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Consistent Formulations of the
Interaction Integral Method for
Fracture of Functionally Graded
Materials
The interaction integral method provides a unified framework for evaluating fra
parameters (e.g., stress intensity factors and T stress) in functionally graded ma
The method is based on a conservation integral involving auxiliary fields. In fractu
nonhomogeneous materials, the use of auxiliary fields developed for homogeneo
terials results in violation of one of the basic relations of mechanics, i.e., equilib
compatibility or constitutive, which naturally leads to three independent formulat
“nonequilibrium,” “incompatibility,” and “constant-constitutive-tensor.” Each formul
tion leads to a consistent form of the interaction integral in the sense that extra term
added to compensate for the difference in response between homogeneous and n
geneous materials. The extra terms play a key role in ensuring path independenc
interaction integral. This paper presents a critical comparison of the three cons
formulations and addresses their advantages and drawbacks. Such comparison
both from a theoretical point of view and also by means of numerical example
numerical implementation is based on finite elements which account for the spati
dation of material properties at the element level (graded elements).
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1 Introduction
Solid mechanics problems consist of the following three r

tions:

• equilibrium
• compatibility
• constitutive

To determine fracture parameters, e.g., stress intensity fa
sSIFsd and T stress, by means of the interaction integralsM
integral3d method,auxiliary fields such as displacementssuauxd,
strainss«auxd, and stressesssauxd are needed. In fracture of fun
tionally graded materialssFGMsd, the use of the auxiliary field
developed for homogeneous materials results in violation of
of the three relations earlier, which leads to three indepen
formulations ssee Fig. 1d: nonequilibrium, incompatibility, an
constant-constitutive-tensor formulations. Each formulation l
to a different final form of the resultingM integral, and forcon-
sistency, extra terms are added to compensate for the differen
response between homogeneous and nonhomogeneous ma
Table 1 illustrates the auxiliary fields corresponding to each
mulation. Notice that the nonequilibrium formulation satis

1Present address: Department of Civil and Environmental Engineering, The
versity of Connecticut, 261 Glenbrook Road U-2037, Storrs, CT 06269.

2To whom correspondence should be addressed.
3Here, the so-calledM integral should not be confused with theM integral of

Knowles and Sternbergf1g, Budiansky and Ricef2g, and Chang and Chienf3g. Also,
see the book by Kanninen and Popelarf4g for a review of conservation integrals
fracture mechanics.
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compatibility s«aux=ssym¹ duauxd and the constitutive relatio
ssaux=Csxd«auxd, but violates equilibriums¹ ·sauxÞ0 with no
body forcesd. The incompatibility formulation satisfies equil
rium and the constitutive relations, but violates compatibility c
ditions s«auxÞ ssym¹ duauxd. The constant-constitutive-tensor f
mulation satisfies equilibrium and compatibility conditions,
violates the constitutive relationsssaux=Ctip«aux with CtipÞCsxdd.
Conservation integrals based on these three consistent for
tions are the focus of this paper.

This paper is organized as follows. Section 2 comment
related work. Section 3 presents auxiliary fields for SIFs anT
stress. Section 4 provides three consistent formulations usin
interaction integral approach. Sections 5 and 6 establish the
tionships betweenM and SIFs andT stress, respectively. Section
provides comparison and critical assessment of the three c
tent formulations. Sections 8 presents some numerical aspec
evant to the formulations. Section 9 presents two examples, w
test different aspects of the formulations. Finally, Sec. 10
cludes this work.

2 Related Work
The interaction integral method is an accurate and ro

scheme for evaluating mixed-mode SIFs andT stress. The metho
is formulated on the basis of conservation laws, which lead t
establishment of a conservation integral for two admissible s
of an elastic solid:actual and auxiliary. Yau et al.f5g presente
the interaction integral method for evaluating SIFs in hom
neous isotropic materials. Wang et al.f6g extended the method
homogeneous orthotropic materials, and Yauf7g used the metho
for bimaterial interface problems.

Recently, the interaction integral method has been explor
the field of fracture of FGMs. It has been extended for evalua
SIFs f8–11g in isotropic FGMs. Dolbow and Goszf8g employed
the extended finite element methodsX-FEMd; Rao and Rahma
f9g used the element-free Galerkin method; and Kim and Pa

ni-

r.
M.
-
A
e

f10,11g used the finite element methodsFEMd. In addition, the
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method has been employed to evaluateT stress in isotropicf11g
and orthotropicf12g FGMs. In the aforementioned papers,
interaction integral method has been investigated by mea
either an incompatibility formulation f8–12g or a constant
constitutive-tensor formulationf9g. Thus, for completeness a
unification of concepts, this work introduces anonequilibrium for-
mulation for evaluating SIFs andT stress in isotropic and orth
tropic FGMs. These three basic formulationsssee Sec. 1d will be
addressed in this investigation, which includes a critical as
ment and comparison of the formulations.

The FEM has been widely used for fracture of FGMs. Eisc
f13g evaluated mixed-mode SIFs by means of the p
independentJk

* integral. Gu et al.f14g evaluated SIFs using th
standardJ integral. Anlas et al.f15g calculated SIFs by using th
path-independentJ1

* integral. Marur and Tippurf16g investigated
crack normal to the material gradient using the FEM in conj
tion with experiments. Bao and Caif17g studied delaminatio
cracking in a graded ceramic/metal substrate under mech
and thermal loads. Bao and Wangf18g investigated periodi
cracking in graded ceramic/metal coatings under mechanica
thermal loads. Kim and Paulinof19g evaluated mixed-mode SI
by means of the path-independentJk

* integral, the modified crac
closure sMCCd, and the displacement correlation techniq
Moreover, Kim and Paulino investigated mixed-mode SIFs
cracks arbitrarily oriented in orthotropic FGMs using the M
methodf20g and the path-independentJk

* integralf21g. The nons
ingular stresssT stressd of the Williams’s eigenfunction expansi
f22g has also been computed by means of the FEM. Becker
f23g studied T stress and finite crack kinking in FGMs. Th
calculatedT stress using the difference of the normal stre
along u=0, i.e., ssxx−syyd. Recently, Kim and Paulinof11g pro-
posed a unified approach using the interaction integral meth
evaluateT stress and SIFs in FGMs, and also investigated
effect of T stress on crack initiation angles.

Fig. 1 Motivation for development of alternative consistent
formulations. Notice that C„x…ÅCtip for xÅ0. The area A de-
notes a representative region around the crack tip.

Table 1 Comparison of alternative formulations

Nonequilibrium
formulation

Incompatibility
formulation

Constant-constitutive-tens
formulation

uaux uaux uaux

«aux saux «aux

saux=Csxd«aux «aux=Ssxdsaux saux=Ctip«aux

= ·sauxÞ0 «auxÞ ssym=duaux CsxdÞCtip
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Other methods have also been used to investigate fractu
FGMs ssee the papers by Erdoganf24g, Nodaf25g, and Paulino e
al. f26gd. Analytical or semi-analytical approaches have been
by Delale and Erdoganf27g, Erdoganf24g, Erdogan and Wuf28g,
and Chan et al.f29g. Delale and Erdoganf30g investigated a crac
in a FGM layer between two dissimilar homogeneous half-pla
Gu and Asarof31g studied a semi-infinite crack in a FGM str
Shbeeb et al.f32,33g studied multiple cracks interacting in
infinite nonhomogeneous plate. Honein and Herrmannf34g stud-
ied conservation laws in nonhomogeneous plane elastostatic
investigated a semi-infinite crack by using the path-independeJe
integral. Gu and Asarof31g studied orthotropic FGMs consideri
a four-point bending specimen. Ozturk and Erdoganf35,36g used
integral equations to investigate mode I and mixed-mode c
problems in an infinite nonhomogeneous orthotropic medium
a crack aligned with one of the principal material directions.
to its generality, the FEM is the method of choice in this wor

3 Auxiliary Fields
The interaction integral makes use of auxiliary fields, suc

displacementssuauxd, strains s«auxd, and stressesssauxd. These
auxiliary fields have to be suitably defined in order to eval
mixed-mode SIFs andT stress. There are various choices for
auxiliary fields. Here we adopt fields originally developed for
mogeneous materials. For each formulations nonequilibrium, in
compatibility, constant-constitutive tensord, the selection of auxi
iary fields is done according to Table 1. The auxiliary fie
adopted in this paper are described later.

3.1 Fields for SIFs.For evaluating mixed-mode SIFs, we
lect the auxiliary displacement, strain, and stress fields a
crack-tip asymptotic fieldssi.e., Osr1/2d for the displacements a
Osr−1/2d for the strains and stressesd with the material propertie
sampled at the crack-tip locationse.g., Ref.f13gd: Figure 2 show
a crack in a FGM under two-dimensional fields in local Carte
and polar coordinates originating at the crack tip. The auxi
displacement, strain, and stress fields are chosen asf22,37g:

uaux= KI
auxf Isr1/2,u,atipd + KII

auxf IIsr1/2,u,atipd s1d

aux aux

Fig. 2 Cartesian „x1,x2… and polar „r ,u… coordinates originat-
ing from the crack tip in a nonhomogeneous material subjected
to traction „t… and displacement boundary conditions
« = ssym¹ du , s2d

Transactions of the ASME

nse or copyright; see http://www.asme.org/terms/Terms_Use.cfm



s,
pli-

in

in

he
e t
ite
Th

en

e
tiv
-

ter

of

ar

-

y

d in

-

Downlo
saux= KI
auxgIsr−1/2,u,atipd + KII

auxgIIsr−1/2,u,atipd s3d

whereKI
aux andKII

aux are the auxiliary mode I and mode II SIF
respectively, andatip denotes contracted notation of the com
ance tensorS evaluated at the crack tip, which is explained
Appendix A. The representative functionsfsr1/2,u ,atipd and
gsr−1/2,u ,atipd are given in Appendix B and can also be found
other references, e.g., Refs.f37,38g.

3.2 Fields forT stress.For evaluatingT stress, we choose t
auxiliary displacement, strain, and stress fields as those du
point force in thex1 direction, applied to the tip of a semi-infin
crack in an infinite homogeneous body as shown in Fig. 3.
auxiliary displacements, strains, and stresses are chos
f39–41g:

uaux= tusln r,u, f,atipd s4d

«aux= ssym¹ duaux s5d

saux= tssr−1,u, f,atipd s6d

wheref is the point force applied to the crack tip, andatip denotes
contracted notation of the compliance tensorS evaluated at th
crack tip, which is defined in Appendix A. The representa
functionstusln r ,u , f ,atipd andtssr−1,u , f ,atipd are given in Appen
dix C and can be found in other references, e.g., Refs.f39,41g.

For orthotropic materials, the auxiliary fields may be de
mined by either the Lekhnitskii or Stroh formalismf12g. There is
no difficulty in determining the auxiliary fields in the case
isotropic materialsf11g.

4 M-integral formulations
The standardJ integral f42g is given by

J = lim
Gs→0

E
Gs

sWd1j − si jui,1dnjdG s7d

whereW is the strain energy density expressed by

W = 1
2si j«i j = 1

2Cijkl«kl«i j s8d

andnj is the outward normal vector to the contourGs, as shown in
Fig. 4. The portion ofG with applied displacements is denotedGu,
and the portion ofG with applied traction is denotedGt. Moreover
G=Gu+Gt. Using a plateau-type weight function varying fromq
=1 onGs to q=0 onG0 f10g and assuming that the crack faces

Fig. 3 A point force applied at the crack tip in the direction
parallel to the crack surface
traction-free, Eq.s7d becomes
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J = lim
Gs→0

R
G

ssi jui,1 − Wd1jdmjqdG s9d

Applying the divergence theorem to Eq.s9d, the equivalent do
main integralsEDId is obtained as

J =E
A

ssi jui,1 − Wd1jdq,jdA+E
A

ssi jui,1 − Wd1jd,jqdA s10d

The J integral of the superimposed fieldssactual and auxiliar
fieldsd is obtained as

Js =E
A

hssi j + si j
auxdsui,1 + ui,1

auxd − 1
2ssik + sik

auxds«ik + «ik
auxdd1jjq,jdA

+E
A

hssi j + si j
auxdsui,1 + ui,1

auxd − 1
2ssik + sik

auxds«ik + «ik
auxd

3sd1jdj,jqdA s11d

which is conveniently decomposed into

Js = J + Jaux+ M s12d

whereJaux is given by

Jaux=E
A

ssi j
auxui,1

aux− Wauxd1jdq,jdA+E
A

hsi j
auxui,1

aux

− 1
2sik

aux«ik
auxd1jj,jqdA

and the resulting interaction integralsMd is given by

M =E
A

hsi jui,1
aux+ si j

auxui,1 − 1
2ssik«ik

aux+ sik
aux«ikdd1jjq,jdA

+E
A

hsi jui,1
aux+ si j

auxui,1 − 1
2ssik«ik

aux+ sik
aux«ikdd1jj,jqdA

s13d

This general form ofM integral becomes a specific form ofM
integral for each of the three formulations, which is explaine
the next section.

4.1 Nonequilibrium Formulation. The name of the formula
tion is based on the fact that the auxiliary stress field

si j
aux= Cijklsxd«kl

aux s14d

Fig. 4 Conversion of the contour integral into an EDI where
G=G0+G+−Gs +G−,mj =nj on G0 and mj =−nj on Gs
does not satisfy equilibrium because it differs from

MAY 2005, Vol. 72 / 353
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si j
aux= sCijkldtip«kl

aux, s15d

where Cijklsxd is the constitutive tensor of the actual FGM a
sCijkldtip is the constitutive tensor at the crack tipssee Fig. 1d. The
derivatives of the auxiliary stress field are

si j ,j
aux= Cijkl ,jsxd«kl

aux+ Cijklsxd«kl,j
aux= sCijkldtip«kl,j

aux+ Cijkl ,jsxd«kl
aux

+ fCijklsxd − sCijkldtipg«kl,j
aux, s16d

where the underlined term in Eq.s16d vanishes. Thus this arg
ment confirms that the auxiliary stress field selected in this
mulationsEq. s14dd does not satisfy equilibrium, i.e.,si j ,j

auxÞ0 sno
body forces or inertiad. This choice of the auxiliary fields has be
discussed by Dolbow and Goszf8g, but a nonequilibrium formu
lation was not provided in their paper. The nonequilibrium in
stress field has to be taken into account in the interaction int
formulation, which is discussed in detail later.

Using the following equality:

si j«i j
aux= Cijklsxd«kl«i j

aux= skl
aux«kl = si j

aux«i j s17d
one rewrites Eq.s13d as

M =E
A

hsi jui,1
aux+ si j

auxui,1 − sik«ik
auxd1jjq,jdA+E

A

hsi jui,1
aux

+ si j
auxui,1 − sik«ik

auxd1jj,jqdA= M1 + M2 s18d

The last term of the second integralsM2d in Eq. s18d is expresse
as

ssik«ik
auxd1jd,j = ssik«ik

auxd,1 = ssi j«i j
auxd,1 = sCijkl«kl«i j

auxd,1

= Cijkl ,1«kl«i j
aux+ Cijkl«kl,1«i j

aux+ Cijkl«kl«i j ,1
aux

= Cijkl ,1«kl«i j
aux+ si j

aux«i j ,1 + si j«i j ,1
aux s19d

Substitution of Eq.s19d into Eq. s18d leads to

M2 =E
A

ssi j ,jui,1
aux+ si jui,1j

aux+ si j ,j
auxui,1 + si j

auxui,1jdqdA

−E
A

sCijkl ,1«kl«i j
aux+ si j

aux«i j ,1 + si j«i j ,1
auxdqdA s20d

Using compatibility sactual and auxiliaryd and equilibriumsac-
tuald si.e., si j ,j =0 with no body forced, one simplifies Eq.s20d as

M2 =E
A

hsi j ,j
auxui,1 − Cijkl ,1«kl«i j

auxjqdA s21d

Therefore the resulting interaction integralsMd becomes

M =E
A

hsi jui,1
aux+ si j

auxui,1 − sik«ik
auxd1jjq,jdA+E

A

hsi j ,j
auxui,1

− Cijkl ,1«kl«i j
auxjqdA s22d

where the underlined term is a nonequilibrium term, which
pears due to nonequilibrium of the auxiliary stress fields.
existence of the final form ofM integral for FGMs in Eq.s22d has
been proved by Kimf43g and Paulino and Kimf44g.

4.2 Incompatibilty Formulation. The incompatibility formu
lation satisfies equilibriumssi j ,j

aux=0 with no body forcesd and the
constitutive relationships«i j

aux=Sijklsxdskl
auxd, but violates compat

blity conditionss«i j
auxÞ sui,j

aux+uj ,i
auxd /2d. Thus Eq.s20d is also valid

for this formulation. Using equilibriumsactual and auxiliaryd and
compatibility sactuald, one simplifiesM2 as

M2 =E
A

hsi jsui,1j
aux− «i j ,1

auxd − Cijkl ,1«kl«i j
auxjqdA
Therefore the resulting interaction integralsMd becomes

354 / Vol. 72, MAY 2005
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M =E
A

hsi jui,1
aux+ si j

auxui,1 − sik«ik
auxd1jjq,jdA+E

A

hsi jsui,1j
aux− «i j ,1

auxd

− Cijkl ,1«kl«i j
auxjqdA s23d

where the underlined term is an incompatibility term, which
pears due to incompatibility of the auxiliary strain fields. T
existence of the final form ofM integral for FGMs in Eq.s23d has
been proved by Kimf43g.

4.3 Constant-Constitutive-Tensor Formulation. The con
stant-constitutive-tensor formulation satisfies equilibriumssi j ,j

aux

=0 with no body forcesd and compatiblity conditionss«i j
aux

=sui,j
aux+uj ,i

auxd /2d, but violates the constitutive relationshipssi j
aux

=sCijkldtip«kl
aux with sCijkldtipÞCijklsxdd. Notice that si j«i j

aux

Þsi j
aux«i j due to the violated constitutive relationship. Thus

s13d becomes

M =E
A

hsi jui,1
aux+ si j

auxui,1 − 1
2ssik«ik

aux+ sik
aux«ikdd1jjq,jdA

+E
A

hsi j ,jui,1
aux+ si jui,1j

aux+ si j ,j
auxui,1 + si j

auxui,1j − 1
2ssi j ,1«i j

aux

+ si j«i j ,1
aux+ si j ,1

aux«i j + si j
aux«i j ,1djqdA s24d

Using equilibrium and compatibility conditions for both act
and auxiliary fields, one obtainsM as

M =E
A

hsi jui,1
aux+ si j

auxui,1 − 1
2ssik«ik

aux+ sik
aux«ikdd1jjq,jdA

+E
A

1
2hsi j«i j ,1

aux− si j ,1«i j
aux+ si j

aux«i j ,1 − si j ,1
aux«i jjqdA s25d

Notice that the resultingM involves derivatives of the actu
strain and stress fields, which arises due to the material mism
and may cause loss of accuracy from a numerical point of v
The existence of the final form ofM integral for FGMs in Eq.s25d
has been proved by Kimf43g.

5 Extraction of Stress Intensity Factors
For mixed-mode crack problems on orthotropic materials

energy release ratesGI andGII are related to mixed-mode SIFs
follows f37g:

GI = −
KI

2
a22

tip ImFKIsm1
tip + m2

tipd + KII

m1
tipm2

tip G s26d

GII =
KII

2
a11

tip ImfKIIsm1
tip + m2

tipd + KIsm1
tipm2

tipdg s27d

where Im denotes the imaginary part of the complex func
Thus

Jlocal = G = GI + GII = c11KI
2 + c12KIKII + c22KII

2 s28d

where

c11 = −
a22

tip

2
ImSm1

tip + m2
tip

m1
tipm2

tip D
c12 = −

a22
tip

2
ImS 1

m1
tipm2

tipD +
a11

tip

2
Imsm1

tipm2
tipd

c22 =
a11

tip

2
Imsm1

tip + m2
tipd s29d

For two admissible fields, which are the actualsu ,« ,sd and aux
aux aux aux
iliary su ,« ,s d fields, one obtainsf6g:
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Jlocal
s = c11sKI + KI

auxd2 + c12sKI + KI
auxdsKII + KII

auxd + c22sKII

+ KII
auxd2 = Jlocal + Jlocal

aux + M local s30d

whereJlocal is given by Eq.s28d, Jlocal
aux is given by

Jlocal
aux = c11sKI

auxd2 + c12KI
auxKII

aux+ c22sKII
auxd2 s31d

andM local is given by

M local = 2c11KIKI
aux+ c12sKIKII

aux+ KI
auxKIId + 2c22KIIKII

aux

s32d

The mode I and mode II SIFs are evaluated by solving the
lowing linear algebraic equations:

M local
s1d = 2c11KI + c12KII, sKI

aux= 1.0,KII
aux= 0.0d s33d

M local
s2d = c12KI + 2c22KII, sKI

aux= 0.0,KII
aux= 1.0d s34d

where the superscript inM local
sid si =1,2d is used just to indicate th

the values are distinct in each case. For isotropic materials
off-diagonal terms ofcij drop, and Eqs.s33d and s34d become

M local
s1d =

2

Etip
* KI sKI

aux= 1.0,KII
aux= 0.0d s35d

M local
s2d =

2

Etip
* KII, sKI

aux= 0.0,KII
aux= 1.0d s36d

respectively, whereEtip
* =Etip for plane stress andEtip

* =Etip / s1
−ntip

2 d for plane strain. The relationships of Eqs.s33d ands34d, and
Eqs.s35d ands36d are the same as those for homogeneous o
tropic f6g and isotropicf5g materials, respectively, except that,
FGMs, the material properties are evaluated at the crack-tip
tion. Notice that, for the orthotropic case, there is no need
Newton’s iteration, which is needed with other approaches su
the path-independentJk integral f21g and the MCC integralf20g.
Here the SIFs for mode I and mode II are naturally decoupledscf.
Eqs.s33d and s34dd.

6 Extraction of T Stress
T stress can be extracted from the interaction integral by n

fying the contributions of both singularsi.e., Osr−1/2dd and higher
order si.e., Osr1/2d and higherd terms. The derivation is explain
in detail by Kim and Paulinof11,12g and Paulino and Kimf44g.
From the earlier derivation of Eq.s13d, theM integral in the form
of line integral is obtained as

M local = lim
Gs→0

E
Gs

hsik«ik
auxd1j − si jui,1

aux− si j
auxui,1jnjdG s37d

Here we can consider only the stress parallel to the crack d
tion, i.e.:

si j = Td1id1j s38d

Substituting Eq.s38d into Eq. s37d, one obtains

M local = − lim
Gs→0

E
Gs

si j
auxnjui,1dG = Ta11

tip lim
Gs→0

E
Gs

si j
auxnjdG

s39d

Because the forcef is in equilibrium ssee Fig. 3d:

f = − lim
Gs→0

E
Gs

si j
auxnjdG s40d
and thus the following relationship is obtained:
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T =
M local

fa11
tip s41d

where a11
tip is a material parameter at the crack tip location

plane stress, and is replaced byb11
tip for plane strainscf. Eq. s65dd.

For isotropic materials, Eq.s41d becomes

T =
Etip

*

f
M local s42d

whereEtip
* =Etip for plane stress andEtip

* =Etip / s1−ntip
2 d for plane

strain.

7 Comparison and Critical Assessment
The three formulations presented earlier areconsistentin the

sense that extra terms are added to account for the differen
response between homogeneous and nonhomogeneous ma
However, each formulation has an independent final formssee
Eqs.s22d, s23d, ands25dd due to the different characteristics of
auxiliary fields. The final form of theM integral for each of thes
formulations is compared and assessed from a theoretical po
view later.

The nonequilibrium formulation results in the simplest finaM
integral thus requiring the least computation and implement
effort among the three formulations. This is observed by com
ing Eqs.s22d, s23d, and s25d. Moreover, the nonequilibrium fo
mulation is equivalent to the incompatibility formulation, beca
both formulations involve the same constitutive relations and
responding material derivatives. This equivalence is observ
the numerical examples of Sec. 9. However, the cons
constitutive-tensor formulationf9g requires the derivatives of t
actual stress field, which may introduce accuracy problems
standardC0 elements commonly used in the displacement-b
FEM.

In order to further compare the three consistent formulat
let’s consider an exponentially graded material in which Poiss
ratio is constant and Young’s modulus varies in any directionssee
Fig. 5d:

Esx1d = E0 expsdx1d = E0 expsb1X1 + b2X2d s43d

n = constant s44d

whereX=sX1,X2d refers to a global coordinate system,x1 is the
direction of material gradationsinclined byum with respect to th
X1 coordinated, and the nonhomogeneity parametersd, b1, andb2

Fig. 5 Crack geometry in a nonhomogeneous material, which
is graded along the x1 direction
are related by
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b1 = d cosum, b2 = d sinum s45d

This selection of material property leads to simplification of
resultingM integrals and allows one to better assess and com
the characteristics of the formulations. Moreover, exponen
graded materials have been extensively investigated in the te
cal literature, e.g., Refs.f8,15,19,21,24,27–36,45–48g. The result
ing M integrals corresponding to the three formulations are
rived later in the global coordinate system, which is used in
numerical implementationssee Sec. 8 laterd.

7.1 Nonequilibrium Formulation. The derivatives of inter
est, with respect to the global coordinate system, aresm=1,2d

si j ,j
aux= Cijkl ,jsXd«kl

aux+ CijklsXd«kl,j
aux= b jCijklsXd«kl

aux+ CijklsXd«kl,j
aux

= b jCijklsXd«kl
aux+ apsCijkldtip«kl,j

aux= b jsi j
aux s46d

Cijkl ,m = bmCijklsXd s47d

whereap=expsb1X1+b2X2d is a factor that arises due to the p
portionality of Cijkl for the material gradation considered. T
global interaction integralsMmdglobal sm=1,2d is given by

sMmdglobal=E
A

hsi jui,m
aux+ si j

auxui,m − sik«ik
auxd1jj

]q

]Xj
dA

+E
A

hsi j ,j
auxui,m − Cijkl ,m«kl«i j

auxjqdA s48d

Substitution of Eqs.s46d and s47d into Eq. s48d yields sm=1,2d:

sMmdglobal=E
A

hsi jui,m
aux+ si j

auxui,m − sik«ik
auxdmjj

]q

]Xj
dA

+E
A

hb jsi j
auxui,m − bmsi j«i j

auxjqdA s49d

Notice that, for this particular case, a simpler expression than
for the general case is obtainedscf. Eq. s22dd. The derivatives o
material properties are represented by the material nonhomo
ity b in Eq. s49d. Moreover, the contribution of the nonequil
rium term to theM integral is related to the value ofb.

7.2 Incompatibility Formulation. The derivatives of inter
est, with respect to the global coordinate system, aresm=1,2d:

«i j ,m
aux = Sijkl ,msXdskl

aux+ SijklsXdskl,m
aux = − bmSijklsXdskl

aux

+ SijklsXdskl,m
aux = − bm«i j

aux+ SijklsXdskl,m
aux s50d

together with Eq.s47d. The global interaction integralsMmdglobal
sm=1,2d is given by

sMmdglobal=E
A

hsi jui,m
aux+ si j

auxui,m − sik«ik
auxdmjj

]q

]Xj
dA

+E
A

hsi jsui,mj
aux − «i j ,m

auxd − Cijkl ,m«kl«i j
auxjqdA s51d

Substitution of Eqs.s50d and s47d into Eq. s51d yields sm=1,2d:

sMmdglobal=E
A

hsi jui,m
aux+ si j

auxui,m − sik«ik
auxdmjj

]q

]Xj
dA

+E
A

hsi jui,mj
aux − si j ,m

aux«i jjqdA s52d

Notice that, for this particular case, the finalM integral does no
involve any derivatives of material propertiesscf. Eq. s23dd. In

this formulation, the first integral of Eq.s52d is the same as that
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for the nonequilibrium formulation, because both formulations
the same constitutive tensorCsXd.

7.3 Constant-Constitutive-Tensor Formulation. The de
rivatives of interest, with respect to the global coordinate sys
are sm=1,2d:

si j ,m = Cijkl ,msXd«kl + CijklsXd«kl,m = bmCijklsXd«kl + CijklsXd«kl,m

= bmsi j + CijklsXd«kl,m s53d

si j ,m
aux = sCijkldtip«kl,m

aux s54d

The global interaction integralsMmdglobal sm=1,2d is given by

M =E
A

Hsi jui,m
aux+ si j

auxui,m −
1

2
ssik«ik

aux+ sik
aux«ikddmjJ ]q

]Xj
dA

+E
A

1

2
hsi j«i j ,m

aux − si j ,m«i j
aux+ si j

aux«i j ,m − si j ,m
aux«i jjqdA s55d

Substitution of Eqs.s53d and s54d into Eq. s55d yields sm=1,2d:

M =E
A

Hsi jui,m
aux+ si j

auxui,m −
1

2
ssik«ik

aux+ sik
aux«ikddmjJ ]q

]Xj
dA

+E
A

1

2
hsi j«i j ,m

aux − bmsi j«i j
aux− Cijkl«kl,m«i j

aux+ si j
aux«i j ,m

− sCijkldtip«kl,m
aux «i jjqdA s56d

whereCijkl ;CijklsXd. Notice that, for this case, the finalM inte-
gral requires the derivatives of the actual strain field, which
have numerical accuracy problems. The derivatives of ma
properties are represented by the material nonhomogeneityb in
Eq. s56d. Moreover, the first integral of Eq.s56d is different from
those for the other two formulations.

8 Some Numerical Aspects
For numerical computation by means of the FEM, theM inte-

gral is evaluated first in global coordinatesssMmdglobald and then
transformed to local coordinatessM locald. The M integrals
sMmdglobal for the three consistent formulations have derivative
material properties in common. In this paper, we do not
closed-form expressions for derivatives of material propertie
cause these expressions would be specific to each specific
tion or micromechanics model. Thus, for the sake of gener
we determine such derivatives by using shape function deriva
of finite elementsf19,45g.

The derivatives involving material derivatives for each for
lation are

•nonequilibrium:si j ,j
aux= Cijkl ,j«kl

aux+ Cijkl«kl,j
aux s57d

•incompatibility: «i j ,m
aux = Sijkl ,mskl

aux+ Sijklskl,m
aux s58d

•constant-constitutive-tensor:si j ,m = Cijkl ,m«kl + Cijkl«kl,m

s59d

A simple and general approach to evaluate such derivatives
sists of using shape function derivativesf11g. Thus the derivative
of a generic quantityP se.g.,Cijkl , Sijkl , or «i j d are obtained as

]P

]Xm
= o

i=1

n
]Ni

]Xm
Pi, sm= 1,2d s60d

wheren is the number of element nodes andNi =Nisj ,hd are the
element shape functions which can be found in many refere

e.g., Ref.f49g. The derivatives]Ni /]Xm are obtained as
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H]Ni/]X1

]Ni/]X2
J = J−1H ]Ni/]j

]Ni/]h
J s61d

whereJ−1 is the inverse of the standard Jacobian matrix rela
sX1,X2d with sj ,hd f49g.

9 Numerical Examples
The performance of the interaction integral for evaluating S

and T stress in isotropic and orthotropic FGMs is examined
means of numerical examples. This paper employs the thre
mulations, such as nonequilibrium, incompatibility, and cons
constitutive tensor, for numerical investigation. The following
amples are presented

s1d Inclined center crack in a plate
s2d Strip with an edge crack

All the examples are analyzed using the FEM codeI-FRANC2D
4.

sIllinois; FRacture ANalysis Code2Dd, which is based on the co

4

Fig. 6 Example 1: FGM plate with an inclined
and boundary conditions „BCs … under fixed-gr
contours for EDI computation of M integral; „

rings „R4… around the crack tips „ū=18° coun
The FEM codeI-FRANC2D was formerly calledFGM-FRANC2D f19g.

Journal of Applied Mechanics
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FRANC2D f50,51g developed at Cornell University. TheI-FRANC2D

element library for FGMs consists ofgraded elementsf19,46,45g,
which incorporate the material gradient at the size scale o
element. The specific graded elements used here are based
generalized isoparametric formulationpresented by Kim an
Paulinof19g, who have also compared the performance of t
elements with that of conventional homogeneous elements w
produce a step-wise constant approximation to a continuou
terial property fieldf45g.

All the geometry is discretized with isoparametric graded
mentsf19g. The specific elements used consist of singular qua
point six-node trianglessT6qpd for crack-tip discretization, eigh
node serendipity elementssQ8d for a circular region around crac
tip elements, and regular six-node trianglessT6d in a transition
zone toQ8 elementsssee, for example, Fig. 6, for a typical cra
tip region discretizationd.

All the examples consist of SIFs andT stress results for bo
isotropic and orthotropic FGMs, and those results are obtain
the interaction integral in conjunction with the FEM. In orde
validate SIFs andT stress solutions, the FEM results for the fi

ck with geometric angle ū: „a… geometry
oading; „b… typical finite element mesh; „c…
mesh detail using 12 sectors „S12… and four
-clockwise …
cra
ip l
d…
ter
examplesan inclined center crack in an exponentially graded plate
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subjected to fixed-grip loadingd are compared with available sem
analytical and numerical solutions. The second example inv
hyperbolic-tangent functions for material properties and inv
gates the effect of translation of these properties with respe
the crack-tip location.

9.1 Inclined Center Crack in a Plate.Figure 6sad shows an
inclined center crack of length 2a located with a geometric ang

u scounter-clockwised in a plate subjected to fixed-grip loadin
Fig. 6sbd shows the complete mesh configuration; Fig. 6scd shows
five contours used for EDI computation of theM integral; and Fig
6sdd shows the mesh detail using 12 sectorssS12d and four rings
sR4d of elements around the crack tips. The displacement bo
ary condition is prescribed such thatu2=0 along the lower edg
and u1=0 for the node at the lower left-hand side. The m
discretization consists of 1641Q8, 94 T6, and 24T6qpelements
with a total of 1759 elements and 5336 nodes. The fixed
loading results in a uniform strain«22sX1,X2d= «̄ in a correspond
ing uncracked structure, which corresponds tos22sX1,10d
= «̄E0ebX1 for isotropic FGMs ands22sX1,10d= «̄E22

0 ebX1 for
orthotropic FGMs ssee Fig. 6sadd. Young’s moduli and shea
modulus are exponential functions ofX1, while Poisson’s ratio i
constant. The following data were used in the FEM analyses

plane stress, 23 2 Gauss quadrature

dimensionless nonhomogeneity parameter:ba = 0.5

a/W= 0.1, L/W= 1.0, ū = 0 ° to 90 ° , «̄ = 1

Isotropic case

EsX1d = E0ebX1, nsX1d = n

E0 = 1.0, n = 0.3

Table 2 Example 1: comparison of normalized
=0.5 „K0= «̄E0Îpa… „see Fig. 6 …. Contour 5 s
constitutive-tensor formulation. The results for the
lations are almost identical and thus the results
here.

Method ū KI
+/K0

Konda and
Erdoganf47g

0° 1.424
18° 1.285
36° 0.925
54° 0.490
72° 0.146
90° 0.000

Nonequilibrium 0° 1.423
18° 1.283
36° 0.922
54° 0.488
72° 0.145
90° 0.000

Constant-
constitutive tensor

0° 1.426
18° 1.280
36° 0.922
54° 0.486
72° 0.143
90° 0.000

Dolbow
and Goszf8g

sX-FEMd

0° 1.445
18° 1.303
36° 0.930
54° 0.488
72° 0.142
90° 0.000
Orthotropic case
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E11sX1d = E11
0 ebX1, E22sX1d = E22

0 ebX1,

G12sX1d = G12
0 ebX1, n12sX1d = n12

0

E11
0 = 104, E22

0 = 103, G12
0 = 1216, n12

0 = 0.3

Table 2 compares the present FEM results for normalized
obtained by the nonequilibrium and constant-constitutive-te
formulations of theM integral with semi-analytical solutions pr
vided by Konda and Erdoganf47g and the extended FEM resu
by Dolbow and Goszf8g for various geometric angles of a cra
in isotropic FGMs. The difference in the result for SIFs betw
nonequilibrium and incompatibility formulations is found to be
the orderOs10−4d in this example, and thus the results are
provided. The converged results obtained by the nonequilib
formulation are in good agreement with those by Konda and
doganf47g smaximum difference 1.3%, average difference 0.6d,
those by Dolbow and Goszf8g, and those obtained by t
constant-constitutive-tensor formulation. For the nonequilib
and incompatibility formulations, a domain including almost
of the square plate is used, and converged solutions are obt
However, for the constant-constitutive-tensor formulation, con
5 as shown in Fig. 6scd is used. We observe that the accuracy
the constant-constitutive-tensor formulation are reasonabl
small size of contours such as contours 1–5, but as the co
becomes large than contour 5, the solution does not converg
accuracy deteriorates. As explained in the theoretical discu
the constant-constitutive-tensor formulation may have nume
problems in the accuracy of derivatives of actual strain or s
fields. To reduce domain dependence, mesh discretization ov
plate shown in Fig. 6sbd needs to be improved.

Figure 7 showsJ=sKI
2+KII

2d /Etip value calculated by the inte

action integral for the right crack tip of an inclined crack witū
=18 deg using five contours for EDI computations as show
Fig. 6scd. The nonequilibrium formulation is used both consid
ing and neglecting the nonequilibrium termssee Eq.s22dd, and the

ixed-mode SIFs in isotropic FGMs for ba
wn in Fig. 6 „c… is used for the constant-
onequilibrium and incompatibility formu-

the latter formulation are not reported

KII
+ /K0 KI

−/K0 KII
− /K0

0.000 0.674 0.000
0.344 0.617 0.213
0.548 0.460 0.365
0.532 0.247 0.397
0.314 0.059 0.269
0.000 0.000 0.000

0.0000 0.6657 0.0000
0.3454 0.6104 0.2112
0.5502 0.4559 0.3625
0.5338 0.2451 0.3943
0.3147 0.0587 0.2670
0.0000 0.0000 0.0000

0.0000 0.6629 0.0000
0.3452 0.6081 0.2101
0.5512 0.4546 0.3607
0.5348 0.2460 0.3931
0.3144 0.0596 0.2670
0.0000 0.0000 0.0000

0.000 0.681 0.000
0.353 0.623 0.213
0.560 0.467 0.364
0.540 0.251 0.396
0.316 0.062 0.268
0.000 0.000 0.000
m
ho
n

from

4
5
4
0
1
0

2
7
4
2
9
0

incompatibility formulation is used both considering and neglect-
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ing the incompatible termssee Eq.s23dd. The solutions obtaine
by considering the nonequilibrium term for the nonequilibr
formulation, and the incompatibility term for the incompatibi
formulation are not distinguishable in a graphical form. No
that the converged solution is obtained when including eithe
nonequilibrium or the incompatibility term, however, such beh
ior is generally not observed when neglecting either term.

Table 3 compares the present FEM results for normalized
in orthotropic FGMs obtained by the nonequilibrium formulat
of the M integral with those obtained by the incompatibility f
mulation for various geometric angles of a crack in orthotr
FGMs. Notice that the two formulations provide similar FE
results for SIFs for each geometric angle. Comparison of Tab
and 3 indicates that the material orthotropy shows significan
fect on SIFs, and the SIFsKI

+ sright crack tipd andKII
− sleft crack

tipd for the orthotropic case are greater than or equal to thos
the isotropic case, however, the SIFsKII

+ andKI
− for the orthotro

pic case are smaller than or equal to those that for the isot
case.

Table 4 compares the present FEM results for normalizT
stress in isotropic FGMs obtained by the nonequilibrium for
lation of theM-integral with those reported by Paulino and Do
f48g who used the singular integral equation method. Table 5
pares the present FEM results for normalizedT stress obtained b
the nonequilibrium formulation of theM integral with those ob

Fig. 7 Example 1: comparison of J = „KI
2+KII

2
… /Etip for the right

crack tip of an inclined crack with ū=18° using the M integral.
The nonequilibrium formulation is used both considering and
neglecting the nonequilibrium term „see Eq. „22……. The incom-
patibility formulation is used both considering and neglecting
the incompatible term „see Eq. „23……

Table 3 Example 1: Comparison of normalized
=0.5 „K0= «̄E22

0 Îpa… „see Fig. 6 …

Formulation ū KI
+/K0

Nonequilibrium 0° 1.4279
18° 1.3224
36° 1.0177
54° 0.6008
72° 0.2154
90° 0.0000

Incompatiblity 0° 1.4285
18° 1.3224
36° 1.0177
54° 0.6008
72° 0.2158
90° 0.0000
Journal of Applied Mechanics
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tained by the incompatibility formulation for orthotropic FGM
Notice that the two formulations provide similar FEM results
T stress for each geometric angle. For the isotropic case,T stress
at both right and left crack tips changes sign in the range of a

u=30 deg–45 degssee Table 4d, while, for the orthotropic case,

changes sign in the range of angleū=15 deg–30 degssee Tabl
5d. Comparison of Tables 4 and 5 indicates that the ma
orthotropy shows significant effect onT stress in terms of bo
sign and magnitude.

9.2 Strip With an Edge Crack. Figure 8sad shows an edg
crack of length “a” in a plate, and Fig. 8sbd shows the comple
mesh discretization using 12 sectorssS12d and four ringssR4d of
elements around the crack tip. Figures 8scd–8sed illustrate the
three considered types of hyperbolic-tangent material grad
with respect to the crack tip: reference configuration, translati
the left, and translation to the right, respectively. The fixed-
displacement loading results in a uniform strain«22sX1,X2d= «̄ in
a corresponding uncracked structure. The displacement bou
condition is prescribed such thatu2=0 along the lower edge a
u1=0 for the node at the left-hand side. The mesh discretiz
consists of 208Q8, 37 T6, and 12T6qpelements, with a total o
257 elements and 1001 nodes.

Young’s moduli and shear modulus are hyperbolic-tan
functions with respect to the globalsX1,X2d Cartesian coordinate
while Poisson’s ratio is constantsFig. 9d. The following data wer
used for the FEM analysis:

plane strain, 23 2 Gauss quadrature

a/W= 0.5, L/W= 2.0, «̄ = 0.25, d = s− 0.5 to 0.5d

Isotropic case

EsX1d = sE− + E+d/2 + tanhfbsX1 + ddgsE− − E+d/2

ed-mode SIFs in orthotropic FGMs for ba

KII
+ /K0 KI

−/K0 KII
− /K0

0.0000 0.6663 0.0000
0.2176 0.5997 0.2436
0.4097 0.4150 0.4160
0.4477 0.1814 0.4379
0.2906 0.0056 0.2822
0.0000 0.0000 0.0000

0.0000 0.6663 0.0000
0.2194 0.5997 0.2427
0.4111 0.4149 0.4156
0.4480 0.1809 0.4373
0.2906 0.0052 0.2823
0.0000 0.0000 0.0000

Table 4 Example 1: comparison of normalized T stress in iso-
tropic FGMs for ba=0.5 „s0= «̄E0

… „see Fig. 6 …

ū

Nonequilibrium Paulino and Dongf48g

Ts+ad /s0 Ts−ad /s0 Ts+ad /s0 Ts−ad /s0

0° −0.896 −0.858 −0.867 −0.876
15° −0.773 −0.747 −0.748 −0.763
30° −0.434 −0.436 −0.420 −0.444
45° 0.036 0.011 0.039 0.010
60° 0.513 0.484 0.513 0.490
75° 0.868 0.850 0.870 0.858
90° 0.994 0.994 1.000 1.000
mix
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ba = 15.0, n = 0.3

sE−,E+d = s1.00,3.00d

Orthotropic case

E11sX1d = sE11
− + E11

+ d/2 + tanhfasX1 + ddgsE11
− − E11

+ d/2

E22sX1d = sE22
− + E22

+ d/2 + tanhfbsX1 + ddgsE22
− − E22

+ d/2

G12sX1d = sG12
− + G12

+ d/2 + tanhfgsX1 + ddgsG12
− − G12

+ d/2

aa = ba = ga = 15.0, n12 = 0.3

Table 5 Example 1: comparison of normalized T stress in
orthotropic FGMs for ba=0.5 „s0= «̄E22

0
… „see Fig. 6 …

ū

Nonequilibrium Incompatibility

Ts+ad /s0 Ts−ad /s0 Ts+ad /s0 Ts−ad /s0

0° −2.822 −2.725 −2.832 −2.712
15° −1.407 −1.402 −1.384 −1.407
30° 0.156 0.079 0.168 0.074
45° 0.785 0.700 0.785 0.702
60° 0.971 0.909 0.970 0.910
75° 1.003 0.973 1.002 0.973
90° 0.996 0.996 0.997 0.997

Fig. 8 Example 2: strip with an edge crack in hy
BCs; „b… complete finite element mesh with 12
crack tip; „c… reference configuration „d =0.0…

„d = +0.5…; „e… translation of material gradation to the

360 / Vol. 72, MAY 2005
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sE11
− ,E11

+ d = s1.00,3.00d, sE22
− ,E22

+ d = s1.25,2.75d,

sG12
− ,G12

+ d = s1.50,2.50d

Table 6 compares the present FEM results for mode I SIFsKId
obtained by the nonequilibrium formulation with those obta
by the incompatibility formulation for various translation facto
d” of hyperbolic-tangent material variation considering both

rbolic-tangent materials: „a… geometry and
tors „S12… and four rings „R4… around the
… translation of material gradation to the left

Fig. 9 Example 2: variation of material properties: E11, E22, and
G12 for the orthotropic case, and E for the isotropic case
pe
sec
; „d
right „d =−0.5…
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tropic and orthotropic FGMs. For the orthotropic case, the F
results obtained by the nonequilibrium formulation are comp
with those obtained by the incompatibility formulation repor
by Kim and Paulinof12g. Notice that the two equivalent form
lations provide similar FEM results for mode I SIF for each tra
lation factord. For the isotropic FGMs, the mode I SIF decrea
with the translation factord for the range between −0.1 and 0
For the orthotropic FGMs, the mode I SIF increases with
translation factord for the range between −0.5 and −0.1, howe
it decreases asd increases further. Table 6 also indicates that m
I SIFs for the orthotropic case are smaller than those for the
tropic case for each translation factord from −0.5 to −0.1, how
ever, the SIFs for the orthotropic case are greater than tho
the isotropic case ford=0 to 0.5.

Table 7 compares the present FEM results forT stress obtaine
by the nonequilibrium formulation with those obtained by the
compatibility formulation for various translation factorsd of
hyperbolic-tangent material variation considering both isotr
and orthotropic FGMs. Notice that the two formulations prov
similar FEM results, and theT stresses are negative for all
translation factorsd considered. For both isotropic and orthotro
FGMs, theT stress decreases with the translation factord for the
range between −0.5 and 0.0, however, it increases asd increase
further. Table 7 also indicates thatT stress for the orthotropic ca
is greater than or equal to that for the isotropic case for
translation factor.

Table 6 Example 2: comparison of mode I SIF „KI… for an edge
crack considering translation „d… of hyperbolic-tangent mate-
rial variation „see Fig. 8 …

d

Nonequilibrium Incompatibility

Iso Ortho Iso Orthof12g

−0.5 1.212 1.164 1.186 1.158
−0.4 1.211 1.167 1.201 1.163
−0.3 1.211 1.175 1.190 1.173
−0.2 1.218 1.189 1.209 1.189
−0.1 1.231 1.212 1.212 1.217

0 1.030 1.047 1.026 1.049
0.1 0.595 0.701 0.588 0.697
0.2 0.486 0.615 0.487 0.614
0.3 0.451 0.585 0.451 0.585
0.4 0.430 0.567 0.430 0.567
0.5 0.419 0.554 0.419 0.554

Table 7 Example 2: comparison of T stress for an edge crack
considering translation „d… of hyperbolic-tangent material
variation „see Fig. 8 …

d

Nonequilibrium Incompatibility

Iso Ortho Iso Ortho

−0.5 −0.463 −0.393 −0.452 −0.394
−0.4 −0.478 −0.407 −0.470 −0.406
−0.3 −0.507 −0.434 −0.493 −0.439
−0.2 −0.580 −0.499 −0.571 −0.501
−0.1 −0.797 −0.686 −0.797 −0.702

0 −1.123 −0.923 −1.181 −0.962
0.1 −0.444 −0.364 −0.431 −0.362
0.2 −0.218 −0.205 −0.217 −0.205
0.3 −0.175 −0.171 −0.175 −0.171
0.4 −0.157 −0.157 −0.157 −0.157
0.5 −0.152 −0.151 −0.152 −0.152
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10 Conclusions
This paper provides a critical assessment and comparis

three consistent formulations: nonequilibrium, incompatib
and constant-constitutive-tensor formulations. Each formul
leads to a consistent form of the interaction integral in the s
that extra terms are added to compensate for the differen
response between homogeneous and nonhomogeneous ma
These extra terms play a key role in ensuring path indepen
of the interaction integral for FGMs. In terms of numerical co
putations, the nonequilibrium formulation leads to the simp
final form of the M integral among the three formulations.
terms of numerical accuracy, the nonequilibrium formulatio
equivalent to the incompatibility formulation, which is obser
in numerical examples involving various types of material gr
tion. The constant-constitutive-tensor formulation requires th
rivatives of the actual stress and strain field, and may hav
merical accuracy problems with standardC0 elements common
used in the displacement-based FEM, as observed in exam

From numerical investigations, we observe that both ma
gradation and orthotropy have a significant influence on SIFs
T stresssi.e., both sign and magnituded, and the crack tip locatio
also shows a significant influence on the fracture paramete
hyperbolic-tangent materials. We also observe that the extra
se.g., nonequilibrium or incompatible termsd ensure convergen
to target solutionssSIFs orT stressd.
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Nomenclature
a 5 half crack length

a or aij 5 contracted notation of the compliance ten
sS or Sijkld for plane stress;i =1,2,6; j
=1,2,6

atip or aij
tip 5 a or aij evaluated at the crack tip locatio

i , j =1,2,6
A 5 a 232 complex matrix

bij 5 contracted notation of the compliance ten
for plane strain;i =1,2,6; j =1,2,6

bij
tip 5 bij evaluated at the crack tip location;i , j

=1,2,6
B 5 a 232 complex matrix

c11, c22, c12 5 coefficients in the relationship betweenJ and
stress intensity factorssKI andKIId

Csud 5 a 232 diagonal matrix
Cijkl or C 5 constitutive tensor;i , j ,k, l =1,2,3

d 5 translation factor in hyperbolic-tange
function

d0 5 x1 coordinate of a fixed point
e 5 natural logarithm base,e=2.71828182. . .
E 5 Young’s modulus for isotropic materials

E0 5 Young’s modulusE evaluated at the origin
Etip 5 Young’s modulusE evaluated at the crack t

E11, E22 5 Young’s moduli with respect to the princip
axes of orthotropy

E11
0 , E22

0 5 Young’s moduli E11,E22 evaluated at th
origin

f 5 a point force
f 5 a 231 force vector

f I, f II 5 representative functions for auxiliary d
placements for SIFs
G12 5 shear modulus for orthotropic materials
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G12
0 5 shear modulusG12 evaluated at the origin
G 5 energe release rates

gI, gII 5 representative functions for auxiliary stres
for SIFs

GI 5 mode I energe release rate
GII 5 mode II energe release rate
H 5 contour integral
h 5 a 231 real matrix

Im 5 imaginary part of the complex function
J 5 path-independentJ integral for the actua

field
Jaux 5 J integral for the auxiliary field

Js 5 J integral for the superimposed fieldssactua
plus auxiliaryd

KI 5 mode I stress intensity factor
KII 5 mode II stress intensity factor
K0 5 normalizing factor for stress intensity fa

tors, K0= «̄E0Îpa for the isotropic case an
K0= «̄E22

0 Îpa for the orthotropic case
L 5 length of a plate
L 5 a 232 real matrix
M 5 interaction integralsM integrald
Ni 5 shape functions for nodei of an element

N3sud 5 a 232 real matrix
mi, ni 5 unit normal vectors on the contour of the d

main integral
P 5 a generic propertysCijkl , Sijkl , or «i j d

Psud 5 a 232 diagonal matrix
pk 5 coefficients of the asymptotic displaceme

for orthotropic materials;k=1,2
qk 5 coefficients of the asymptotic displaceme

for orthotropic materials;k=1,2
q 5 weight function in the domain integral
r 5 radial direction in polar coordinates

Re 5 real part of the complex function
Sijkl or S 5 compliance tensor;i , j ,k, l =1,2,3

Ssud 5 a 232 real matrix
T 5 elasticT stress
tu 5 representative functions for auxiliary d

placements forT stress
ts 5 representative functions for auxiliary stres

for T stress
ui 5 displacements for the actual field;i =1,2

uaux or ui
aux 5 a vector for auxiliary displacements;i =1,2
W 5 width of a plate
W 5 strain energy density

Waux 5 strain energy density for the auxiliary field
xi 5 local Cartesian coordinates;i =1,2
Xi 5 global Cartesian coordinates;i =1,2
zk 5 complex variable,zk=xk+ iyk; k=1,2
a 5 material nonhomogeneity parameter for g

dation ofE11
ak 5 the real part ofmk; k=1,2
b 5 material nonhomogeneity parameter for g

dation ofE22 or E
bk 5 the imaginary part ofmk; k=1,2
g 5 material nonhomogeneity parameter for g

dation ofG12
G 5 contour forJ andM integrals

G0 5 outer contour
Gs 5 inner contour
G+ 5 contour along the upper crack face
G− 5 contour along the lower crack face
di j 5 Kronecker delta;i , j =1,2
«i j 5 strains for the actual field;i =1,2,3; j

=1,2,3
362 / Vol. 72, MAY 2005
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«k 5 contracted notation of«i j ; k=1, . . . ,6
«aux or «i j

aux 5 a vector for auxiliary strains;i , j =1,2,3
u 5 angular direction in polar coordinates w

respect to the local Cartesian coordinate

ū 5 the angle of the local Cartesian coordina
with respect to the global Cartes
coordinates

um 5 indication of direction of material gradati
with respect to the crack

k 5 material parameter for isotropic materia
s3−nd / s1+nd for plane stress and 3−4n for
plane strain

ktip 5 material parameterk evaluated at the cra
tip

mk 5 roots of the characteristic equation;k=1,2
mk

tip 5 mk evaluated at the crack tip location;k
=1,2

m̄k 5 complex conjugate ofmk; k=1,2
n 5 Poisson’s ratio for isotropic materials

n12, n21 5 Poisson’s ratios for orthotropic materials
sk 5 contracted notation ofsi j ; k=1, . . . ,6
s0 5 normalizing factor;s0= «̄E0 for the isotropic

cases0= «̄E22
0 for the orthotropic case

si j 5 stresses for the actual fields;i =1,2,3; j
=1,2,3

saux or si j
aux 5 a vector for auxiliary stresses;i , j =1,2,3

Appendix A: Anisotropic Elasticity
The generalized Hooke’s law for stress-strain relationsh

given by f40g:

«i = aijs j, aij = ajisi, j = 1,2, . . . ,6d sA1d

where the compliance coefficients,aij , are contracted notations
the compliance tensorSijkl and

«1 = «11, «2 = «22, «3 = «33, «4 = 2«23, «5 = 2«13,

«6 = 2«12

s1 = s11, s2 = s22, s3 = s33, s4 = s23, s5 = s13, s6 = s12

sA2d

For plane stress, theaij components of interest are

aijsi, j = 1,2,6d sA3d

and for plane strain, theaij components are exchanged withbij as
follows:

bij = aij −
ai3aj3

a33
si, j = 1,2,6d sA4d

Two-dimensional anisotropic elasticity problems can be for
lated in terms of the analytic functions,fkszkd, of the complex
variable,zk=xk+ iyk sk=1,2d, i =Î−1, where

xk = x + aky, yk = bkysk = 1,2d sA5d

The parametersak andbk are the real and imaginary parts ofmk
=ak+ ibk, which can be determined from the following charac
istic equationf40g:

a11m
4 − 2a16m

3 + s2a12 + a66dm2 − 2a26m + a22 = 0 sA6d

where the rootsmk are always complex or purely imaginary
conjugate pairs asm1,m1;m2,m2.

Appendix B: Representative Functions for SIFs
For orthotropic FGMs, the representative functi
1/2 tip
fsr ,u ,a d in Eq. s1d are given byf37g:
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f1
I = Î2r/p ReF 1

m1
tip − m2

tiphm1
tipp2

Îcosu + m2
tip sinu

− m2
tipp1

Îcosu + m1
tip sinujG

f1
II = Î2r/p ReF 1

m1
tip − m2

tiphp2
Îcosu + m2

tip sinu

− p1
Îcosu + m1

tip sinujG
f2
I = Î2r/p ReF 1

m1
tip − m2

tiphm1
tipq2

Îcosu + m2
tip sinu

− m2
tipq1

Îcosu + m1
tip sinujG

f2
II = Î2r/p ReF 1

m1
tip − m2

tiphq2
Îcosu + m2

tip sinu

− q1
Îcosu + m1

tip sinujG
where Re denotes the real part of the complex function,m1

tip and
m2

tip denote crack-tip material parameters, which are obtained
Eq. sA6d and taken forbk.0 sk=1,2d, andpk andqk are given by

pk = a11
tipsmk

tipd2 + a12
tip − a16

tipmk
tip

qk = a12
tipmk

tip +
a22

tip

mk
tip − a26

tip sB1d

respectively. The functionsgsr−1/2,u ,atipd in Eq. s3d are given by
f37g:

g11
I =

1
Î2pr

ReF m1
tipm2

tip

m1
tip − m2

tipH m2
tip

Îcosu + m2
tip sinu

−
m1

tip

Îcosu + m1
tip sinu

JG
g11

II =
1

Î2pr
ReF 1

m1
tip − m2

tipH sm2
tipd2

Îcosu + m2
tip sinu

−
sm1

tipd2

Îcosu + m1
tip sinu

JG
g22

I =
1

Î2pr
ReF 1

m1
tip − m2

tipH m1
tip

Îcosu + m2
tip sinu

−
m2

tip

Îcosu + m1
tip sinu

JG
g22

II =
1

Î2pr
ReF 1

m1
tip − m2

tipH 1

Îcosu + m2
tip sinu

−
1

Îcosu + m1
tip sinu

JG
g12

I =
1

Î2pr
ReF m1

tipm2
tip

m1
tip − m2

tipH 1

Îcosu + m1
tip sinu

−
1

tip JG
Îcosu + m2 sinu
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g12
II =

1
Î2pr

ReF 1

m1
tip − m2

tipH m1
tip

Îcosu + m1
tip sinu

−
m2

tip

Îcosu + m2
tip sinu

JG sB2d

Notice that, in the earlier expressions, the graded material p
eters are sampled at the crack tip.

For isotropic FGMs, the representative functionsfsr1/2,u ,atipd
for displacements in Eq.s1d, andgsr−1/2,u ,atipd for stresses in Eq
s3d are given in many referencesse.g., Ref.f38gd. The grade
material parameters are sampled at the crack tip.

Appendix C: Representative Functions forT Stress
The presentation follows the Stroh formalismf39g. For othotro

pic FGMs, the representative functionstusln r ,u , f ,atipd in Eq. s4d
are given byf39g:

t1
u = −

h1

2p
ln r −

1

2
sS11h1 + S12h2d

sC1d

t2
u = −

h2

2p
ln r −

1

2
sS21h1 + S22h2d

The parametersSij andhi in Eq. sC1d are the components in t
232 matrix Ssud, and the 231 vectorh as follows:

Ssud =
2

p
RefACsudBTg = FS11 S12

S21 S22
G

h = L−1f = Hh1

h2
J sC2d

where

A = Fl1
tipp1

tip l2
tipp2

tip

l1
tipq1

tip l2
tipq2

tip G, B = F− l1
tipm1

tip − l2
tipm2

tip

l1
tip l2

tip G
Csud = Fln s1sud 0

0 ln s2sud G, sksud = cosu + m2
tip sinu

L−1 = RefiAB−1g, f = ff,0gT sC3d

in which pk
tip andqk

tip sk=1,2d are given by Eq.sB1d, andlk
tip sk

=1,2d is the normalization factor given by the expression

2slk
tipd2sqk

tip/mk
tip − mk

tippk
tipd = 1. sC4d

The representative functionstssr−1,u , f ,atipd in Eq. s6d are
given by f39g:

t11
s = srr

auxcos2 u, t22
s = srr

auxsin2 u, t12
s = srr

auxsinu cosu

sC5d

where the auxiliary stresses are given byf39g:

srr
aux=

1

2pr
nTsudN3sudh, suu

aux= sru
aux= 0 sC6d

in which

n = fcosu,sinugT, N3sud = 2 RefBPsudBTg
sC7d

Psud = Fm1sud 0

0 m2sud G, mksud =
mk

tip cosu − sinu

mk
tip sinu + cosu

, sk = 1,2d

For isotropic FGMs, the representative functi
tusln r ,u , f ,atipd in Eq. s4d for displacements, andtssr−1,u , f ,atipd
for stresses in Eq.s6d are given in many referencesse.g., Ref

f41gd. The graded material parameters are sampled at the crack tip.
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