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Abstract

This study examines a two-state interaction integral for the direct computation of mixed-mode stress intensity fac-

tors along curved cracks under remote mechanical loads and applied crack-face tractions. We investigate the accuracy

of stress intensity factors computed along planar, curved cracks in homogeneous materials using a simplified interaction

integral that omits terms to reflect specifically the effects of local crack-front curvature. We examine the significance of

the crack-face traction term in the interaction integral, and demonstrate the benefit of a simple, exact numerical inte-

gration procedure to evaluate the integral for one class of three-dimensional elements. The work also discusses two

approaches to compute auxiliary, interaction integral quantities along cracks discretized by linear and curved elements.

Comparisons of numerical results with analytical solutions for stress intensity factors verify the accuracy of the pro-

posed interaction integral procedures.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The determination of accurate stress intensity factors for mixed-mode loading in complex, three-dimen-

sional (3-D) configurations remains a significant challenge in computational fracture mechanics. Defect

assessments of industrial structures require reliable estimates of stress intensity factors—especially for fa-
tigue life predictions that adopt a damage tolerance philosophy. Finite element models of complex compo-

nents must have sufficient refinement to resolve strong gradients in the near-tip fields along curved crack
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fronts and must be coupled with robust numerical methods to extract the mixed-mode stress intensity fac-

tors from the solutions pointwise along the front. Interaction integral methods have emerged as perhaps the

most accurate and readily implementable approach to extract mixed-mode, stress intensity factors. These

methods post-process the computed displacements, strains and stresses from the finite element model that

are taken to represent the correct equilibrium state for the specified boundary-value problem. Another se-
lected equilibrium state supplies auxiliary near-tip fields defined in terms of the mixed-mode stress intensity

factors. For this purpose, Williams� solution [1] for the two-dimensional (2-D) asymptotic stress and dis-
placement fields in the vicinity of a crack represents a widely-used auxiliary field. A linear combination

of finite element fields (commonly termed the ‘‘actual’’ fields) with auxiliary fields constitutes a third, super-

imposed, equilibrium state. One class of interaction integrals arises from an interpretation of the J-integral

[2]—the computation of J for the superimposed state leads to a conservation integral composed of inter-

acting actual and auxiliary terms that permits direct computation of stress intensity factors [3]. Numerical

evaluation of this interaction integral fits conveniently into existing domain-integral procedures for J-com-
putation [4], thereby providing a readily implemented, robust and accurate tool for linear-elastic analyses.

Through post-processing of finite-element results, Yau et al. [5] evaluate an interaction integral to deter-

mine mixed-mode stress intensity factors for 2-D cracks in specimens under mechanical loading. Studies of

interaction integral procedures for 3-D cracks include analyses of plates under in-plane loading [6] and elas-

tic–plastic interface cracks [7]. Dhondt [8] examines the variation in crack front singularity along quarter-

circular corner cracks. Krysl and Belytschko [9] employ the element free Galerkin method to analyze the

dynamic propagation of arbitrary 3-D cracks in homogeneous material. Most prior works provide interac-

tion integral solutions for cracks with traction-free faces in homogeneous or bi-material specimens under
quasi-static, isothermal loading. Nakamura and Parks [10] discuss the formulation of an interaction inte-

gral for thermal and body-force loads, and Cho et al. [11] analyze 2-D interface cracks with surface trac-

tions that interact with additional singularities caused by point forces or dislocations. Other interaction

integrals follow from the application of Betti�s reciprocal work theorem [12], or the M- and L-integrals

of Knowles and Sternberg [13–15]. Kim et al. [16] compute stress intensity factors along curved cracks

in homogeneous 3-D solids using an interaction integral derived from the M-integral [13].

This study examines a J-integral based, interaction integral procedure to compute mixed-mode stress

intensity factors for curved, planar cracks in three-dimensional homogeneous solids under remote mechan-
ical loading and/or applied crack-face tractions. For cracked, axisymmetric configurations and for curved

3-D cracks, the 2-D Williams solutions [1] do not satisfy equilibrium or strain–displacement compatibility

when expressed in curvilinear coordinates, thereby leading to additional terms in the interaction integral

[17]. Nahta and Moran [17] include these curvature effects to study axisymmetric interface cracks. They sug-

gest that inclusion of the curvature effects generally should improve the interaction integral values for a par-

ticular level of mesh refinement. Gosz et al. [18] and Gosz and Moran [19] also include the effects of local

crack front curvature to analyze 3-D curved interface cracks and non-planar 3-D cracks, respectively. They

note the potential for significant error if the crack-front curvature terms are neglected. The present work
investigates to what extent mesh refinement may reduce this observed error in interaction integral compu-

tations that do not include the recommended curvature terms. The present treatment addresses curved, pla-

nar 3-D cracks in homogeneous material. We compare values from this simplified interaction integral with

J-integral values and with analytical stress intensity factor solutions using finite-element models that have

reasonable levels of mesh refinement in the crack-front region. These comparisons illustrate the good accu-

racy that can be obtained using the standard 3-D interaction integral for straight cracks, which has the

advantage of being much simpler to implement than the full expression that includes curvature terms. Cur-

vature of crack surfaces imposes additional considerations on the interaction integral [19] which are not
discussed here. Also, interaction integrals studied in this work do not capture the change in singular fields

near the intersection of a crack with a free surface. See Im and Kim [14], and Lee and Im [20] for interaction

integral treatments of this case.
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Shih et al. [4] describe a domain integral procedure to evaluate the J-integral along a 3-D crack front that

incorporates a surface integral over traction-bearing crack faces (needed to maintain path independence).

A crack-face integral also becomes necessary to preserve path independence of the interaction integral

method. Cho et al. [11] employ such an integral in their study of cracks with surface tractions in 2-D bodies.

Gosz and Moran [19] integrate over crack surfaces to compute stress intensity factors for traction-free, non-
planar cracks. The necessary surface integral, however, does not appear in some other interaction integral

treatments of traction-bearing cracks. This study examines the importance of the crack-face integral and

presents a simple, exact integration procedure applicable for one class of 3-D finite elements.

The plan of this paper is as follows: Section 2 reviews the domain-integral technique that forms the basis

of current numerical procedures. Section 3 discusses the interaction integral procedure to compute mixed-

mode stress intensity factors along curved 3-D cracks in homogeneous solids under quasi-static, mechanical

loads including applied crack-face tractions. A description of numerical procedures follows in Section 4.

Section 5 describes a 3-D analysis of a 2-D plane-strain problem that provides insight into the influence
of the crack-face traction integral and the improvement offered by its exact integration. Section 6 presents

mixed-mode stress intensity factors computed using the interaction integral without curvature terms, and

compares them to values obtained from analytical solutions. Some observations conclude the work in Sec-

tion 8.
2. A domain integral for 3-D cracks with surface tractions

Shih et al. [4] develop the domain-integral method as a powerful numerical procedure to evaluate the J-

integral for 3-D cracks. The domain-based, interaction integral methods build upon this approach. An

expression for the J-integral at location s along a 3-D crack front is [4]
Fig. 1.

c. Surf

compr
JðsÞ ¼ lim
C!0

Z
C
ðW d1i � rijuj;1ÞnidC; ð1Þ
where W is strain energy density, rij represents stress components, uj denotes displacement components,
and dij is the Kronecker delta. Latin subscripts range from 1 to 3, and unless noted otherwise, repeated indi-
ces imply summation. The partial derivative (Æ),i = o(Æ)/oXi indicates the spatial derivative of (Æ) with respect
to direction Xi of the local coordinate system defined at crack front position s as shown in Fig. 1. The con-

tour, C, with normal-vector components ni, lies in the X1–X2 plane of the local coordinate system, and ex-
tends from the bottom crack-face to the top crack-face. When the contour shrinks to the crack front at s,
Domains used to compute area and volume integrals at crack-front location s = b, extend over length Lc from point a to point

aces St and S1 (cylindrical surfaces), S2 and S3 (flat lateral surfaces), and S+, and S� (top and bottom crack-face surfaces)

ise surface S and enclose volume V. For general loading conditions, St must shrink to the crack front, i.e. r! 0+.
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Eq. (1) equals Rice�s J-integral [2] and remains valid in the presence of general material behavior, body
forces, crack-face tractions and thermal strains.

Shih et al. [4] transform Eq. (1) into volume and surface integrals suitable for numerical evaluation in a

3-D finite-element context. They derive an expression for JðsÞ, the energy released per unit advance of crack
front segment Lc (see Fig. 1). This expression may be written as
JðsÞ ¼
Z
V
ðrijuj;1 � W d1iÞq;idV þ

Z
V
ðrijuj;1 � W d1iÞ;iqdV �

Z
SþþS�

tjuj;1qdS; ð2Þ
where tj are components of traction acting on the crack-face. Here, surfaces S
+, S�, S1, St, S2 and S3 shown

in Fig. 1, enclose the simply-connected volume V, and surface St shrinks to the crack front (i.e. r ! 0). The

scalar weight-function, q, varies smoothly within V. A simple form for q assigns it a smooth variation from

zero on surfaces S1, S2 and S3 to a value of 1.0 at location s on St [4].

For elastic, homogeneous materials under quasi-static, isothermal loading with no body forces or crack-

face tractions, the second and third integrals in Eq. (2) vanish. For curved cracks, the second integral in Eq.
(2) does not vanish. Eq. (2) assumes that crack-front curvature within the domain of integration is negli-

gible, and is not strictly valid for cracks with curved surfaces or curved crack fronts. Fernlund et al. [21]

and Eriksson [22] develop expressions to evaluate the J-integral and crack-extension force along curved,

non-planar 3-D cracks using curvilinear coordinates. The third integral in Eq. (2) reflects the contribution

of applied crack-face tractions. Shih et al. [4] assume that the energy release rate varies slowly along crack-

segment Lc, and thus obtain the approximate expression
JðsÞ ¼ JðsÞR
Lc
qðsÞds ; ð3Þ
for the energy release rate, J(s), at location s along a 3-D crack front.
3. An interaction integral procedure for curved 3-D cracks with surface tractions

This section reviews the formulation of an interaction integral for isothermal, quasi-static loading of pla-

nar, 3-D curved cracks in homogeneous materials under remote loads and crack-face tractions. We discuss

a formulation that includes the effects of crack front curvature, and then describe the computational pro-

cedure to obtain stress intensity factors.

3.1. Auxiliary fields

Williams� solution [1] for auxiliary stress and displacement in the vicinity of a crack has the form:
rauxij ¼ KauxIffiffiffiffiffiffiffi
2pr

p f IijðhÞ þ
KauxIIffiffiffiffiffiffiffi
2pr

p f IIij ðhÞ þ
KauxIIIffiffiffiffiffiffiffi
2pr

p f IIIij ðhÞ; ð4Þ

uauxj ¼ KauxI
2l

ffiffiffiffiffiffi
r
2p

r
gIjðh; mÞ þ

KauxII
2l

ffiffiffiffiffiffi
r
2p

r
gIIj ðh; mÞ þ

2KauxIII
l

ffiffiffiffiffiffi
r
2p

r
gIIIj ðh; mÞ; ð5Þ
where superscript ‘‘aux’’ denotes auxiliary fields. Appendix A provides the expressions for fij(h) as well as
the plane-stress and plane-strain forms for gj(h,m). The symmetric gradient of displacements defines the aux-
iliary strain components:
eauxij ¼ 1
2
uauxi;j þ uauxj;i

� �
: ð6Þ
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These 2-D auxiliary fields are a function of location r and h, and shear modulus l. Most interaction integral
studies use the plane-strain form of these auxiliary fields to analyze cracks in 3-D solids, with the assump-

tion that plane-strain conditions exist (asymptotically) near the crack front at locations away from free sur-

faces. The excellent accuracy (<1%) of reported stress intensity factors supports the adequacy of this

approximation. In an alternative approach, Kim et al. [16] demonstrate the use of numerically-generated
auxiliary fields to obtain stress intensity factors.

Nahta and Moran [17], Gosz et al. [18] and Gosz and Moran [19] develop interaction integral procedures

that use the 2-D auxiliary fields based on Eqs. (4)–(6) for axisymmetric interface cracks, curved 3-D inter-

face cracks, and 3-D cracks with non-planar surfaces, respectively. In a finite-element context, values of r

and h in these expressions describe the position of an element integration point in curvilinear coordinates,
relative to a curved crack front. Definition of the auxiliary fields in curvilinear coordinates gives rise to

additional terms in the gradients of auxiliary displacements [17–19]. To quantify the accuracy of interaction

integral computations without terms for crack curvature, numerical studies here use curvilinear coordinates
to compute r and h for auxiliary fields, but omit these additional, auxiliary-field gradients during evaluation
of the interaction integral.

3.2. Interaction integral formulation

By superimposing actual (computed) equilibrium fields and auxiliary fields, JðsÞ for the superimposed
state, J

S
, from Eq. (2) becomes
J
SðsÞ ¼

Z
V

ðrij þ rauxij Þðuj;1 þ uauxj;1 Þ � W Sd1i
h i

q;i dV þ
Z
V

ðrij þ rauxij Þðuj;1 þ uauxj;1 Þ � W Sd1i
h i

;i
qdV

�
Z
SþþS�

ðtj þ tauxj Þðuj;1 þ uauxj;1 ÞqdS: ð7Þ
Here, superscript �S� denotes the superimposed state. For a linear-elastic material, the strain energy density
for the superimposed state, WS, is
W S ¼ 1
2
ðrij þ rauxij Þðeij þ eauxij Þ ¼ W þ W aux þ W I; ð8Þ
where WI is
W I ¼ 1
2

rije
aux
ij þ rauxij eij

� �
: ð9Þ
With Eq. (8), J
S
separates into three parts
J
S
s ¼ JðsÞ þ J

auxðsÞ þ IðsÞ; ð10Þ

where JðsÞ equals Eq. (2), the domain integral for the actual state; J auxðsÞ is the domain integral for the
auxiliary state; and IðsÞ is an integral with interacting actual and auxiliary terms, written as
I
SðsÞ ¼

Z
V

rijuauxj;1 þ rauxij uj;1 �
1

2
rjke

aux
jk þ rauxjk ejk

� �
d1i

	 

q;i dV

þ
Z
V

rijuauxj;1 þ rauxij uj;1 �
1

2
rjke

aux
jk þ rauxjk ejk

� �
d1i

	 

;i

qdV �
Z
SþþS�

tjuauxj;1 þ tauxj uj;1
� �

qdS: ð11Þ
The third integral of Eq. (11) vanishes for crack-faces without applied tractions. For straight cracks, the

second integral vanishes for quasi-static, isothermal loading of homogeneous materials in the absence of

body forces. Auxiliary fields based on Williams� 2-D solution do not satisfy equilibrium or compatibility

in curvilinear coordinates [17], however, and the second integral remains non-zero for curved cracks.
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The interaction integral procedure here assumes that the same constitutive tensor, Cijkl, couples actual

and auxiliary stress and strain components, i.e.
rij ¼ Cijklekl and rauxij ¼ Cijkle
aux
kl : ð12Þ
With appropriate definitions of auxiliary strain components, the constitutive tensor is the same for the 3-D

actual fields and for the 2-D auxiliary fields. Eq. (12) leads to the useful relationships
rije
aux
ij ¼ Cijklekle

aux
ij ¼ Cklije

aux
ij ekl ¼ rauxij eij; ð13Þ
which enable simplification of the stress–strain terms in the first and second integrals of Eq. (11). Expansion

of the second integral in Eq. (11) simplifies because rij;iuauxj;1 � 0 due to equilibrium of the actual stresses, and
Eq. (13) leads to the cancellation of two additional terms
rauxij uj;1i � rij;1e
aux
ij ¼ rauxij uj;1i � Cijkl;1ekleauxij þ Cijklekl;1e

aux
ij ¼ rauxij uj;1i � Cklijeauxij ekl;1

¼ rauxij uj;1i � rauxij eij;1 ¼ 0: ð14Þ

Nahta and Moran [17] observe that 2-D plane-strain auxiliary fields based on Williams� solution do not

satisfy strain–displacement compatibility and equilibrium when defined in curvilinear coordinates.

Therefore
rijðuauxj;1i � eauxij;1 Þ 6¼ 0 and rauxij;i 6¼ 0: ð15Þ
Because auxiliary fields correspond to an arbitrarily-specified equilibrium state, the third integral in Eq. (11)
simplifies with the assumption that the auxiliary state has crack-faces without applied tractions. As a result

of the preceding arguments, Eq. (11) reduces to
IðsÞ ¼
Z
V

rijuauxj;1 þ rauxij uj;1 � rjke
aux
jk d1i

� �
q;i dV þ

Z
V

rij uauxj;1i � eauxij;1

� �
þ rauxij;1uj;1

h i
qdV

�
Z
SþþS�

tjuauxj;1 qdS: ð16Þ
The terms rijðuauxj;1i � eauxij;1 Þ and rauxij;i uj;1 that arise here due to crack front curvature also appear in the inter-
action integral formulations for straight cracks in functionally-graded materials [23,24]. For straight cracks

in homogeneous material, the second integral of Eq. (16) vanishes. The crack-face integral,
Z
SþþS�

tjuauxj;1 qdS; ð17Þ
contributes significantly to stress intensity factors, but is occasionally neglected in the literature. None of

the quantities in Eq. (17) depend upon the finite element solution of the boundary-value problem—an exact

evaluation of this integral thus ensures that it does not contribute error to numerical results. Section 4.3 and
Appendix C describe a simple, exact numerical integration procedure for Eq. (17) when element edges along

the crack front are straight.

With the value of IðsÞ generated using Eq. (16), computation of a pointwise value of the interaction inte-
gral at location s, along a 3-D crack front follows Eq. (3):
IðsÞ ¼ IðsÞR
Lc
qðsÞds : ð18Þ
3.3. Extraction of stress intensity factors

An expression for the energy release rate in terms of mixed-mode stress intensity factors KI, KII and KIII
is [25]
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JðsÞ ¼ K2I þ K2II
E
 þ 1þ m

E
K2III; ð19Þ
which assumes self-similar crack growth. As usual, E* = E/(1 � m2) for plane-strain, E* = E for plane-stress

conditions, and stress intensity factors refer to crack front location s. For the superimposed state, Eq. (19)

becomes
JSðsÞ ¼ 1

E
 ðKI þ KauxI Þ2 þ ðKII þ KauxII Þ2
h i

þ 1þ m
E

ðKIII þ KauxIII Þ
2
;

¼ JðsÞ þ J auxðsÞ þ IðsÞ;

where
IðsÞ ¼ 1

E
 2KIK
aux
I þ 2KIIKauxII

� �
þ 1þ m

E
2KIIIKauxIII
� �

: ð20Þ
Eqs. (18) and (20) provide the sought-after relationship between stress intensity factors and the interaction
integral in Eq. (16). With the assigned values KauxI ¼ 1:0 and KauxII ¼ KauxIII ¼ 0, Eq. (20) yields
KI ¼
E


2
IðsÞ: ð21Þ
To obtain the actual mode-I stress intensity factor from (21), we: (1) assume either plane-stress or plane-

strain conditions for E* and for the auxiliary fields; (2) compute IðsÞ by evaluating the interaction integral
in Eq. (16) using the values KauxI ¼ 1:0, KauxII ¼ 0:0, and KauxIII ¼ 0; (3) compute I(s) from Eq.(18) for use in
Eq. (21).

The selection KauxII ¼ 1:0, KauxI ¼ KauxIII ¼ 0, and the selection KauxIII ¼ 1:0, KauxI ¼ KauxII ¼ 0 in Eq. (20) leads
to relationships between KII , KIII and I(s):
KII ¼
E


2
IðsÞ; and KIII ¼ lIðsÞ: ð22Þ
To obtain values of KII and KIII from Eq. (22), we evaluate Eqs. (16), (18) and (22) with appropriate

values of KauxI ; KauxII , and KauxIII . Five distinct evaluations of the interaction integral in Eq. (16) thus lead
to values of KI and KII for plane-stress and plane-strain conditions, and to a value of KIII for anti-

plane-shear conditions. Section 4 discusses the numerical evaluation of Eq. (16).
4. Numerical procedures

Within a finite-element framework, numerical procedures to evaluate the interaction integral parallel

those used in conventional, element-level computations. This section describes numerical evaluation of

the integrals, discusses computation of r and h for the auxiliary-fields and reviews procedures to evaluate
the surface-traction integral in Eq. (17). All procedures employed in this work are implemented in

WARP3D, a general purpose, open source finite element code [26].

4.1. Numerical evaluation of volume and surface integrals

Evaluation of the integrals in Eq. (16) follows the same Gauss-quadrature procedures employed for the

computation of element stiffnesses [27]:
IðsÞ ¼
Xelems
V

Xgpts
p

rijuauxj;1 þ rauxij uj;1 � rjke
aux
jk d1i

� �
q;i det J

h i
p
wp

þ
Xelems
V

Xgpts
p

rij uauxj;1i � eauxij;1

� �
þ rauxij;i uj;1

h i
q det J

n o
p
wp �

Xfaces
S

Xgpts
p

ðtjuauxj;1 q det JÞpwp; ð23Þ
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where the sum over volume V includes all elements in the domain, and the sum over surface S includes each

traction-bearing element face on the boundary of domain V which lies on the crack surface. The sum over p

includes all integration points, and wp denotes the corresponding weight for that point. All quantities in-

cluded in the summation must be expressed in the local, orthogonal coordinate system at location s on

the crack front (see Fig. 1). Here, det J denotes the determinant of the coordinate Jacobian matrix in
two or three dimensions, depending upon surface or volume domains. Repeated indices imply summation.

We employ a simple ‘‘plateau’’ function for the variation of q [4], and Gauss quadrature based on the two-

point rule for linear- and quadratic-displacement elements.

4.2. Computation of r and h for auxiliary fields

Evaluation of the auxiliary fields at an integration point requires the distance r from the crack front to

the point, and the angle, h, measured from the crack-plane ahead of the crack to the integration point (see
Fig. 2). For curved crack fronts, Gosz et al. [18] define the distance r between an integration point and the

analytically-defined crack front using a curvilinear coordinate system. They first project an integration

point, P, onto the crack plane as point C in Fig. 2(a), and then formulate an expression for the distance

between C and the analytical definition of the curved crack front. Minimization of this distance through

a Newton procedure determines the point E along the analytically-defined crack front closest to C (see

Fig. 2(a)). Distance r is finally measured from E to P, and angle P–E–C determines h.
The present work considers two different approaches to compute r and h. For curved crack fronts dis-

cretized using quadratic elements with curved edges, i.e. elements with nodes that lie on the analytically-
defined curve, computation of r and h follows the above procedure employed by Gosz et al. [18], in which
(a)

(b)

Fig. 2. (a) Computation of r and h values to determine auxiliary fields at integration point P for interaction integral evaluation at
crack-front location s. In meshes with straight element edges, distance r spans point P and the element edge between nodes A and B,

and angle PDC defines h. Point C is the projection of P onto the X1–X3 plane. (b) Quadrants I–IV in the plane PDC for computation

of h.
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case angle P–E–C equals angle P–D–C because location E coincides with location D. For curved crack

fronts discretized with linear elements (straight edges), r is the distance D–P from line segment A–B defined

by element nodes, to integration point P, as illustrated in Fig. 2(a), and angle P–D–C determines h. Figs.
2(a) and (b) and Appendix B describe a procedure to compute r and h for this case. For a curved crack
represented by straight-edged elements, this approach to define r and h remains consistent with the discret-
ization of the body into finite elements. It also avoids inaccurate computation of r and h when the distance
from the analytically-defined crack front to the mesh-defined crack front, distance D–E in Fig. 2(a), be-

comes significant compared to the width of elements in the domain of integration. Fig. 3(a) shows one quar-

ter of a cylindrical mesh for an embedded penny-shaped crack discretized by elements with straight edges.

Fig. 3(b) illustrates the potentially significant deviation of an analytical curve that describes a circular crack

from the crack front defined by the mesh elements. The (actual) analytical curve in Fig. 3(b) extends into

the fourth ring of elements surrounding the crack front, and does not correspond to the discontinuity in the

mesh that defines the crack. Within the first few rings of elements that surround the crack front, r and h
values computed from the analytical curve locate incorrectly the position of integration points, thereby

leading to auxiliary-fields inconsistent with actual fields generated by the mesh. This necessitates the use

of local orthogonal coordinates to compute values of r and h when elements with straight edges define
the crack front. Numerical examples considered in this study employ finite-element meshes with curved

crack fronts discretized using both straight and curved element edges.
(a)

(b)

Fig. 3. (a) Quarter section of a circular cylindrical mesh with an embedded penny-shaped crack used for some examples in Section 7.

(b) View of crack front discretized by elements with straight edges, showing difference between crack front defined by the mesh and by

an analytical expression.



Table 1

Integration schemes used in this study to evaluate the crack-face-traction integral in Eq. (17)

Hexagonal-element geometry Number of nodes on element face Integration for face of

element incident on crack

Integration for faces of

elements remote from crack

Straight edges 4 Modified 2 · 2 (exact) Standard 2 · 2
8 Modified 2 · 2 (exact) Standard 2 · 2
8 (with quarter-point nodes) Standard 2 · 2 (exact) Standard 2 · 2

Curved edges 8 (with quarter-point nodes) Standard 4 · 4 Standard 4 · 4
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4.3. Numerical evaluation of the crack-surface-traction integral, Eq. (17)

Consider now integration of the surface-traction integral in Eq. (16) over the surface of an element inci-

dent on the crack front. Values of KauxI ¼ 1:0, and t2 = 1.0 correspond to a mode-I crack-opening surface
pressure, and lead to an integrable, inverse square-root singularity:
lim
r!0

Z
S
tjuauxj;1 qdS ¼ lim

r!0

Z Z

0

Z x¼r

x¼0
� lffiffiffi

x
p dxdz � lim

r!0
Oðr1=2Þ ¼ 0; ð24Þ
where q = 1.0 for simplicity, and where the sign of the integrand depends upon the sign of uauxj;1 at h = ±p.
The terms in Eq. (17) have no dependence on the solution to the boundary-value problem—crack-face trac-

tions, auxiliary-displacement derivatives, q-values and the domain of integration are defined entirely by the

analyst. During numerical evaluation, as the number of integration points increases, standard Gauss quad-

rature converges slowly toward the exact value for a function with a singularity at one end point [28]. A

simple change of variables, detailed in Appendix C, leads to exact integration of Eq. (17) for elements with

straight edges incident on the crack front, and requires only minor modifications to the standard Gauss-

quadrature procedure. The modified Gauss integration, based on a 2 · 2 rule, leads to exact values of
Eq. (17) for elements with four and eight nodes on each face. For quadratic elements with quarter-point
nodes and straight edges, standard 2 · 2 Gauss quadrature integrates Eq. (17) exactly, and the change of
variables becomes unnecessary. The exact integration procedure described in Appendix C is used here only

for linear elements with loaded faces and incident on the crack front—standard 2 · 2 quadrature yields
accurate values for elements with loaded faces not incident on the crack front. Standard quadrature, based

on a four-point rule is adopted to evaluate Eq. (17) for elements with curved edges. Table 1 summarizes the

various integration schemes used to evaluate Eq. (17). Numerical results presented here demonstrate that

exact evaluation of Eq. (17) over elements incident on the crack front increases noticeably the accuracy of

stress intensity factors.
5. 3-D analyses of plane-strain and plane-stress configurations

This section discusses verification of the 3-D numerical procedures to evaluate Eq. (16) for through-

crack configurations with straight crack fronts. Finite element solutions for a standard boundary-layer

model [29] (details omitted for brevity) verify the correct computation of mixed-mode stress intensity fac-

tors in homogeneous materials under plane-stress, plane-strain and anti-plane-shear conditions. The pres-
ent finite element procedures yield the identical KI, KII and KIII values imposed on the remote boundary of

the model. Here, we focus on the analysis of a single-edge-notch tension, SE(T), specimen under plane-

strain conditions to illustrate the influence of the crack-face traction integral, Eq. (17).

Fig. 4(a) illustrates a semi-infinite strip subjected to crack-face tractions. Symmetry permits the analysis

of one-half of the specimen. The finite-element mesh shown in Fig. 4(b) discretizes the model with 8-noded



(a)
(b)

(c)

(d)

Fig. 4. (a) Schematic of a SE(T) specimen with crack-face tractions. (b) Symmetric mesh representing the cracked strip where

a/W = 0.4. (c) Detail of mesh in crack-front region showing 10 semi-circular rings and 10 sectors of elements. (d) Elements incident on

the crack front each have one collapsed face. Here, Le describes the size of elements incident on the crack front, and RD indicates

domain size.
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brick elements. Ten rings of elements surround the crack front, and 10 sectors of elements discretize the

crack-front region in the hoop direction as shown in Fig. 4(c). Fig. 4(d) shows the collapsed elements inci-

dent on the crack front; Le describes the size of elements incident on the crack front, and RD describes the

size of domains. For the domain of integration comprising the 10 elements immediately surrounding the

crack front in the current model, only one element of size Le/a = 0.0177 contributes to Eq. (17). With a

2 · 2 Gauss-quadrature rule, the ratio of numerical and exact values obtained from Eq. (17) for this element
reflects an error greater than 25%. Fig. 5 illustrates the very slow convergence of standard quadrature to-
ward the exact value of Eq. (17) with an increase in the number of quadrature points.

Fig. 6(a) shows the contribution to IðsÞ from each term in Eq. (16); recall that the second integral van-
ishes for a straight crack front. The error introduced by using standard 2 · 2 quadrature to evaluate Eq.
(17) for the element incident on the crack front remains significant for large domains, as shown in Fig.

6(b). Current results obtained using ‘‘standard’’ quadrature match closely the stress intensity factor values

obtained from ABAQUS 6.3 [31], also shown in Fig. 6(b). This figure shows that by following the proce-

dure in Appendix C to evaluate Eq. (17) exactly over the element incident on the crack front, the accuracy

of the stress intensity factor improves by about 1% from the solution obtained from standard 2 · 2
Fig. 5. Convergence of standard Gauss quadrature for evaluation of the crack-face traction integral, Eq. (17), for the element incident

on the crack front in the SE(T) model.



(a)

(b)

Fig. 6. (a) Normalized terms of the interaction integral vs. normalized domain size for the SE(T) specimen loaded by crack-face

tractions. (b) Normalized stress intensity factors vs. domain size for the SE(T) specimen obtained using standard and modified

quadrature for the surface integral, theoretical results and ABAQUS 6.3 [31].
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quadrature. The lowest curve in Fig. 6(b) illustrates the impact of omitting the crack-face-traction contri-

bution on the computed stress intensity factor values.
6. Curved cracks discretized by elements with piecewise-linear edges

Gosz et al. [18] and Kim et al. [16] compare stress intensity factors computed with and without the terms
in the second integral of Eq. (16). Stress intensity factors computed by Gosz et al. [18] for a flat, elliptical

crack embedded in an infinite homogeneous body under remote mode-I loading improve significantly when

crack-front-curvature terms are included. Kim et al. [16] demonstrate an improvement in stress intensity

factors when they employ the method of Gosz et al. [18] for a penny-shaped crack in a homogeneous cy-

linder loaded through remote displacements.

This section employs the interaction integral procedure described in Section 3 to compute mixed-mode

stress intensity factors along penny-shaped and elliptical cracks in homogeneous solids. Meshes used for

examples in this section have either linear or quadratic elements with straight edges along the crack front
(often produced by mesh generation programs). For domain-integral computations, local crack-front cur-

vature in the numerical model vanishes, and computations of r and h values in local rectangular coordinates
follow the descriptions in Section 4.2, Appendix B and Fig. 2(a) and (b). With this approach, gradients in
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the auxiliary field due to curvilinear coordinates do not appear, and the second integral of Eq. (16) vanishes

because it arises from the definition of 2-D auxiliary fields in a curvilinear coordinate system. This section

explores the accuracy of this simplified approach for the computation of mixed-mode stress intensity

factors.

6.1. Penny-shaped crack in an infinite solid under mixed-mode loading

Fig. 7 shows the problem of a circular crack in an infinite solid loaded by point forces above the crack

plane. Kassir and Sih [32] provide analytical stress intensity factor solutions for this problem (see Appendix

D.1), and the ABAQUS 6.3 benchmark manual contains mesh data and loading conditions which we use

here. Fig. 8(a) shows a cross-section of the mesh obtained from the ABAQUS 6.3 input file, which defines

10,260 8-noded hexagonal elements. Boundary conditions consist of one fixed node at each end of the cy-

linder axis; nodal forces P and R in Fig. 7 act with magnitude 400 MN at distance 0.33 above the crack
plane. Young�s modulus and Poisson�s ratio equal 200 GPa, and 0.3, respectively, and the ratio of cylinder
height, H, and diameter, D, to crack radius, a, are H/a = D/a = 80. Fig. 8(b) shows domains of 24 radial

sectors that discretize the crack front. Elements of size Le/a = 0.00129 having one collapsed face surround

the crack front, and the largest domain on which we compute values (domain five) has dimension

RD/a = 0.04. Thirty sectors discretize the cylinder in the radial direction about the z-axis, and we report

stress intensity factors computed at element corner nodes on the crack front.

At each crack-front location, an average of the interaction integral values obtained from domains two

through five yields stress intensity factors normalized as
Fig. 7.

point

P = R
Kn ¼
Ka3=2

P
ffiffiffi
p

p : ð25Þ
Fig. 9(a) shows normalized stress intensity factors along one-half of the crack front, obtained from present

computations and from the analytical solutions listed in Appendix D.1. Stress intensity factors generated by
(after Kassir and Sih, 1975) A penny-shaped crack in an infinite homogeneous solid loaded by point forces P and R acting at

x = 0, y = 0, z = b, and directed parallel to the x and z axes, respectively. For the ABAQUS 6.3 [31] benchmark model,

= 400.0 · 106, and b = 0.33.



(a)

(b)

Fig. 8. (a) Section view of cylindrical mesh representing an infinite body with an embedded penny-shaped crack (from ABAQUS 6.3

benchmark library [31]). Dimension ratios are H/a = D/a = 80. (b) View of mesh discretization in crack-front region. Seven cylindrical

domains with 24 sectors surround the crack front. For domain 1, Le/a = RD/a = 0.00129. For domain 5, RD/a = 0.04.
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the ABAQUS 6.3 interaction integral routines match current values for this case and do not appear in the

figure. We also examine stress intensity factors obtained using the mesh shown in Fig. 8(a) following con-

version to 20-noded hexagonal elements. Here again, element edges are straight, and thus local crack-front
curvature is zero. Computations employ reduced 2 · 2 · 2 integration and collapsed elements with quarter-
point nodes incident on the crack front. Fig. 9(a) shows the variation in stress intensity factors obtained

using the higher-order elements.

Fig. 9(b) compares energy release rate values generated using the interaction integral, the J-integral for-

mulation described by Eq. (2), and the analytical solutions contained in Appendix D.1. Eq. (19) converts

stress intensity factors to equivalent J-values. Normalization of J-integral values shown in Fig. 9(b) follows:
Jn ¼
JEa3

P 2
: ð26Þ
The mesh of 20-noded elements leads to improved accuracy. This figure demonstrates that the accuracy of
interaction integral computations along a curved crack front using a model with zero local curvature

matches the high accuracy of J-integral computations which here do not include effects from crack-front

curvature. Close agreement between results computed using the interaction integral, the J-integral, and ana-

lytical expressions indicates that excellent accuracy for this problem may be achieved by measuring r and h
from straight element edges as described in Section 4.2.



(a)

(b)

Fig. 9. (a) Normalized stress intensity factor values along the front of a penny-shaped crack under mixed-mode loading due to point

forces P and R. (b) Normalized values of energy release rate determined from the J-integral, interaction integral values and analytical

solutions.
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6.2. An infinite solid with a flat elliptical crack under tension

Curvature effects may be more significant for elliptical cracks than for penny-shaped cracks. In this sec-

tion, the computation of mode-I stress intensity factors along the front of a flat elliptical crack in a homo-
geneous solid supports a comparison between interaction integral results by Gosz et al. [18], J-integral

results, and analytical values. Crack-face pressure provides loading conditions for the present analysis, giv-

ing additional insight into the influence of the surface-traction integral in Eq. (17). This example, and the

corresponding problem in Gosz et al. [18], employ linear, 8-noded hexagonal elements. Gosz et al. [18] com-

pute r and h from an analytically-defined curve that describes the crack front; and thus include auxiliary

field terms reflecting local curvilinear coordinates that appear in the second integral of Eq. (16). Here, com-

putations of r and h values use local orthogonal coordinates as described in Section 4.2 with crack front
geometry defined by the element mesh.
The large rectangular specimen contains an embedded elliptical crack. The crack has a semi-minor-axis

to semi-major-axis ratio of a/c = 0.4. To allow for arbitrary crack-face tractions, a full mesh is used here

and consists of 26,504 8-noded brick elements. Fig. 10(a) shows one eighth of this mesh of size L/c = 10.

Along the crack front shown in Fig. 10(b), evaluation of the interaction integral occurs over domains

including elements incident on corner nodes along the crack front. Elements with collapsed faces surround

the crack front, and have dimension Le/a = 0.0165. Ten sectors and seven rings of elements discretize the

region surrounding the crack. Here, we report the average of stress intensity factors computed using do-

mains two through five at each crack front location.



(a)

(b)

Fig. 10. (a) One eighth of the mesh defined to model a planar, elliptical crack in an infinite solid. Loading includes crack-face pressure

and crack-face shear. The full mesh includes 26,504 8-noded brick elements. (b) View of mesh in crack-front region, where 7 rings

divided into 20 sectors surround the crack front. Ratios L/c = 10, and a/c = 0.4.
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Irwin [33] derives an analytical expression for the mode-I stress intensity factor along the front of an

elliptical crack in an infinite solid under tension:
KI ¼ r0

ffiffiffiffi
p
Q

r
a
c

� �
a2cos2/ þ c2sin2/
� �1=2

; ð27Þ
where r0 is the remote uniform tensile stress, 2c and 2a are the major and minor axis lengths of the ellipse,
parametric angle / defines the crack-front location as described in Fig. 11, and

ffiffiffiffi
Q

p
is a complete elliptic

integral of the second kind equal to ‘/4c, where ‘ is the arc length of the ellipse. Merkle [34] discusses a
commonly-used approximate expression for Q, which for a/c 6 1 is [30]
Q ¼ 1þ 1:464 a
c

� �1:65
: ð28Þ
The standard normalization of stress intensity factors for elliptical cracks follows:
KIn ¼
KI

S
ffiffiffiffi
pa
Q

q ; ð29Þ
where S = r0 for tension loading.



(a)

(b)

Fig. 12. (a) Comparison of numerical and analytical mode-I stress intensity factors along a flat elliptical crack loaded by crack-surface

pressure in an infinite solid. (b) Comparison of J-integral values with energy release-rate values computed from interaction integral.

Fig. 11. Description of parametric angle /, on an elliptical crack front where a/c 6 1.0. Angle x describes the direction of crack-face
shear loading, represented by T.
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Fig. 12(a) shows the normalized mode-I stress intensity factors obtained from Eqs. (16) and (27)

for crack-face pressure loading. With exact integration of the crack-face traction integral over the element

incident on the crack front, the numerical result at all crack-front locations agrees to within 1% of the
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analytical expression. With standard Gauss quadrature evaluation of Eq. (17), results are within 2.5% of

theoretical values, and agree very closely with values generated by ABAQUS 6.3 [31]. Numerical results

are accurate even along the more highly-curved portion of the crack front, whereas better path-indepen-

dence of stress intensity factors occurs in areas of smaller curvature.

Fig. 12(b) compares KI-values computed with the interaction integral to J-values computed using Eq.
(2). Excellent agreement exists between interaction integral and J-integral values. Here, J-integral compu-

tations do not involve curvilinear coordinates as in Fernlund et al. [21]. Excellent overall accuracy and good

correspondence between J-integral and interaction integral results for this problem imply that the use of

straight-edged elements to discretize curved cracks essentially eliminates the influence of local crack-front

curvature on interaction integral computations. Straight element edges enable simple computations of r and

h from local orthogonal coordinate systems, eliminate auxiliary-field gradients that arise due to curvilinear
coordinates, and cause the second integral in Eq. (16) to vanish. Results in Fig. 12(a) and (b) demonstrate

the accuracy that can be achieved through this approach, and an additional example further illustrates its
usefulness for mixed-mode loading cases.

6.3. An infinite solid with a flat elliptical crack under shear

Application of tractions parallel to the faces of the elliptical crack described in Section 6.2 generates

mode-II and mode-III loading. Computed stress intensity factors verify the accuracy of interaction integral
(a)

(b)

Fig. 13. Normalized analytical and numerical stress intensity factor values along the front of a flat elliptical carrying crack-face shear

in an infinite solid. Crack-face shear induces loading in modes II and III for (a) shear parallel to the major axis (x = 0); (b) shear
parallel to the minor axis (x = 90).
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procedures for mixed-mode loading of a curved crack modeled with straight finite elements along the front.

Evaluation of the interaction integral at each crack-front location again leads to reported values obtained

from the average of domains 2–5.

Kassir and Sih [35] derive analytical expressions for stress intensity factors along the front of elliptical

cracks under uniform shear loading, included here in Appendix D.2 for convenience. Fig. 11 illustrates the
orientation of crack-face shear according to angle x. At the ends of the major axis, mode-II stress intensity
factors vary most rapidly for x = 0, and mode-III stress intensity factors vary most rapidly when x = 90�.
We therefore examine stress intensity factors for these two cases.

Fig. 13(a) and (b) shows the variation of normalized stress intensity factors along the crack front from / =
0 to / = 90�. Normalization of the stress intensity factors follows Eq. (29), where S equals the magnitude of
the uniform shear stress. Stress intensity factors show a maximum deviation of approximately 2.5% from

theoretical values for standard quadrature evaluation of the crack-face traction integral over the elements

incident on the crack front. Exact integration over these elements improves significantly the accuracy of
stress intensity factors. This example demonstrates again that the interaction integral can yield very accu-

rate results for curved cracks with zero local curvature in the model when the computation of r and h values
refers to local orthogonal coordinates. We now examine interaction integral results computed for curved

cracks with non-zero local curvature in the model.
7. Analysis of cracks modeled with curved elements along front

When elements with curved edges discretize the crack front, non-zero local curvature in the model re-

quires the use of curvilinear coordinates to compute accurate values of r and h to evaluate the auxiliary
fields. In these cases, the second integral of Eq. (16) is non-zero, and the gradients of some auxiliary fields

involve terms that reflect explicitly the local curvature of the crack front [18]. This section examines the

accuracy of stress intensity factors computed after omitting curvature terms during computation of the

interaction integrals.

7.1. An infinite solid with a flat penny-shaped crack under tension

A cylindrical mesh with a penny-shaped crack under tension represents a standard problem to explore the

influence of crack-curvature terms on the interaction integral. Fig. 14(a) shows the cross section of a mesh

composed of 16,480 20-noded brick elements. A Young�s modulus of 30,000 and Poisson�s ratio of 0.3 de-
scribe material properties. The ratios of mesh heightH and diameterD to crack radius a areH/a = D/a = 80.

This cylindrical mesh has 20 sectors of elements surrounding the axis of symmetry, and domains surrounding

the crack front are divided into 24 sectors, as seen in Fig. 14(b). Elements surrounding the crack front have a

size of Le/a = 0.00129 with one collapsed face and quarter-point nodes on edges normal to the front. Two
models following the above description provide insight into the difference between stress intensity factors

generated using a mesh with straight and curved elements incident on the crack front. For the mesh with

straight edges, computations of r and h in this section follow the procedure described in Appendix B which
uses local orthogonal coordinates. For the mesh with curved elements, computations of r and h use curvi-
linear coordinates along the analytically-defined curve representing the crack front.

Uniform crack-face pressure r0 imposes mode-I loading, and stress intensity factors computed at each
crack-front location lead to reported stress intensity factor values obtained by averaging values from do-

mains two through five. Normalization of stress intensity factors follows as:
KIn ¼
KI

r0
ffiffiffiffiffiffi
pa

p : ð30Þ



(a)

(b)

Fig. 14. (a) Section view of cylindrical mesh representing an infinite body with a penny-shaped crack. 16,480 20-noded hexagonal

elements comprise the mesh. Dimensions are H/a = D/a = 80. (b) View of mesh in crack-front region.
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Table 2 shows very good agreement among stress intensity factors obtained using the interaction integral in

Eq. (16), the standard J-integral (Eqs. (2), (19)), analytical solutions for an infinite body, and asymptotic

expressions for a finite cylinder. The asymptotic expression for stress intensity factors corresponds to a pen-

ny-shaped crack of radius a in a finite homogeneous cylinder of radius b = D/2 loaded in tension. The

asymptotic solution is [36]
KI ¼
2N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� a=bÞ

p
p3=2ðb2 � a2Þ

1þ 1
2

a
b
� 5
8

a2

b2
þ 0:421 a

3

b3

� �
; ð31Þ
where N is the normal force acting on the cylinder. When the crack size shrinks to zero, i.e. a/b ! 0, this

expression reduces to the stress intensity factor for a penny-shaped crack in an infinite body under tension [32]
KI ¼
2

p
r0

ffiffiffiffiffiffi
pa

p
; ð32Þ
where r0 is the remote tensile stress, equal to N/pb2 for the finite cylinder, or the crack-face-opening pres-
sure for an infinite cylinder.

The mesh with curved elements yields more accurate interaction integral and J-integral results than the

mesh with straight-edged elements. The straight-edge mesh includes zero error from the crack-face traction

integral, while the value from the mesh with curved edges includes some error due to the inexact 4 · 4 quad-
rature employed to integrate Eq. (17). A comparison of numerical results generated from the two meshes



Table 2

Normalized stress intensity factors for a penny-shaped crack in an infinite homogeneous solid under torsion and tension, illustrated in

Figs. 3 and 14

Loading Source Result % Difference

Tension KIn Infinite body [32] 0.6366 –

Finite cylinder [36] 0.6366 0.00

Interaction integral (straight edges) 0.6299 �1.05
From J-integral (straight edges) 0.6309 �0.90
Interaction integral (curved edges) 0.6316 �0.79
From J-integral (curved edges) 0.6348 �0.28

Torsion KIIIn Infinite body [32] 0.4244 –

Finite cylinder [36] 0.4244 0.00

Interaction integral (straight edges) 0.4268 +0.57

From J-integral (straight edges) 0.4307 +1.48

Interaction integral (curved edges) 0.4194 �1.18
From J-integral (curved edges) 0.4228 �0.38

Normalization follows KIn ¼ KI r0
ffiffiffiffiffiffi
pa

pð Þ for tension, and for torsion, KIIIn ¼ KIII=ðs0
ffiffiffiffiffiffi
pa

p Þ, where s0 = 2Ta/(pb
4).
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indicates that the combined influence of the curvature terms in the auxiliary field and the second integral of

Eq. (16) must be less than �1.0% for this problem.

7.2. An infinite solid with a flat penny-shaped crack under torsion

The meshes employed in Section 7.1 also enable computation of mode-III stress intensity factors for

cracks in a homogeneous cylinder under torsion. Boundary conditions for torsion loading include nodal

loads and one fixed node at each end of the cylinder (see Fig. 14(a)). Assignment of a high Young�s modulus
to the layer of elements at both ends of the cylinder ensures a uniform distribution of torsional stresses.

Other regions of the mesh have a Young�s modulus of 30,000 and a Poisson�s ratio of 0.3. We again report
stress intensity factor values obtained from the average of domains two through five.

Table 2 shows good agreement between stress intensity factors obtained from the interaction integral,

the J-integral, analytical solutions for an infinite body and asymptotic expressions for a finite cylinder.

An expression for the mode-III stress intensity factor along a penny-shaped crack of radius a, in a finite

homogeneous cylinder of radius b = D/2, loaded in torsion is [36]
KIII ¼
8Ta3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a=b

p
3p3=2ðb4 � a4Þ

1þ 1
2

a
b
þ 3
8

a2

b2
þ 5

16

a3

b3
� 93

128

a4

b4
þ 0:038 a

5

b5

� �
; ð33Þ
where T is total torque. When the crack size shrinks to zero, i.e. a/b ! 0, this expression reduces to
KIII ¼
4

3p
2Ta

pb4
ffiffiffiffiffiffi
pa

p
: ð34Þ
For torque T applied to an uncracked cylinder of radius b = D/2, the quantity s0 = 2Ta/pb
4 equals the mag-

nitude of the linearly-varying shear stress, s, at distance r = a from the longitudinal axis. For the perturbed

problem, in which loading conditions consist of crack-face tractions rather than far-field loads, s = 2Tr/pb4

defines the linearly-varying shear tractions applied to the crack faces between r = 0 and r = a. For a line-

arly-varying traction applied on the crack face to generate torsional loading (magnitude s0 at a), the stress
intensity factor for a penny-shaped crack in an infinite body is [32]
KIII ¼
4

3p
s0

ffiffiffiffiffiffi
pa

p
: ð35Þ
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Normalization of KIII follows:
KIIIn ¼
KIII

s0
ffiffiffiffiffiffi
pa

p : ð36Þ
As Table 2 shows, the stress intensity factor computed from the interaction integral is slightly more accu-

rate when the model crack front has straight elements, but computations from the J-integral improve in

accuracy for the mesh with curved front elements. The curvature terms omitted from the interaction inte-

gral may play a greater role for the torsion loading here than for the tension loading. Nevertheless, errors

introduced by approximate evaluations of the interaction integral (that omit curvature terms) remain

less than 2% for this example. This investigation gives an idea of the good accuracy that can be achieved

using the simpler, standard expression, and lends support to investigations (e.g. [9]) that employ this
approach.
8. Summary and conclusions

This work describes an interaction integral formulation and computational procedure applicable to com-

pute mixed-mode, stress intensity factors for curved, planar 3-D cracks in homogeneous solids under re-

mote mechanical loading and applied crack-face tractions. The described procedures adapt readily into
existing 3-D codes that utilize a domain-integral formulation to compute J-integral values. The commonly

adopted, 2-D Williams solutions for the mixed-mode, auxiliary field in the interaction integral does not sat-

isfy equilibrium or strain–displacement compatibility when expressed in curvilinear coordinates used for

curved crack fronts, thereby leading to additional terms in the interaction integral. A potentially significant

contribution to the interaction integral arises when the otherwise traction-free crack faces have applied

loads. Through numerical solutions for several 3-D crack configurations, this work explores the significance

of the additional (curvature) terms on computed stress intensity factors relative to the various techniques

often employed to mesh the cracked geometry (linear vs. quadratic elements, straight vs. curved elements
along the crack front). These examples also explore the significance on stress intensity factors of loadings

(tractions) applied directly on the crack faces.

Evaluation of the interaction integral requires values for the auxiliary fields at integration points for ele-

ments within a domain defined at a crack-front location. The singular nature of the auxiliary fields at the

crack front necessitates highly accurate values for the crack tip coordinates (r,h) of the integration points—
otherwise auxiliary field values become grossly incorrect. The use of straight or curved finite elements along

the crack front dictates the choice of algorithms to compute the (r,h) values. For curved front elements, an
iterative Newton procedure, coupled with an analytical definition for the local crack-front geometry, is
often adopted. We show here that such a procedure may introduce unacceptable errors for crack fronts

modeled with straight elements, and thus describe an alternative procedure to compute accurate values

for (r,h) using a local, orthogonal coordinate system for each straight element incident on the crack front.
The use of elements with straight edges (linear or quadratic) along the crack front, coupled with the new

procedure to compute (r,h) values at integration points, eliminates the additional terms appearing in the
interaction integral formulation for curvilinear coordinates. Numerical evaluation of the interaction inte-

gral becomes identical to that for an entirely straight crack front. The stress intensity factors computed here

for models constructed with straight elements along curved crack fronts agree very closely with correspond-
ing values obtained through the J-integral and with available analytical solutions. The use of quadratic ele-

ments (with straight edges) provides some additional increase in the solution quality compared to an

identical mesh of linear elements.

The examples here using curved (quadratic) elements along the crack front omit terms in the interaction

integral that arise from the definition of auxiliary fields in curvilinear coordinates. Comparisons of com-
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puted stress intensity factors with corresponding J-integral values and with analytical solutions demon-

strate that this simpler interaction integral method yields highly accurate values for curved cracks with rea-

sonable levels of mesh refinement that also provide accurate J-values.

The curvature terms appearing in the interaction integral appear to have an effect similar to the use of

higher-order interpolation functions (p-version mesh refinement). Higher-order elements may improve the
accuracy of a solution for a boundary-value problem by representing more realistically the gradients in field

quantities. Similarly, auxiliary-field terms that arise due to curvilinear coordinates represent a more accu-

rate description along a curved crack, and thus improve interaction integral results. However, as normal

mesh refinement reduces element size (h-version mesh refinement), linear elements represent accurately

the gradients present in the actual fields, and the relative influence of curvature terms must diminish.

The influence of curvature terms in the interaction integral may be significant in some meshes [18], but very

small in others, as shown here. The analyses described here demonstrate that omission of auxiliary-field and

interaction integral terms arising from crack-front curvature simplifies the computation of interaction inte-
grals and yields accurate stress intensity factors with reasonable levels of mesh discretization.

Finally, the numerical examples demonstrate clearly the important contribution from the crack-face

integral in models with traction-bearing crack faces. For good accuracy and path-independent stress inten-

sity factors, the crack-face traction integral should be included. The exact integration procedure developed

here for use with straight-sided crack-front elements provides a simple approach to increase the accuracy of

computed stress intensity factors.
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Appendix A

A.1. Auxiliary fields

Auxiliary fields employed here follow the 2-D analytical solutions obtained by Williams [1] for asymp-

totic stresses and displacements near a crack tip [30]:
raux11 ¼ 1ffiffiffiffiffiffiffi
2pr

p KauxI cos
h
2
1� sin h

2
sin
3h
2

� �
� KauxII sin

h
2
2þ cos h

2
cos

3h
2

� �	 

; ðA:1Þ

raux22 ¼ 1ffiffiffiffiffiffiffi
2pr

p KauxI cos
h
2
1þ sin h

2
sin
3h
2

� �
þ KauxII sin

h
2
cos

h
2
cos

3h
2

	 

; ðA:2Þ

raux12 ¼ 1ffiffiffiffiffiffiffi
2pr

p KauxI cos
h
2
sin

h
2
cos

3h
2
þ KauxII cos

h
2
1� sin h

2
sin
3h
2

� �	 

; ðA:3Þ
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raux13 ¼ � KauxIIIffiffiffiffiffiffiffi
2pr

p sin
h
2
; ðA:4Þ

raux23 ¼ KauxIIIffiffiffiffiffiffiffi
2pr

p cos
h
2
; ðA:5Þ

raux33 ¼
mðraux11 þ raux22 Þ plane strain;

0 plane stress;

�
ðA:6Þ

uaux1 ¼ 1

2l

ffiffiffiffiffiffi
r
2p

r
KauxI cos

h
2

j � 1þ 2sin2 h
2

� �
þ KauxII sin

h
2

j þ 1þ 2cos2 h
2

� �	 

; ðA:7Þ

uaux2 ¼ 1

2l

ffiffiffiffiffiffi
r
2p

r
KauxI sin

h
2

j þ 1� 2cos2 h
2

� �
� KauxII cos

h
2

j � 1� 2sin2 h
2

� �	 

; ðA:8Þ

uaux3 ¼ KauxIII
l

ffiffiffiffiffi
2r
p

r
sin

h
2
; ðA:9Þ
where m and l are, respectively, Poisson�s ratio and the shear modulus, and
j ¼
3� 4m plane strain
3�m
1þm plane strain:

(
ðA:10Þ
Appendix B

B.1. Computation of r and h for crack fronts with straight element edges

The following steps describe one procedure to compute r and h for curved, planar crack fronts defined by
elements with straight edges. Definitions use coordinates in the local crack front coordinate system shown

in Fig. 1, and the notation described in Fig. 2(a) and (b):

(1) Determine the crack-front segment nearest the integration point, and obtain coordinates of the nodes

at each end of the segment. Call these points A and B, where B has the larger value of X3.

(2) Use element shape functions to determine the coordinates of the integration point P in the local crack-

front system, (Xp
1;X

p
2;X

p
3)
Xp
i ¼

Xn
I¼1

NIðX iÞI : ðB:1Þ
(3) The area of the parallelogram defined by AB and AP equals the magnitude of the cross product of AB

and AP, or kAB · APk. Compute height r of the parallelogram as the area divided by the length of the
base AB:
r ¼ kAB� APk
kABk : ðB:2Þ
Point C is the projection of integration point P onto the crack plane, which is the X1–X3 plane. In

local coordinates, C ¼ ðXp
1; 0;X

p
3Þ. Point D is the point on segment AB closest to point C. Angle



M.C. Walters et al. / Engineering Fracture Mechanics 72 (2005) 1635–1663 1659
PDC defines h. The plane PDC on which r is defined, coincides with the local X1–X2 plane only for

straight crack fronts. Fig. 2(b) illustrates quadrants of a coordinate system in the plane defined by

points PDC, with point D at the origin, and segment DC orthogonal to the local X2-axis. Computa-

tion of h involves two additional steps:
(4) Use Xp

2 to determine if P lies above or below the crack plane, and use the sign of cross product
AB · AC to determine whether the integration point is ahead of or behind segment AB.

(5) For quadrants I–IV illustrated in Fig. 2(b), compute h as
I: h ¼ sin�1 Xp
2

r

� �
; II: h ¼ 180� � sin�1 XP

2

r

� �
; ðB:3Þ

III: h ¼ �180� � sin�1 XP
2

r

� �
; IV: h ¼ sin�1 XP

2

r

� �
: ðB:4Þ
For the crack-face-traction integral where h = ±p, the sign of the X2-coordinate of the centroid of the

loaded element conveniently indicates the sign of h.
Appendix C

C.1. Exact integration of crack-face-traction integral for elements incident on the crack front having

straight edges

A change of variables permits the exact integration of Eq. (17). For a 1-D function f(r) with an inverse

square-root singularity at one boundary of the domain of integration, the substitution of t ¼
ffiffi
r

p
, removes

the singularity [37]
Z b

a
f ðrÞdr ¼

Z ffiffiffiffiffiffi
b�a

p

0

2tf ðt2 þ aÞdt ðb > aÞ: ðC:1Þ
For example, define f ðrÞ ¼ 1=
ffiffi
r

p
, and assign integration limits a and b as r = 0 and r = Le, the length of

an element adjacent to the crack front, illustrated in Fig. 4(d). The relationship t2 = r leads to f(t2 + a) = 1/t,

giving
Z Le

0

1ffiffi
r

p dr ¼
Z ffiffiffiffi

Le
p

0

2t
1

t
dt ¼

Z ffiffiffiffi
Le

p

0

2dt ¼ 2
ffiffiffiffiffi
Le

p
; ðC:2Þ
which is the exact result. To evaluate Eq. (17) over a flat 2-D surface where coordinate z is tangent to the

crack front, f(z,r) includes traction values, tj, auxiliary-displacement derivatives, uauxj;1 , and q-function values.

Standard Gauss quadrature is adequate to integrate exactly in the z-direction.

To implement the above procedure numerically, a change of variables in parent (natural, intrinsic) coor-

dinates is performed. From (C.1), we have
Z 1

�1

Z 1

�1
f ðn; gÞdgdn ¼

Z 1

�1

Z ffiffi
2

p

0

2tf ðn; t2 � 1Þdtdn; ðC:3Þ
where the inverse square-root singularity of f(n,g) in parent coordinates corresponds to the lower integra-
tion boundary g = �1. In Eq. (C.3) and in the steps that follow, we assume that parent coordinate n is tan-
gent to the crack front, and that g corresponds to distance r from the crack front. Integrands in Eq. (C.3)
include traction values, tj, auxiliary-displacement derivatives, uauxj;1 , q-function values, and the determinant

of the coordinate Jacobian, detJ.
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In order to apply a Gauss quadrature rule formulated for the interval [�1,1], to the inner integral of Eq.
(C.3) over interval [0;

ffiffiffi
2

p
], it is necessary to employ the standard transformation [28]
t ¼ b� a
2

g þ bþ a
2

; ðC:4Þ
where a and b are the new limits of integration, 0 and
ffiffiffi
2

p
, respectively. Eq. (C.4) gives
t ¼ 1ffiffiffi
2

p ðg þ 1Þ and
dt
dg

¼ 1ffiffiffi
2

p ; ðC:5Þ
and the quadrature for Eq. (C.3) over one element face becomes
1ffiffiffi
2

p
Xgpts
p

2tf ðn; t2 � 1Þwp; ðC:6Þ
where the summation includes all Gauss integration points at parent coordinates (n,t), where Eq. (C.5) de-
fines t. Weights wp in Eq. (C.6) correspond to the standard Gauss-quadrature rule formulated over interval

n = g = [�1,1], and 1=
ffiffiffi
2

p
is the Jacobian of the interval transformation, or dt/dg in (C.5).

The following steps describe the procedure for evaluating Eq. (17) through the quadrature described by

Eq. (C.6).

(1) Collect data for element faces and nodes (coordinates, q-values, tractions etc.).

(2) Loop over integration points. A 2 · 2 quadrature rule yields exact results for the constant face trac-
tions employed in this study.

(3) For the current integration point, obtain weight wp, and parent coordinates (n,g) based on a standard
rule for the interval n = g = [�1,1].

(4) Shift the value of g according to Eq. (C.5): gnew ¼ t ¼ 1=
ffiffiffi
2

p
ðg þ 1Þ.

(5) Redefine g as in Eq. (C.3): g = (gnew)
2�1.

(6) Evaluate standard element shape functions, shape-function derivatives, the coordinate Jacobian

matrix, and the determinant of the coordinate Jacobian matrix, det J, using the standard value for

n, and the value of g obtained from step 5.

(7) Use element shape functions to determine the local coordinates, (Xp
1;X

p
2;X

p
3), of the current integra-

tion point, and the q-value and traction value at the integration point.

(8) Compute distance r and angle h = ±p from the crack front to the integration point based on the coor-
dinates determined in step 7.

(9) Evaluate the auxiliary-displacement derivative uauxj;1 using l, r and h from the previous step, and 1.0 for
the stress intensity factor.

(10) Evaluate the integrand in Eq. (C.6) as: wp � qðn; gÞ � tjðn; gÞ � uauxj;1 ðn; gÞ � det J, where summation is
implied by the repeated index, and g follows from step 5.

(11) Complete the quadrature in Eq. (C.6) by multiplying the result of step 10 by 1=
ffiffiffi
2

p
� 2gnew.

(12) Sum contribution from integration point, and cycle to next point.

In steps 1–12, only steps 4, 5 and 11 differ from standard quadrature procedures. Examples in Sections 5

and 6 demonstrate that including these three simple steps to integrate Eq. (17) exactly, may markedly

improve the accuracy of stress intensity factors. Steps 4, 5 and 11 are required for the exact integration

of Eq. (17) for 8-noded elements with four nodes on each face, and for 20-noded elements with 8 nodes

on each face. When quarter-point elements border the crack front, steps 4, 5 and 11 should not be employed

because the quarter-point nodes cause standard quadrature to integrate Eq. (17) exactly. Standard Gauss
quadrature provides good accuracy for elements not incident on the crack front.
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Appendix D

D.1. Stress intensity factors for a penny-shaped crack loaded by point forces

Kassir and Sih [32] provide analytical solutions for the stress intensity factors around a penny-shaped
crack in an infinite homogeneous medium loaded by point forces above the crack plane. Fig. 7 illustrates

the geometry and nomenclature used in the following expressions. For point-load P, which acts parallel to

the x-axis at distance b from the crack plane, the stress intensity factors are
KI ¼
P cos h

4p3=2ð1� mÞa3=2 ð1� 2mÞ cot�1z0 �
z0

ð1þ z20Þ

� �
� 2z0
ð1þ z20Þ

2

" #
; ðD:1Þ

KII ¼
P cos h

4p3=2ð1� mÞð2� mÞa3=2 3ð1� mÞð1� 2mÞz0 cot�1z0 �
z0

1þ z20

	 

þ 2

1þ z20
2ð1� m2Þ � ð2� mÞz20

1þ z20

	 
� �
;

ðD:2Þ

KIII ¼
ð1� 2mÞP sin h
4p3=2ð2� mÞa3=2 3� 3z0cot

�1z0 þ
1

1þ z20

	 

; ðD:3Þ
where constant z0 = b/a. Here, the sign of Eq. (D.3) agrees with the definition of auxiliary displacement u3
(Eq. (A.9)), as defined in the crack-front coordinate system shown in Fig. 1. For point force R, which acts

parallel to the z-axis at distance b from the crack plane, the stress intensity factors are
KI ¼ � R
2p3=2ð1� mÞa3=2

1

1þ z20

� �
1� m þ z20

1þ z20

	 

; ðD:4Þ

KII ¼
R

4p3=2ð1� mÞa3=2 ð1� 2mÞ z0
1þ z20

� cot�1z0
	 


� 2z0

1þ z20ð Þ2

( )
; ðD:5Þ

KIII ¼ 0: ðD:6Þ
D.2. Stress intensity factors for an elliptical crack under shear in an infinite body

Kassir and Sih [35] obtain expressions for mode-II and mode-III stress intensity factors along the front

of a shear-loaded, flat elliptical crack in a homogeneous solid. Fig. 11 illustrates the measurement of crack-
front location /, and the orientation x of shear loading with respect to the axes of the ellipse. Expressions
for the mode-II and mode-III stress intensity factors at location /, are [35]
KII ¼ � 4l

ðcaÞ3=2
a2sin2/ þ b2cos2/
� ��1=4ðcB sin/ þ aA cos/Þ; ðD:7Þ

KIII ¼
4lð1� mÞ
ðcaÞ3=2

a2sin2/ þ b2cos2/
� ��1=4ðcA sin/ � aB cos/Þ; ðD:8Þ
where l is the shear modulus, and quantities A and B equal
A ¼ ca2k2T cosx

4l ðk2 � mÞEðkÞ þ mk02KðkÞ
� � ; ðD:9Þ
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B ¼ ca2k2T sinx

4l k2 þ mk02
� �

EðkÞ � mk02KðkÞ
� � ; ðD:10Þ
where
k2 ¼ 1� a
c

� �2
and k2 þ k02 ¼ 1: ðD:11Þ
Solutions to complete elliptical integrals of the first and second kinds, represented, respectively, by E(k) and

K(k), are available through many commercial mathematical software packages, and are tabularized in stan-

dard references such as Abramowitz and Stegun [38].
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