INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2005; 62:122-157

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nme.1195

On hypersingular surface integrals in the symmetric Galerkin
boundary element method: application to heat conduction in
exponentially graded materials

Alok Sutradhar!, Glaucio H. Paulino’>* T and L. J. Gray?

'\Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois
at Urbana-Champaign, Newmark Laboratory, 205 North Mathews Avenue, Urbana, IL 61801, U.S.A.
2Qak Ridge National Laboratory, Computer Science and Mathematics Division, Oak Ridge National

Laboratory, Bldg 6012, Oak Ridge, TN 37831, U.S.A.

SUMMARY

A symmetric Galerkin formulation and implementation for heat conduction in a three-dimensional
functionally graded material is presented. The Green’s function of the graded problem, in which
the thermal conductivity varies exponentially in one co-ordinate, is used to develop a boundary-only
formulation without any domain discretization. The main task is the evaluation of hypersingular and
singular integrals, which is carried out using a direct ‘limit to the boundary’ approach. However,
due to complexity of the Green’s function for graded materials, the usual direct limit procedures
have to be modified, incorporating Taylor expansions to obtain expressions that can be integrated
analytically. Several test examples are provided to verify the numerical implementation. The results of
test calculations are in good agreement with exact solutions and corresponding finite element method
simulations. Copyright © 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The symmetric Galerkin boundary element method (SGBEM) has emerged as a powerful nu-
merical method in computational mechanics in recent years. The formulation possesses the at-
tractive feature of producing a symmetric coefficient matrix [1-3] and, in addition, the Galerkin
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approximation allows standard continuous C° elements to be used for evaluation of hypersin-
gular integrals. These properties make the SGBEM suitable for coupling with the popular
finite element method (FEM) [4]. The Galerkin technique has the important property of ‘local
support’ that is especially suitable for treating corners, including the Dirichlet corners [5].

Although the development of the SGBEM started in the last decade, most of the computational
implementations have concentrated in two-dimensional (2D) problems [6—9], however, recently
a number of three-dimensional (3D) implementations have also been reported [10—13], mostly
limited to homogeneous media. A review of various applications of the SGBEM can be found in
the paper by Bonnet er al. [4], among others. The present paper emphasizes non-homogeneous
media as described below.

Functionally graded materials or FGMs are those in which the composition and the volume
fraction of constituents vary gradually, giving a non-uniform microstructure with continuously
graded macroproperties (e.g. specific heat, conductivity, density). For instance, one face of
a structural component (plate or cylinder) may be an engineering ceramic that can resist
severe thermal loading, and the other face may be a metal to maintain structural strength and
toughness. A comprehensive treatment of the science and technology of FGMs can be found in
the book by Miyamoto et al. [14], and in the review article by Paulino et al. [15]. The present
work is concerned with the SGBEM formulation for heat transfer in FGMs. The Galerkin
(non-symmetric) formulation for FGMs using the singular boundary integral equation has been
examined by Gray et al. [16] for steady-state problems, and by Sutradhar et al. [17,18] for
transient problems. A dual reciprocity boundary element method applied to heat conduction for
FGMs has been reported by Tanaka et al. [19]. Chen [20, 21] has developed a collocation-based
BEM for Darcy’s flow with spatial variation of permeability and has presented closed-form
Green’s functions for various permeability functions.

One of the challenges in a 3D-SGBEM formulation is the evaluation of singular double
surface integrals (four-dimensional integrals in parametric space). In a Galerkin approximation,
the integration is carried out with respect to both the field point and the source point. For
a numerical implementation, this means that the integrals are evaluated for every pair of
elements. Singular integrals occur as the Green’s function and its derivatives diverge when the
field point approaches the source point. An integral is therefore singular if the elements are
coincident, or are adjacent, sharing either an edge or a vertex. The required double integrations
of hypersingular kernel functions have in a way limited the implementations of the SGBEM.
In a broad sense, the strategies proposed to address such class of problems can be classified
as regularization, finite part, and direct approach. The regularization techniques employ many
procedures such as use of simple solutions, and application of Stokes theorem [10,22,23].
The finite part approach is based on extracting the principal value of the singular integral, and
direct evaluation based on multiple analytic integration [24-27]. A direct approach [28,29],
using neither Stokes theorem nor finite-part integral, is revisited and adopted herein. As previous
papers [28,29] only considered the simple Laplace equation, one of the goals of this work is
to demonstrate that the direct ‘limit to the boundary’ approach works very well for evaluating
the singular and hypersingular integrals for the special FGM Green’s function. This approach
is also helpful to treat other complicated Green’s functions.

In this paper, a SGBEM for heat conduction for FGMs is formulated. The implementation
is a pure boundary-only formulation without any domain integral. It relies on the Green’s
function (GF) for the partial differential equation incorporating the material gradation. A direct
treatment of the hypersingular double integrals using a hybrid analytical/numerical approach
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is presented. In order to handle the complexity of the FGM Green’s function, the direct limit
approach of Reference [29] needs to be modified. This direct limit approach is shown to be
suitable for dealing with complicated Green’s functions, which appear in applications such as
those involving FGMs.

The remaining sections of this paper are organized as follows. First, the Green’s function and
the governing equation for the FGM problem are presented. Second, the symmetric Galerkin
formulation is shown. Next, the evaluation of hypersingular integrals is described. Afterwards,
examples are provided that verify the formulation. Finally, the paper concludes with a few
remarks followed by a brief discussion on directions for future research.

2. ON THE FGM GREEN’S FUNCTION

Steady-state isotropic heat conduction in a solid is governed by the equation
Velk(x,y,2)Vp) =0 ey

where ¢ denotes the inner product, ¢ = ¢(x, y, z) is the temperature function, k(x, y, z) is the
thermal conductivity which can be a function of the Cartesian co-ordinates. Let the FGM be
defined by the thermal conductivity that varies exponentially in one Cartesian co-ordinate, i.e.

k(x,y,z) = k(z) = koe*¥* )

where f§ denotes the material non-homogeneity parameter. Substituting this material expression
into Equation (1), one obtains

V¢ +2Bp. =0 3)

where ¢, is the derivative of ¢ with respect to z, i.e.
¢, =09/0z 4
The Green’s function is the solution to the adjoint equation with a delta function force, namely
V2G(P, Q) — 2pG:(P. Q) = —6(Q — P) )

where J denotes the Dirac delta function, P and Q denote the source point and the field point,
respectively (Figure 1) and G, is the derivative of G with respect to z. The solution of this
equation is derived [16,30] as

eﬁ(_r""Rz_)
G(P, Q)= R (6)
nr
where
R, =z9 —zp, P=(xp,yp,2p), Q= (x0,y0,29) and r=|R[ =][Q—P| (7

The Green’s function for the non-homogeneous problem is essential for developing a
boundary-only integral equation formulation. Note that the Green’s function for an FGM can
be rewritten as [31]

eP=r+R) _

1
G(P.0) = dnr + 4nr ®)
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Figure 1. Illustration of a generic body with boundary ¥ and domain Q.
The present SGBEM relies on a boundary-only formulation for FGMs. The
source point is P (normal N) and the field point is Q (normal n).

The first term of Equation (8) is the Green’s function for the Laplace equation in homogeneous
media. The second term is bounded in the limit as » — 0 and is a consequence of the grading;
when f§ tends to zero (material is homogeneous), this graded term vanishes. This form shows
that the singularity for the FGM Green’s function is precisely the same as for the homogeneous.
It will therefore not be surprising that the divergent terms in the hypersingular integral are the
same as for the Laplace equation [29].

3. SYMMETRIC GALERKIN FORMULATION

The governing boundary integral equation corresponding to Equation (3) is

0 0
$(P) + / $(0) (8_G(P’ 0) — 2pn.G(P, Q)) 0 = / GP. o)L g@d0
z n > on

which differs in form from the usual integral statements by the presence of the additional term
multiplying ¢(Q), i.e. [-28n,G(P, Q)], due to the material gradation.

In the SGBEM, the symmetry comes from the symmetry properties of the kernel functions
[4,32]. For the homogeneous Laplace equation, the fundamental solution is symmetric, but
the FGM Green’s function, Equation (6), is not. In order to get symmetric kernels, the FGM
boundary integral equations are re-formulated in terms of physical variables (flux instead of
normal derivative), as described below. Thus, to obtain a symmetric matrix, the equations are
written in terms of the surface flux,

0
7(Q) = —k(ZQ)—a P(Q) (10)
n

The boundary integral equation (BIE) for surface temperature ¢(P) on the boundary X (see
Figure 1) is therefore

¢(P)+/2F(P, Q)P(Q)dQ =/2G5(P, Q)7(Q)dQ D
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and the kernel functions are

_ G(P.O) 1 eP-r—z0-zp)
OO =" T Hor 7
0
F(P, Q) = %G(P’ Q) —2pn.G(P, Q)

73

e/f(_r""Rz) (n ‘R n°*R ”z)
= - +
4r

(12)

Notice that Gg(P, Q), unlike G(P, Q), is symmetric with respect to P and Q. This is one
of the conditions needed for symmetry. The hypersingular boundary integral equation (HBIE)
is obtained by differentiating Equation (11) with respect to the source P in the direction N,
which is normal to the boundary at P. In this case, however, it needs to be multiplied by

—k(zp) to obtain the corresponding equation for surface flux, i.e.

9(P)+/ZW(P, Q)Pp(Q)dQ =/2S(P’ 0)7(Q)dQ

The kernel functions are computed as

0
S(P, Q)= —k(ZP)ﬁGS(P’ Q)

47 r3

ef=r=Ra) (N-R N R NZ>
= +

and

0
WP, Q)= _k(ZP)ﬁF(P’ 0)

4 rd

_ ko perrzgren <3 m-R)N-R) . @ RN-R)

+[32(n *R)(N *R) — f(N;n —n;N) *R —n *N

73

—# r r

B(N:n—n:N) *R+n-N P Nznz)
2

The three symmetry requirements for the kernel functions are now fulfilled, i.e.

Gs(P, Q) =Gs(Q,P), WP, Q)=W(Q,P), SP Q=FQP)
Interchanging Q and P implies replacing N(P) with n(Q) and changing the sign

thus all the conditions necessary for symmetry are seen to hold.

(13)

(14)

(15)

(16)
of R, and
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In this work, the direct limit procedure is employed to define and evaluate the singular
integrals. If the limit is taken with the source point P approaching the boundary from outside
the domain, then the ‘free terms’ ¢(P) in the BIE (Equation (11)) and % (P) in the HBIE
(Equation (13)) are not present. Thus, the exterior limit BIE and HBIE take the form

Ps(P) = / F(P, Q)¢p(Q)dQ —/ Gs(P, 0)7(Q)d0 =0
p) T a7
Fs(P) = /ZW(P, 0)p(Q)dO —/ZS(P, 0)7(0)d0 =0

where Z; denotes the equation for the surface temperature (potential) and % denotes the
equation for the surface flux. The free terms are automatically incorporated in the ‘exterior
limit’ evaluation of the F(P, Q) and S(P, Q) integrals. Thus, a separate computation of these
free terms is avoided, and they are obtained as a natural outcome of the direct limit procedure
[33].
The surface temperature and surface flux are approximated in terms of values at element
nodes Q; and shape functions xpj(Q), ie.
P(Q) =2 P(QNY;(Q). F(Q) =2 F(Q)¥;(Q) (18)
J

J

In a Galerkin approximation, Equation (17) is enforced in an average sense, with the shape
functions employed as the weighting functions. Therefore, the Galerkin boundary integral equa-
tions take the form

/ Y (P)?s(P)dP =0 (19)
z

/ Vi (P)F5(P)dP =0 (20)
p)

After discretization, the set of equations can be written in block-matrix form as [H]{¢} =
[GI{Z}, and in block-matrix these equations become

Hi Hi | | dpy Gu G | [ Zu o

Hy Hy | | &y Ga G | | Zbo
Symmetry of the coefficient matrix for a general mixed boundary value problem is achieved
by the following simple arrangement. The BIE is employed on the Dirichlet surface, and the
HBIE equation is used on the Neumann surface. The first row represents the BIE written on
the Dirichlet surface, and the second row represents the HBIE written on the Neumann surface.
Similarly, the first and the second columns arise from integrating over Dirichlet and Neumann
surfaces, respectively. The subscripts in the matrix therefore denote known boundary values

(bv) and unknown (u) quantities. Rearranging Equation (21) into the form [A]{x} = {b}, one
obtains

—-G11 Hpp Fu —Hi1¢p, + G12F by
_ (22)

Gy —Hxp b Hy1¢py — GFpy
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60° 60°

-1 1

Figure 2. Isoparametric equilateral triangular linear element in {5, £} space,
where —1 << 1, 0<ESVI( = [n).

The symmetry of the coefficient matrix, G1; = GTI, Hy, = Hsz’ and Hi» = G31, now follows
from the properties of the kernel functions (see Equation (16)).

In this paper, the analysis for a linear element will be considered in detail, as this forms the
basis for handling higher-order interpolations. An equilateral triangle parameter space {, £},
where

—1<n<1, 0<ESVB( —|n)) (23)

will be employed (see Figure 2). This choice of parameter space is convenient for executing
the coincident integration, as will be explained in the next section. The three linear shape
functions are

V31— =&
23

V31 +m) = ¢ ¢

’ = > = s , = —F 24
Y (n, &) W, &) Wi W (n, &) (24)

S

4. EVALUATION OF SINGULAR DOUBLE INTEGRALS

For 3D problems, there are four typical configurations for the two elements containing source
point P and field point Q (see Figure 3). Thus the following four distinct situations regarding
the singularity must be considered:

e Non-singular case, when the source point P and the field point Q lie on distinct elements
that do not share a common vertex or edge (Figure 3(a));

e Coincident case, when the source point P and the field point Q lie in the same element
(Figure 3(b));

e Edge-adjacent case, when the source point P and the field point Q lie within adjacent
elements that share a common edge (Figure 3(c)); and

e Vertex-adjacent case, when the source point P and the field point Q lie within adjacent
elements that share only a common vertex (Figure 3(d)).

Copyright © 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 62:122-157
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Q
P i

(a) (b)
P
/ N
o 0

(© (d

Figure 3. Four different cases considered for integration: (a) non-singular; (b) coin-
cident; (c) edge adjacent; and (d) vertex adjacent.

The non-singular integrals can be evaluated using standard Gaussian quadrature formulas. In
the direct limit approach for evaluating the singular integrals, the integrals for the coincident and
the edge-adjacent cases are forced to be finite by moving the source P off the boundary in the
direction N at a distance of . The next step is to employ polar co-ordinate transformations and
then integrate analytically with a fixed distance from the singularity. After the exact integration,
the limit ¢ — O is considered. It will be demonstrated that the coincident and the edge-adjacent
hypersingular integrals are separately divergent, producing terms of the form log(e). However,
the divergent terms from the coincident case can be shown to cancel out with the divergent
terms from the edge-adjacent case, and therefore the divergent terms are removed exactly in this
approach. Taking the limit ¢ — O back to the boundary results in finite expressions, thus giving a
well-behaved integral. Once the divergent terms have been identified and removed, the remaining
terms of the integral can be evaluated using standard numerical quadrature. The discussion here
about log(e) singularity, etc. applies only to the hypersingular equation. The direct approach
has been designed to handle this worst case, but apply equally to the less-singular integrals.

Compared to the simple Laplace equation treated in Reference [29], the challenge here is to
work with the complicated hypersingular kernel function W (P, Q), Equation (15). In particular,
the exponential in this function precludes a complete analytic integration as in Reference [29],
and thus additional procedures are required.

4.1. Coincident integration

The details of the procedure to evaluate the hypersingular integrals involving the kernel W (P, Q)
are described in this section. However, the integration of the kernels Gg, S(P, Q) or F(P, Q)
can be handled in exactly the same manner, with the added simplification that no divergent
terms appear in the limit ¢ — 0. When the source point P and the field point Q lie within the
same element E (see Figure 3(b)), Ep = Eg = E, and the coincident integral to be evaluated is

3
[ we [ o@we.0a0ar = 3 o) [ wer) [ v@wr. 0d0 ar
P2
@5)
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1 (t, 0) 4t> 1

Figure 4. First polar co-ordinate transformation, {n*, £*} — {p, 0}, for the coincident integration. The
variable ¢ eventually replaces 6. Note that P = P(n, ).

where E is defined by nodes Py, 1<k <3. Let the parametric variables for the outer P
integration be denoted by (7, &), and that for Q by (1%, £*). Transfering the integral to the
parametric space (dQ — Jpd&*dn* and dP — Jpd&dn) introduces the Jacobians Jy and Jp.
For coincident integration considering linear elements, the Jp and Jp are equal and constant.
The Jacobians can be conveniently incorporated into the hypersingular kernels, i.e.

k JpN *R)?2 JoN *R)2
JEW(P, Q)=4_°eﬁ<—r+zg+zp> (3( P : ) +3ﬁ( PN )
T r A
B2(JpN *R)? — J3 J2  (JpN.)?
T 3 £ - ﬁr—é’ —p % (26)

First polar co-ordinate transformation {n*, "} — {p, 0}: For the inner Q integration, the
first step is to define a polar co-ordinate system centred at P = (i, &),

n*—n=pcos®), & —¢=psin(0) 27)

as shown in Figure 4. Polar co-ordinate transformations centred at the singularity are particularly
effective, as the Jacobian of the transformation, p dp, reduces the order of the singularity. This
aspect will be used in all the singular integrations.

The upper limit of p (0 < p < p;(0)) is different for the three edges of the triangle and
consequently, the (p, 0) integration is split into three sub-triangles (see Figure 4). It suffices
to consider the calculation for the lower sub-triangle (shaded portion of the triangle in Figure
4). By exploiting the symmetry of the equilateral parametric space, the remaining sub-triangles
are handled by rotating the element and employing the formulas for the lower sub-triangle
associated with the edge &* = 0.
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P+eN
el R

P ap Q

Figure 5. The source P is moved off the surface boundary in the direction of N at a distance of .

For the lower sub-triangle, the integration limits are

0<p<p;, and O;1<0<O; (28)
where
14 T 1 {1+n T 1 (1—n
i s @ = —_—— —t _— 5 @ - — = t 29
PL Sn(0) 1 5 —tan z 2 5 + tan : (29)

In the limit to the boundary approach as P is moved off the boundary in the direction of the
source normal N at distance of ¢, P is replaced by P + eN for the exterior boundary limit
(see Figure 5), therefore, the distance r = ||Q — P|| takes the simple form

r2(p. 0) = & +a*(0)p (30)
where
a%(0) = age cos®(0) + acs cos() sin() + ays sin>(0) (31)
The three coefficients acc, acs, ass, depend solely upon the co-ordinates of the element nodes
(a? is a positive quantity), i.e.
dce = 1/402 = x> + (2 =y + (22 — 21)°]
des = 1/(2V3)[(x2 — x1)(x1 + x2 — 2x3) + (2 — Y1) 1 + y2 — 2y3)
+(z2 — z1)(z1 + 21 — 223)] (32)

ags = 1/12[(y1 + y2 — 2y3)> + (x1 + x2 — 2x3)° + (21 + 22 — 223)°]
Here P, = (xk, Yk, zx), (k = 1,2,3) are the (x, y, z) co-ordinates of the element nodes.
The term JpN <R in the kernel (see expression (26)) becomes —eJp as P is moved to
P +¢N. The shape function of P, ;(P) is a function of # and ¢. With the polar co-ordinate

transformation centred on P (Equation (27)), the shape function ¥;(Q) is a linear function
of p, ie.

1
Yi(Q)=cjon, &) +cji(n, & 0)p = ZOCj,um (33)
Y (P)=cjon, <) (34)
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As a result of the polar transformation, (zg —zp) can be written as ap where « is a function
of 6 and z co-ordinates of the element vertices, i.e.

o= lcos(@) + L(2 — 71 — z2) sin(0) (35)
= 5 2\/5 23 21 22

Since e2fr is independent of p, it is taken outside of the p integral, and the exponential term
in Equation (26) can be written as

ef—rtzo+zp) _ oB(—r+zg—zp+22p)

_ ezﬁzpeﬁ(—\/m+“ p) (36)

Employing the boundary limit procedure and expressing the kernel function in polar co-
ordinates, one obtains Equation (25) as

1 1 1 V3= 0 L
wx [ b 94 [ ejan [t
4r =0 J -1 0 0, 0

BT ) [ 3Tp2 Jp? 3% Jp*
(&2 +a2p?)52 (2 +a2p2)32 T (2 + a2p?)?

2
ﬂ282JP2 BJPZ 2JZ
£ dp 37

i _ -
@ +a2p)2 2 1a2? [Z 1 a2,?

Here J; denotes JpN;, which is the Jacobian Jp multiplied by the z component of the normal
at P, i.e. N;.

First Taylor expansion of the exponential function: Due to the exponential term in the kernel,
it is not possible to integrate the entire expression analytically. Our goal for analytic integration
is to explicitly identify the divergent terms in the integral. This can be done by employing a
Taylor expansion of the exponential term. Expanding up to the first two terms is sufficient to
identify the divergent terms, i.e.

eﬁ<_\/ ;;2+a2p2+0€,0) — 1 + ﬂ (_ /82 +(12p2 + OCp) + (9(102) (38)

As the remainder of the expansion is of order p?, this expansion leads to a sufficiently well
behaved expression for the remainder of the integral so that numerical quadrature can be safely
used.
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First analytical integration (on p): Incorporating the Taylor expansion, the integral to be
evaluated analytically is

1 PL 362 Jp?
m+1 / p
1 _ /2 2,2
Z /(; P ( +ﬁ< &+ ap +Ofp)> <(£2+a2p2)5/2

m=0

et 3B B> Jp* B Jp? B (J5)? W (39
(82 + a2p2)3/2 (82 + aZpZ)Z (82 + a2p2)3/2 &2 + azpz \/m p

For m = 0 (see Equation (33)), the exact analytical integration results in

pt i (1- g) o2+ F [(1- g) Ip? = U] e

T2 a
5 o 5 o Jp?
+2BJp? = + pIp? = log(e) + — (40)
a a a’py
All terms are well behaved at ¢ = 0 except for the last two. However the expression
Jp?1
apJp 30g(8) @1
a

is not the divergent term that is being sought. It is easily seen that this term cancels out in the
subsequent integration over 0. As the term does not contain p;, a complete integration over
0<0<2xn can be considered. Note that o is a linear function of cos(f) and sin(0), and thus
satisfies a(m + 0) = —a(6). From Equation (31), a(n 4+ 0) = a(0), and from Equation (33),
cjm is independent of 0 for m = 0. Hence, the subsequent integration of the log(e) term on
expression (41) results in zero, i.e.

2n
~log@es o 97° | Ban=0 )

For m = 1, the analytical integration becomes,

=L 0p (1= 2 L (-2 - 0]

Jpr Jp? log(a
F20 o+ o loge— U % 43)
A divergent term similar to expression (41) also appears in this case. This term is also seen to
cancel out in the subsequent integration over 0. The coefficient c; (1, £, 0) is linear in cos(0)

and sin(0), and therefore satisfies c; 1(n, &, m+ 0) = —cj 1(n, &, 0). Thus

2n ..
—1og(e)JP2/0 €60 4o (44)

a3
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V/3(1-n)

A

Y

¥
ll"z/( n /T‘{T
1

Figure 6. Geometry of the second polar co-ordinate transformation,
{t, &} — {A, ¥}, for the coincident integration.

1

This first analytic integration is not sufficient to display the divergent term, and the subsequent
integration on 0 will not pose any problem. It is the next integration on ¢, (cf. Equation (37))
which has to be dealt with analytically. The analytic integration over p produces results that
behave as 1/p; (see the last term in Equation (40)) and, from Equation (29), p; = —&/sin(0).
This term is capable of producing a log(¢) contribution upon ¢ integration with the lower limit
of & = 0. Therefore, it is necessary to interchange the order of the integration on 6 and ¢ in
order to identify the divergent term through analytical integration.

Variable tranformation {0} — {t}: As the limits of the 0 integration (i.e. ®; and ®;) depend
on ¢ and #, the integration on the variable 6 and & is not interchangeable.To circumvent this
problem, a new variable ¢+ (—1 <7< 1) is introduced via

0=—" 1 tan™! (t_—"> o___ < 45)
2 ¢ di E (-2
which also results in p; = (52 + (r — r])z)l/2
(t,0) of p on the &*-axis.
Interchanging the order of integration and tranforming the variable from 0 — ¢, the integral
(cf. Equation (39)) for m = 0 can be written as

. As depicted in Figure 4, ¢ is the ‘end-point’

‘][2) 1 1 NEICERTT)
e a [T mm e R ac 46)
T J-1 -1 0
Second polar co-ordinate transformation {t, £} — {A, ¥}: From Equation (45), the singularity
is now at t = n, £ = 0, and another polar co-ordinate transformation {A, ¥}, replacing {¢, £},
is employed (see Figure 6),

t =Acos(Y) +1n, &= Asin(P) 47

The goal is to integrate A analytically. With the two changes of variables, 0 — ¢ and {7, £} —
{A, ¥}, cos(0) becomes cos(¥) and sin(f) becomes —sin(W). Thus, a(8), Equation (31),
becomes simply a(¥) and is a constant as far as the A integration is concerned. As shown
in Figure 6, the {r, £} domain is a rectangle, and integrating over {A, ¥} will necessitate a
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decomposition into three subdomains
OSY<<Y, Y1 <¥Y<n—Y, and n—¥r,<¥Y<nr (48)

where

%, - tan! (ﬁ(l - Inl))’ %, — tan-! (ﬁ(l - |n|)> )
1—y9 147

Second Taylor expansion of the exponential function: With this final co-ordinate transforma-
tion, the P shape functions are linear in A, as are the coefficients c;,, from the Q shape
functions. Part of the exponential term, e?P<r which was previously kept outside of the p
integral (cf. Equation (36)), is a linear function of A, and this term has to be included in the
integration on A. In order to integrate analytically, a Taylor expansion of the exponential term
is once again necessary. Note that zp has a constant part which is independent of A,

zp =2+ Azp (50)

0 . .
Thus the term e*’*P can be kept out of the A integration. The rest can be expanded up to
three terms in order to obtain the necessary divergent term,

Ak = 1+ 2pAh +262A%(eh)? + O(AY) (51)

Theoretically, two terms in the above expansion are sufficient, however, an additional term was
considered for convergence of numerical results. A discussion on additional terms in the Taylor
expansion employed in HBIEs has been presented by Gray and Paulino [34].

Second analytical integration (on A): The product of the shape functions of P and Q
produces terms of A up to order 2. The integrals (cf. Equation (46)) to be evaluated are
therefore of the form

2 1
_Je / d / sin(¥) d¥ / AS F(A)dA (52)
dn )4 0

for s = 0,1,2 where f(A) is a function of A. The missing limits of the A and V¥ integrals
depend upon the particular sub-triangle in Figure 6 being considered. The A integrations for
s =1 and 2 are straightforward. For s = 0, a finite contribution plus a divergent term of the
form

JE (1 050 ™ sin(‘P)
Ly =tog 3= [ ian [T ay (53

~0
is found. Here, y; are the shape functions evaluated at A= p =0, as

~0 1—n ~0 147 ~0
wl:T’ WzZT’ l//3=0 (54)

Note that as a = a('¥) is independent of #, Equation (53) simplifies to

: J3 140k [T sin(P)
L,‘{j = log(e) P /0 3 d

v (55)
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where Jy; is the usual Kronecker delta function and 1<k, j <2. For m = 1, following the
same procedure as above does not produce any divergent terms.

The divergent term LC is precisely the same as that obtained from the hypersingular ho-
mogeneous Laplace equatlon [29]. This comes as no surprise because the new feature in the
FGM kernels is the exponential term. In the Taylor expansion,

o B B

=14+ (fr)+ ) + G

the leading constant is the most singular, the subsequent terms actually help to kill off the
singularity. Thus the divergence comes from the first term of the expansion, which is exactly
the same term for the Laplace equation. The important consequence of this observation is that
it will not be necessary to prove that Equation (55) cancels with the corresponding divergence
from the adjacent edge integration (obtained below). The proof in Reference [29] suffices to
demonstrate this point.

(56)

4.2. Edge adjacent integration

In this case an edge is shared between the two elements as shown in Figure 3(c). Orient the
elements so that the shared edge is defined by ¢ = 0 in Ep, and &* = 0 for Ep, and the
singularity occurs when n = —n*.

First polar co-ordinate transformation {n*, £} — {p, 0}: The first step is to employ polar
co-ordinates for the Q integration [29],

n* =pcos(0) —n, &= psin(0) (57)

As shown in Figure 7(a), the 0 integration must be split into two pieces (for simplicity the
integrands are omitted, but it will be useful to retain the Jacobians of the transformations)

1 V3= () Li1(0) Lo(0)
/ dn/ dé / d@/ pdp+/ d@/ pdp (58)
—1 0 0 0 O (n)

V31 + 1) Ly(@) = V31— 1)
sin(0) + «/gcos(f))’ sin(0) — v/3 cos(0)

where

L(0) = (59)

The break-point in 0,

010 = 5 — tan” (%) (60)

is only a function of 5. The integrations can therefore be rearranged as follows:

1 01 () V31—l L1(0)
/ dn/ d@/ df/ pdp
—1 0 0 0
1 n V3= Ly(0)
+/ dn/ dé)/ dé[ pdp 61)
-1 oy Jo 0
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Figure 7. (a) Polar co-ordinate transformation employed in the Q element, {n*, &} — {p, 0}; and
(b) second polar co-ordinate transformation {p, £} — {A, ¥} for the edge-adjacent integration.

Second polar co-ordinate transformation {p, £} — {A, ¥}: As the singularity occurs at p =
& =0, a second polar co-ordinate transformation is introduced

p =Acos(¥), ¢&=Asin(P) (62)

The W integration must also be taken in two parts (Figure 7(b)), resulting in the four
integrals

1 O1(n) ¥y Al n/2 A2
/ dn / do / dv / cos(P)AZdA + f ¥ / cos(W)A% dA
—1 0 0 0 ¥, 0

1 T ¥, 21 /2 22
+ f dn / do / v / cos(P)AZdA + f dv f cos(P)A% dA (63)
-1 0 0 0 k%) 0

The formulas for the A limits are simply
Int = Ln(0)/ cos(¥),  Ano = Ln(0)/ sin(¥) (64)
for n = 1, 2. The distance function takes the form
12 =&+ ea1 A + ap A? (65)

but this quadratic expression (in the denominators) can be integrated exactly. The A? factor
from the two polar transformations sufficiently reduces the order of the singularity such that
one analytic integration (over A) will produce the log(e) term.

Taylor expansion of the exponential function: The A integral cannot be evaluated analytically
unless a Taylor expansion is once again utilized for the exponential term. To extract the
divergent terms from this integral, a one term expansion will be enough (same arguments as
for the coincident integration). Similarly to Equations (36) and (51), the exponential term for
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this case can be written as

ePl—rtzo+zp) _ oB(=r+zp—zp+22p)
. eﬁ(—\/ e24+a2A% o A+2(z(},+/\z}u))

_ ezﬁz(}'eﬁ(f‘/ 82+a2A2+o<A+2Az}3) (66)

The term e2$7% is taken outside of the A integration since it is independent of A. A one term
Taylor expansion is employed in the remaining exponential term, i.e.
2 1
eﬂ(—\/ 2+a2A +ocA+2AzP> =1+ 0A) 67)

The rest of the expansion is of the order of A. This expansion along with the A2 from
the Jacobian of the polar transformation will be sufficient to provide a smooth function for
numerical integration. This follows from the observation that A = O encapsulates all three
conditions for r = 0, namely & = &* =0, and 5 = —n*. Thus, as in the coincident algorithm,
the exact integration is with respect ‘fo the distance from the singularity’.

Analytical integration on A: The A integration results in a finite quantity plus a divergent
contribution, which is given by

1 (Y200 (T (T2 3JpnIon  Jon +JpN
G = log® 7 /_1 ViV 77/0 /; costt) ( " a;" o

where J én and J },N are the coefficients of A in Jon *R and JpN *R, respectively,

JpN R = JpnA — Jpe,  Jon*R=J) A—Jon N (69)

As in Equation (54), lfbg and I,Ab(j) denote the shape functions evaluated at A = 0. This expression,
Equation (68), and the expression for Lcj, Equation (55), cancel one another. As noted above
(Section 4.1), the proof of such cancellation is precisely the same as that for Laplace equation,
which is given in Reference [29].

4.3. Vertex adjacent integration

In this case the singularity is limited to a single point in the four-dimensional integration (see
Figure 3(d)). Orient the P and Q elements so that the singular point is # = —1 and n* = —1.
Two polar co-ordinate transformations ({n*, "} — {pg Oq}, {n, &} = {p,, 0)}): Two separate
polar co-ordinates are first introduced in each element (see Figure 8(a)),
’7* = pq COS(Oq) - 17 é* = pq Sin(gq) (70)
N =pycosOp) —1, & =p,sin(0,)

This results in an integral of the form

/7‘[/3 Ly(0p) n/3 Lq(0y)
do / 0, dp / do / 0, dp (71)
0 14 0 pEEP Jo q 0 974
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Figure 8. (a) Initial polar co-ordinate transformation employed in both P and Q elements; and (b) final
polar co-ordinate transformation {p],, pq} — {A, ¥} for the vertex adjacent integration.

where
Lp(©0p) =23/ [sin(0)) + V3eos0)],  Ly(0) =273/ [sin(0,) + V3eos0p)]  (72)

As the vertex adjacent integration will not produce a divergent term, we omit the kernel function
and just keep track of the Jacobians in the subsequent expressions. Now interchanging the order
of the integration between p, and 0, one obtains

/n/3 /3 Ly(0,) L,(0,)
do / do / p,dp / p,dp
0 P 0 1 0 PP 0 R

Third polar co-ordinate transformations {p,. p,} — {A, W¥}: The only singularity is at the
common vertex p, = p, =0, and thus a third polar co-ordinate transformation is performed

pp = A cos(W), Pg = A sin(W).

As illustrated in Figure 8(b), the {p,, p,} domain is a rectangle, and thus the ‘¥’ integration

must be taken in two pieces. The combined Jacobian in this case is cos(‘V) sin(‘P)A3, and thus
Equation (71) becomes

n/3 n/3 v, Li(Y)
/ do,, / do, / cos(‘P) sin(¥) d¥ / A?dA
0 0 0 0

La('P)

/2
+/ cos('P) sin(V) d‘P/
0

A3 dA} (73)
¥
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where
Li(W)=Lp0y)/cos(¥) and L(¥) = Lo(0,)/sin(‘¥) (74)

With the A factor multiplying the kernel function, it is possible to immediately set ¢ = 0, and
the distance function is then r2 = a2A” (the coefficient being a function of all three angles
and nodal co-ordinates). It is then immediately apparent that this integral is finite. Although
numerical evaluation with Gaussian quadrature could be employed for the entire integration we
prefer to execute the A integral semi-analytically in order to achieve better accuracy.

5. NUMERICAL IMPLEMENTATION

In this section, results for four test cases are reported, demonstrating the implementation of
the above techniques. The evaluation of the singular integrals was carried out using the hybrid
analytical /numerical integration integration explained in the previous section.

To verify the numerical implementation, the following FGM examples are presented:

(1) Cube with material gradation in z direction,

(2) Cube with material gradation in 45° with the z-axis,
(3) Sphere (interior Neumann),

(4) Compressor blade.

This set of examples comprise a severe test of the SGBEM code. The first example has
analytical solution and is suitable for a mesh convergence study. The second example differs
from the previous one by considering a different direction of material gradation, which is not
aligned with any of the reference Cartesian axes. The third example consists of a Neumann
problem and it is used to test the hypersingular BIE in the SGBEM implementation. Finally, the
last example is a complicated engineering problem. All the above FGM problems can be verified
for the homogeneous material case (constant conductivity) when the material non-homogeneity
parameter vanishes (f = 0).

5.1. FGM cube with material gradation in z-direction

A simple FGM cube with constant temperature on two planes is considered first. As the
analytical solution of this problem can be obtained, this problem is suitable for a convergence
study. The problem of interest is shown in Figure 9. The top surface of the cube at [z = 1] is
maintained at a temperature of 7 = 100 while the temperature of the bottom face at [z = 0]
is zero. The remaining four faces are insulated (zero normal flux). The thermal conductivity is

k(x,y,z) = koe*P? = 5% (75)
and various values of 5 will be considered. The analytical solution for the temperature is

1 —e2bz
d)(x’y’Z):T]_e——zﬂL (76)
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Flux = 0 (back) (1,1,1)

Temp =100 (top)

Y Flux |= 0 (right)

Flux = 0|(left) /

o Temp =0 (bottom)
// X
(0,0,0)

|
Flux! = 0 (front)

Figure 9. Geometry and boundary conditions of the FGM unit cube problem with constant temperature
on two planes. The faces with prescribed temperature are shaded.

where L is the dimension of the cube (in the z-direction), and the analytical solution for the
flux (on z =1) is

_ 4 2pTe 2P L 26T .
qg(x,y,2) =— (X,y,Z)l_e—_m——Ol_e—_zﬁL (77

The cube is discretized with 432 boundary elements and 294 nodes as shown in Figure 10(d).
The computed temperature variation in the z direction is plotted with different values of f
(material non-homogeneity parameter) and compared with the analytical solution in Figure
11. For this problem the flux on each face of the unit cube is constant. Figure 12 shows
the variation of the flux on the face z = 0 with respect to the change of the material non-
homogeneity parameter f5, and compares the results with the analytical flux solution. For the
face z = 1, the flux has the same variation as on the face z = 0, but with opposite sign
(cf. Equation (77)).

The error in the temperature solution and the flux is computed considering various mesh
discretizations (Figure 10) and employing a global error measure,

1 1 NP 2
_ . e (©
¢= |u(e)|max \/NPIE:I I:MI o ] 78

where & is the error in the solution, the superscripts (e) and (c) denote, respectively, the exact
and the computed solutions, and NP is the total number of nodes. The four meshes illustrated
in the Figure 10 were considered for this study. The computed global error with increasing
number of elements is given in Table I, which shows that the global error reduces with mesh
refinement (cf. Table I and Figure 10).

5.2. FGM cube with material gradation in 45° with the z-axis

The geometry and the boundary conditions for this example are the same as those in the
previous example, except for the direction of the variation of the thermal conductivity. Here
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Figure 10. The four meshes used for the convergence study of the FGM cube problem.
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Figure 11. Temperature profile in z direction for the FGM cube discretized
with 432 elements and 294 nodes.
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Figure 12. Variation of flux on the face z = 0 for different values of the
material non-homogeneity parameter f.

Table I. Global error (&) estimates on the boundary for FGM cube (ff = 1.0).

Global error & estimates

Mesh No. of nodes No. of elements Potential Flux
1 54 48 0.0155 0.0303
2 96 108 0.0091 0.0165
3 150 192 0.0063 0.0123
4 294 432 0.0041 0.0101

the variation of the thermal conductivity is in a direction 45° off the z-axis, as shown in Figure
13. With this change, the problem becomes more interesting than the previous example because
the heat flux is no longer constant on the two faces. The thermal conductivity is

k(x,y,7) = koe?F? = 5¢!5¢ (79)

where 7/ is an axis 45° off the z-axis (see Figure 13). The SGBEM solution is compared
with an FEM solution obtained from a commercial package ABAQUS [35] using 20 node
quadratic brick elements. In the FEM simulation, 10 homogeneous layers (see Figure 14)
were used to approximate the continuous grading and the conductivity of each layer was
computed using Equation (79), where 7’ was taken as the z’-co-ordinate of the layer centroid.
It should be mentioned that FEM is not restricted to using the discontinuous piece-wise constant
approximation available in existing commercial packages. It is possible to incorporate continuous
grading within individual elements, and codes with this capability have been developed [15, 36],
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Z
Flux = 0 (back) (1,1,1)
| Temp =100 (top)
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Figure 13. Geometry and boundary conditions of the FGM cube problem with material gradation in
45° with the z-axis. The faces with prescribed temperature are shaded.
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Figure 14. Continuous (used in BEM) and discrete (used in the FEM) representation of the
conductivity k considering = 0.75.

including a 3D public domain code WARP3D [37,38]. The FEM mesh for the problem, shown
in Figure 13, consists of 4961 nodes and 1000 elements. The temperature distribution along
AA’ in the Y = 0 plane (see Figure 13) with different values of f is plotted against the
corresponding FEM solution in Figure 15. Also the flux distribution at the edge of the top
face (along BB’) is plotted with different values of f and compared with the FEM solution in
Figure 16. Both of the SGBEM solutions agree with the FEM results within plotting accuracy.
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Figure 15. Temperature profile along edge AA’ (in z direction) for the FGM cube problem.
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Figure 16. Flux distribution along BB’ (in x direction) for the FGM cube problem.

5.3. Interior Neumann FGM-sphere problem

This example is an interior Neumann problem with prescribed boundary flux on the surface of
the unit FGM sphere illustrated by Figure 17. The thermal conductivity is defined as

k(x,y,z) = koe2P* = 52 (80)
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Figure 17. The mesh of the FGM unit sphere graded along the z direction.
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Figure 18. Temperature variation with 0 (degrees) in X = 0 plane.

and the prescribed flux is
q(x,y,2) = =2koe™*(B(* + %) - 2) 81)
The exact solution for the surface temperature is
$(x. y,2) = f® + %) — 22 (82)

As this is an interior Neumann problem, the solution is not unique, and an arbitrary constant
can be added to the temperature. To enforce a unique solution, the temperature at (x, y,z) =
(0,0, 1) was specified to be the value given by the analytical solution. The sphere is discretized
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Cylinder

Figure 19. Top view of the compressor.
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Figure 20. The geometry and the boundary conditions of the analysis region.

using 426 nodes and 848 elements (see Figure 17). The accuracy of the results obtained serve
to verify the hypersingular BIE formulation as this equation is employed for the Neumann
problem. It is also a good check if the limit to the boundary is correctly picking up on the
surface orientation. The surface temperature is plotted against 6 along the boundary where
the X = 0 plane intersects the sphere and compared with analytical solution in Figure 18 for
different values of 5. The symmetry of the solution is captured by the SGBEM (cf. temperature
variation from O to 180° and from 180 to 360°). Moreover, the numerical results agree with
the analytical ones within plotting accuracy.

5.4. FGM compressor blade

A 3D analysis is performed on a one stage compressor where blades are attached to the
main rotating components as shown in Figure 19. The transient response of a rotor made of
homogeneous material with similar geometry has been investigated by Benz and Rencis [39]
by coupling 2D and axisymmetric boundary zones. The compressor consists of a cylinder with
24 equally spaced blades attached to it. A 15° segment is used for the 3D analysis due to
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Figure 21. The boundary element mesh for the analysis region of the compressor.
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The geometry, boundary condition and the BEM mesh are shown in Figures 20 and 21.
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Figure 23. Flux distribution along segment GF of the blade.
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Figure 24. BEM contour plot of the temperature of the blade.

The BEM mesh consists of 5180 linear elements and 3501 nodes. The BEM solution is
compared with an FEM solution obtained from the commercial package ABAQUS [35] using
20 node quadratic brick elements. In the FEM simulation 10 homogeneous layers were used
to approximate the continuous grading, the conductivity of each layer was computed using
Equation (83), where z was taken as the z-co-ordinate of the layers centroid (see previous
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section for comments about FEM modelling of FGMs). The FEM mesh employed 903 nodes
and 130 elements. The temperature distribution along the corner edge (which includes Point
A) is plotted in Figure 22. The flux distribution along edge GF is plotted in Figure 23 and
compared with the corresponding FEM solution. The minimal discrepancy can be attributed
to the relatively coarse mesh of the FEM solution. Finally a contour plot of the temperature
distribution is shown in Figure 24.

6. CONCLUSIONS

Symmetric Galerkin boundary element analysis, and the direct ‘limit to the boundary’ approach
for evaluation of the hypersingular and singular integrals, can be successfully applied to FGMs.
For exponentially graded (non-homogeneous) materials, the FGM Green’s function can be
determined and a boundary-only formulation can be obtained. The numerical results presented in
this paper indicate that it is quite feasible to implement the complicated FGM Green’s function
(and its derivatives) in a standard boundary integral (symmetric Galerkin) approximation, and
that accurate results are obtained. In particular, the present SGBEM for FGMs can also handle
crack geometries [4] as the hypersingular equation has been successfully implemented.

APPENDIX A

The following codes were implemented with Maple 7.0. Only a few basic Maple operations,
integration and substitution, are employed, and thus it is likely that, with relatively minor
changes, these scripts would work with other symbolic computation systems. The code shows
the analytical integration to extract the divergent terms for the coincident case and the edge
adjacent case. The naming of variables follows the notation in this paper fairly closely, and it
is therefore hoped that the codes are mostly self-explanatory. For convenience, references to
the equations in the paper corresponding to the code are provided. However a few comment
lines, which begin with the pound sign(#), are also included.

A.l. Analytical integration for coincident case

# This Maple file shows the analytical integration to extract
divergent terms
# for the coincident case.

# Ref: A. Sutradhar, G. H. Paulino, L. J. Gray

# "On hypersingular surface integrals in the symmetric Galerkin
boundary

# element method: Application to heat conduction in exponentially
graded materials"

# International Journal for Numerical Methods in Engineering

> restart;
> with(linalg) :
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> with (codegen, fortran) ;

Initialize arrays
phi:=array(0..2,0..1);
Lterm:=array (0..3, 1);
phi_h:=array(0..3 1);
jnp:=array(0..3);

0..
0..

7

V V. V V #*

P --> P+ eps N

Equation (30)
rh:=(eps”2+a”2*rho”2) " (1/2);
jnr:=-eps*jp;

vV V H# #

+H=

Kernels

> ker:=3*jnr"2/rh"5-jp"2/rh"3+3*b00*jnr"2/rh"4+b00"2*jnr"2/rh"3
-b00*jp"2/rh"2-b00"2*jnp[3]1"2/rh;

# Equation (26)

Taylor expansion
expol:=b00* (-rh+alpha*rho) ;
expl:=1+expol;

Equation (36)

H*+ V V F#F

+H=

integrand
> ker:=ker*expl;

# Loop for m=0 and m=1
> for j from 0 to 1 do

# first analytical integration
> zz:=1int (rho” (j+1) *ker, rho=0..QR) ;
# Equation (37)

# Simplification

> zz:=expand(zz) ;

> zz := subs ((eps”2) " (5/2)=eps”5,1/(eps”2) " (5/2)=1/eps”5,
sgrt(a”2)=a,l/sqgrt(a”2)=1/a,sqrt (eps”2)=eps,1l/sqgrt (eps”2)
=1/eps,zz);

> zz:=expand (zz) ;

> zz:= subs(ln(eps”2)=2*1loge, zz) ;

loge term which are not the real divergent term
zz:= collect(zz, loge);
zz_log_koef:=coeff(zz,loge,1l);
zz_log_koef:=simplify(zz_log_koef) ;

vV V V 3
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> zz_log_koef:=simplify (subs(eps=0,zz_log_koef));
> zz:=coeff(zz,loge,0);

# second polar transformation

> zz := subs (QR=Lambda, zz) ;

> Zz := ZZ*Sp;

> zZ = expand(zz) ;

> zz :=normal (zz);

> zz:=expand(zz) ;

> zz:=simplify(zz) ;

> zz:=gsubs (1ln (a*Lambda+sgrt (eps”2+a”"2*Lambda”2) )=1n(2*a*Lambda) ,
zz) ;

> zz:=gsubs (arctan (a*Lambda/eps)=Pi/2,2zz) ;

\Y

zz:=subs (1ln(eps”2+a”"2*Lambda”2)=2*1n(a*Lambda) , zz) ;
zz:=expand (zz) ;

\Y

Second Taylor expansion
expo2:=b00* (2*zz2*Lambda) ;
exp?2:=1+expo2+expo2”2/2;
Equation (51)

ZZ:=2Z%exp2;

V # V V #*

H=

Second analytical integration
# Loop for s=0,1,2

> for k from 0 to 2 do

> phi[k,j]:= int (Lambda"k*zz, Lambda=0. .QL) ;

# Equation (52)

> phil[k,j]l:= subs((eps”2) " (5/2)=eps”5,1/(eps™2) " (5/2)=1/eps”5,

(eps”™2) " (3/2)=eps”™3,1/(eps”™2) " (3/2)=1/eps”3,sgrt(a”2)=a,
1/sgrt(a”2)=1/a, sqgrt(eps”2)=eps,l/sgrt(eps”2)=1/eps,philk,3j]);
> phi[k,j]:=subs(sgrt(eps”™2+a”"2*QL"2)=a*QL, 1/sqgrt (eps”2+a”2*QL"2)
=1/(a*QL) ,philk,J1);
> phi[k,j]:=subs(arctan( a*QL/eps)=pi/2,philk,jl);

> phi[k,j]l:= subs(ln((eps”™2+a”2*QL"2) /eps”"2)=1n(eps”2+a”2*QL"2)
-ln(eps”2) ,philk,J1);

> philk,j]:= subs(ln(eps™2)=2*loge,philk,j]);

> phi[k,j]:= expand(phil(k,Jj]);

> Lterm[k,j] := coeff(philk,jl,loge);

> Lterm[k,j] := subs(eps=0,Lterml[k,jl);

# Equation (55)

> phi [k, j] = coeff(philk,jl,loge,0);

> phi [k, j] = collect(philk,jl,eps);

# set eps ---> 0
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] := subs (eps=0,philk,Jjl);

] := normal (expand (philk,3j]));
]:=subs(Iln(a”"2*QL"2)=2*1n(a*QL),1/(a”2*QL"2) " (3/2)
=1/(a”"3*QL"3),
(a”2*QL"2) " (3/2)=(a"3*QL"3) ,phi[k,jl1);

> phi [k, j] := expand (philk,3j]);

> phi [k, J
> phi [k, ]
> phi [k, j

check with Laplace equation for homogenous material
b00:=0;

phi_hlk, jl := simplify (subs (b00=0,philk,31));
Lterm[k,Jj] ;

od;

od;

V V. V V ## #

print results

m=0

for k from 0 to 2 do
phi[k,0];
phi_hlk,0];
Lterm[k,0];

od;

V V V V V 3# %

m=1

for k from 0 to 2 do
philk,1]1;
phi_hlk,171;
Lterm[k,1];

od;

V V. V V V #

+H=

Convert to Fortran
fortran (phi) ;
> fortran (Lterm) ;

\Y

A.2. Analytical integration for edge adjacent case

# This Maple file shows the analytical integration to extract
divergent terms
# for the edge adjacent case.

=

Ref: A. Sutradhar, G. H. Paulino, L. J. Gray

"On hypersingular surface integrals in the symmetric Galerkin

boundary

# element method: Application to heat conduction in exponentially
graded materials"

# International Journal for Numerical Methods in Engineering

H=
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> restart;
> with(linalg) :

> with (codegen, fortran) :

# Initialize arrays

> jnp:=array(1l..3);

> jng:=array(1l..3);

> phi := array(0..2);

> sng :=array(0..2);

# P --> P+ eps N

>rh := (eps”™2 + eps*al*Lambda + a2*Lambda”2) " (1/2) ;
# Equation (65)

> ##

> ## kernel

> ## Note: cos(psi) factor from jacobian product omitted
> #4

> jNR:=(jlp*Lambda-jnpL*eps) ;

> jnR:=jlg*Lambda-jngL*eps;

> nz:=jngl3];

> Nz:=jnp[3];

# Kernels

# Equation (26)

> hyp:=3*jnR*jNR/rh"5+3*b00*jnR*jNR/rh" 4+ (b00"2*jnR*jNR-b00*
(Nz*jnR-nz*3jNR) -ndN) /rh”"3-b00* ( (b00* (Nz*jnR-nz*jNR)
+ndN) /rh”2) -b00"2*Nz*nz/rh;

> hyp:=Lambda”2*hyp;

# Taylor expansion
exp_term:=1;
# Equation (67)

\Y

=

integrand
exp_hyp:=exp_term*hyp;

\Y

Loop for s=0,1,2

## powers from shape function product
for 11 from 0 to 2 do

phi[ll] := Lambda”1ll*exp_hyp;

V V V 3

H=

Analytical integration
phi[1l] := int(phi[11l], Lambda=0..QL) ;
# Equation (63)

\

# Simplification
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> phi[ll] := subs((eps”2) " (5/2)=eps”b,
In((eps*al+2*eps*sqrt(a2))/a2”(1/2))
=loge+ln(al/a2”(1/2)+2),

> sgrt(eps”2*al”2-4*a2*eps”2)=eps*sqgrt(al”2-4*a2),1ln(eps”2)
=2*1loge,

> arctanh (eps*al/ (eps”2*al”2-4*al2*eps™2) " (1/2))
=arctanh(al/(al”"2-4*a2) " (1/2)),

> arctanh ((2*a2*QL+eps*al) / (eps”2*al"2-4*a2*eps”2) " (1/2))
=1/2*1n(2*a2*QL)-1/2*1n(-2*a2*QL) ,

>1/(eps”2) " (5/2)=1/eps”5,1/sqgrt(eps”2*al”"2-4*a2*eps”2)
=1/ (eps*sqgrt(al”2-4*a2))

,1In((eps*al+2*sqgrt (eps”2) *sqgrt(a2))/a2”(1/2))
= loge+ln(al/a2” (1/2)+2),

(eps™2) " (3/2)=eps”™3,1/(eps™2) " (3/2)=1/eps”3

> ,phi[11]);
> phi[ll] := expand(phi[ll]);
set eps -—-——> 0
phi[1l1l] := subs(eps=0,phi[1l1l]);
sng[ll] := normal (coeff (phi[ll],loge,1));
Equation (68)
phi[ll] := normal (coeff(phi[ll],loge,0));

phi[ll] :=expand(phi[11]);
phi[ll] :=simplify(phi[1l1l]) ;
end do;

Convert to Fortran

fortran (phi) ;

V #V V V V #*V V 3
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