.2) 

If equation (4.11) is chosen to derive the Green function solution, then, after inverting 
the Fourier transform, we obtain 

1 00 00 

vg((; 1') 

27(2 

0( + I) c 
Vi,((?I, 

(2)e-i'-(x-x') 
d(l 

d?2, (6.3) 
2x2 0 -oo o 

where 

vg(l 2) 
12 12 + 

/12 (2 - 
A )((261 

- 
142)) 

1?14 A A 
The difference between the integrands in equations (6.2) and (6.3) yields the Kelvin 
solution v, exactly, i.e. 

1 " " 2 .(_-1' ) d _ d2( 
- XI)(X2 X2) 

2r2/(2 + 
1) 

2o o 

4 
(2po(. + 1) )r 2 

(6.5) 
We have used equation (A 2) in Appendix A for deriving the above double integral 
(Mura 1987, p. 17). It will be shown in the next subsection that the double Fourier 
integral (6.2) is finite. 

(b) Contour integral for vi 

Similarly to the previous contour integral analysis for u1, the double Fourier trans- 
form will be reduced to a single Fourier integral by integrating out the variable &1. 
In this case, the individual integrals that comprise equation (6.2) are 

00e 00 
e-id' 

- (0 (~ +? + 32)2 +, 
d1 

d 

JA 

e2+/2lCOS2(3) 

(- 
626)1 d62 2 2N 1/•315 2 1 

(6.6) 
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0 0 

•j le - 
i•-m x 

(2 +( +2 +•1d22 +) 2 d(d2 
f-00 1 J< 2 

r- 
V 1 2 /n) __ 

Vd ,(1.2 

7ri 
0 

e/-2x 1/2 
sin(• e dz2P) 

= I -- d2(6.7) 

f 

0 

fe 
d2e-id2 1 2 (1 + + /3)R2 + 2 d(d2 

0K f :- - _1 2/•l2 
e 1 2 

x/2Ir 0 

eV•x1Q/2[P Cos(v 2x ) - QSll( 
-ix 2 d2 

2/|S 
-o1 00 

sgn(•2)(? 
2 +/31 (6.8) 

0 0 0 

1l 

2 e6 
i- i 

.m -oo ( + + 02)2 + d d~ 

i 

1F~xe/-Xin( 
x ) 

ex22 
d2. (6.9) l o sgn(62) 

By inspecting each single Fourier integral, one can see that all the integrals are 
non-singular. In these formulae sgn(x) denotes the signum function, 

sgn(x) =1, 
> 

0, 
-1, x<0. 

7. Summary 

We summarize the above discussion by listing each of the components of G which 
are needed for a numerical implementation using the BEM. 

u (x; 2') 

e-c.(X+X') 

47r-Po(K + 1) 

x 
[2Ko((rl)- 

( x1 - x~')2 
- ( - 1 ))2 2Ko|r|)r+ 

|rKl( 
I||r) 

( - 1)/3 + ( + 1)02rlK') 
-- •||llrlKl(|K 

||r|)+2+ 
2r- 
-8K,(|||r|) 

+ 

u2(s) 

vi(x; x') - e *(xx') 
1 

-[x')(2i2 2 + ( -= ( - ) X ,] (7.2) 
27xpo (K + 1) Jr12 

U2 (X; X) = e-( ') 2 + ?; ( - (X , (7.3) 
27po(K + 1) r|2 ; 
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e-v2(; )') 

4•,po(? 
+ 1) 

x 
I2KKo(lP r1) + (X2 

-- 
x2)2 

-- 
(rlK 

- 
x)2 

( + 1)/32 + (n 
- 

1)/3 22Ki 
(•3I) 

? 

v2(x; 
- 

+13lrIKl(3+r() 
+ ) + ns(;') 

(7.4) 
where the non-singular terms uns, v9, u and vns, in the form of a double Fourier 
integral, are listed in Appendix C. For numerical evaluation, those non-singular terms 
can be expressed as the linear combinations of single Fourier-type integrals (see ?? 5 b 
and 6 b). Moreover, it is easy to see that the classical 2D Kelvin solution is recovered 
as 31 --+ 0 and /2 --+ 0. 

8. Concluding remarks 

Using a Fourier transform technique, the Green function for a 2D exponentially 
graded elastic medium has been derived. The Green function can be decomposed 
into a 'modified Bessel function K0(o(l/1r )-) + non-singular terms', which is different 
in form from that found in three dimensions. In three dimensions (Martin et al. 

2002), the singularity in the Green function is confined in the Kelvin solution, 1/|rl, 
and that singularity appears only as Irl -? 0. In the 2D case, the Kelvin solution, 
log r , possesses singularity at both Irl - 0 and Ir -+ oc. 

In the 3D case, the non-singular terms can be obtained as single integrals over 
finite intervals of modified Bessel functions and double integrals over finite regions 
of elementary functions (Martin et al. 2002). Here, the non-singular terms have been 
expressed as single Fourier-type integrals which can be evaluated numerically by fast 
Fourier transform algorithms. It is not clear however that this is the best approach, 
and further work on numerical methods is required. Using the results in this paper 
and those by Martin et al. (2002), a complete set of Green's functions for both 
two and three dimensions is available for boundary-integral solution of problems 
for exponentially graded materials. With the availability of these Green's functions, 
the advantages that are inherent in boundary-integral methods can now be used in 
treating crack propagation, and numerical implementation is currently under way. 

This research was supported by the Applied Mathematical Sciences Research Program of the 
Office of Mathematical, Information and Computational Sciences, US Department of Energy, 
under contract DE-AC05-000R22725 with UT-Battelle, LLC. This research was supported in 

part by an appointment to the Oak Ridge National Laboratory Postdoctoral Research Asso- 
ciates Program administered jointly by the Oak Ridge Institute for Science and Education and 
the Oak Ridge National Laboratory. G.H.P. acknowledges support from NASA-Ames, Engineer- 
ing for Complex Systems Program, and the NASA-Ames Chief Engineer (Dr Tina Panontin) 
through grant NAG 2-1424. He also acknowledges additional support from the National Science 
Foundation (NSF) under grant CMS-0115954 (Mechanics and Materials Program). The authors 
thank Paul Martin and John Berger for their valuable communications and suggestions. 

Proc. R. Soc. Lond. A (2004) 



1704 Y.-S. Chan and others 

Appendix A. Some useful formulae for deriving Green's function 
for a 2D exponentially graded elastic medium 

O r 00O 1 
2x i' dJ1 d2 = -21log Ix, (A 1) - 2 -2 2 7r f 0c) f 00 ? 1 + 2 

1- 20 

( 

0 
l6 ei-d d(2 - x2, (A 2) 

ix J-oo J-oo (7+()|x 

1 1 00 .2 2 
1•- 12 eiE" 

d1 
d2 = - 0log I X 

1 
(A 3) J- oo 

_•-oo (• 
+ )2 •X12 

1 O0 [0 d2 2 
2I - e'-2 i d 

_d2 
-109 

2 
(A4) S I i d= - log • 

2 

• 
J 0 J-0 \1 2 2/ 52 

S- 
2 d j dd 2 

= 
Ko(1,11xl), 

(A 5) 
27 I 12 + 1)31-oo 4 

2 

Sr 00 e-iX d 1 
j2( 

2 d 1 d)2 
- 

= 
- 

,1 ,31(x|), (A 6) 
7 f-o 0 (1 ? 12 32) 

00 00 "2 2 

2-ie." dG dg2 = Ko(l|llzl) - 
|1, 

K (1 (A 7) S 

f 0 (I+2 + 1012)2 1 

01 
Oc 2 2 2 2 -e-'i- dl d?2 = Ko(|,311xl) 

- ,| -2 Kl(1011x), (A 8) 
S oo -oo (12 1122 

Sf 22 -ie 
. 

dl1 d?2 = 2Ko(lllxl) - lI lxIK(I(Il1x), (A9) 7T - 
_ 

(1?2 + 1012 )2 

1 / ~0 ( 21 ? F2 e-i d~ d 2 = 31 21 Ki(Kl(ol| xl). (A 10) 
F-oo -o00 o( 2 32)2 

Formulae (A 1)-(A 4) can be found on p. 17 of Mura (1987); formulae (A 5) and 
(A 6) can be derived from the table, item (20), on p. 24 of Erddlyi (1954)t; formulae 
(A 7) and (A 8) can be obtained by applying differential operators (-02/Ox ) and 
(-02/Ox2 ), respectively, to both sides of formula (A 6). Clearly, equations (A 9) and 
(A 10) are consequence of (A 7) and (A 8). 

Appendix B. Asymptotic expansions of modified Bessel functions 

For convenience in identifying singularities in the Green function, the well-known 
asymptotic behaviour of the modified Bessel functions Ko(x) and K1(x) (at both 
x -+ 0 and x -- oc) is shown below. Note that the modified Bessel functions Ko(x) 
and K1(x) satisfy the identities (Olver 1972) 

d d KI1(() Ko(x) -KIc(x), KI(x) = -Ko(x)- dxc dx x 

t Based, in part, on notes left by Harry Bateman, and compiled by the staff of the Bateman Manu- 
script Project. 
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(i) As x -+ 0, 

Ko(x) - - log x + log 2 - y + (1 + log 2 - - log )x2 + O(4); (B 1) 
1 

K1(x) - - (1 + 2 log 2 - 2y - 2 log x)x x 
1 

(log2 + 5 _ylogX)X3O(x5), (B2) 16 
4- lgxx 

where y (• 
0.577 216) is Euler's constant. 

(ii) As x 
-+ oo, 

2 - 
1 

F 1 1 9 1 1 

2Ko 
(x) e-X+ + O - 0 - (B 3) 2 [x 8X3/2 128x5/2\ (X7/2)I 

(x) 
1 3 1 15 1 ( 1(1 K 

2(x) e-x + O 7 (B 4) 2 8 x3/2 128 x5/2 \X7/2 

Appendix C. Non-singular terms 

In this appendix we list the formulae for the non-singular components of the Green 
function. They are given here as the original double Fourier integrals even though, 
as shown above, they can be reduced to single integrals. The reason for this is that 
it is not clear at this point what is the best way to numerically evaluate these terms. 

lns 

(X; 6') 
= 

-- 

Uns 
1, 

2)e-ig"(m-') d{1 

dg2 

where 

Uns 
(n-1)(12 

+02) + (n+1)( +02 ) (-1)((2 
+ 

l2) 
+ (n+1)(2 + 

/322) S2 1 2 
A (1?12 + )312)2 

vg(X;1 Xe d00d 
vI2(; ' P) 2 

_210(0 
+ 1) 

• 

00 v 
(I, 

?2)e-i-(x-x') 
dil 

d 2, (C 2) 
2x2?>= 0 -m 

where 

lg = 

12 1 2 + 

- 

1 2 (2 - /) ()321 1- !312) A +1 

[4 
?1jJ 

Ui 
) 

2(s; x') =- 
22 

o(K + ) J 
o 

c 
U2g( , 2)e-i'-(x-x') 

dhl 
d?2, (C 3) 

2x2 O m - 

where 

?12 ?1 2 + 01/2 . (2 - K)((26 - 01 2) 
2 4 

vns(-•4 
V( 2)i(x ') d d2, (C4) 

(X;s 
'1) 

- 
FV2ns 

(?1, 
2)eia( I-') d• dE2, 

(C 4) v2 (x00 ')- 0r 
where 

_( 
+ 1 +(1 /321) + (K- 1)( + 02A) (K + 1)(?2 + 

l2) 
+ (K - 1)(? +/32) A ns K1 
+ -1 

V 

2 
A (I l2 + 1012)2 
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