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Abstract

This work investigates dynamic failure processes in homogeneous and functionally graded

materials (FGMs). The failure criterion is incorporated in the cohesive zone model (CZM)

using both a finite cohesive strength and work to fracture in the material description. A novel

CZM for FGMs is explored and incorporated into a finite element framework. The material

gradation is approximated at the element level using a graded element formulation. Examples

are provided to verify the numerical approach, and to investigate the influence of material gra-

dation on crack initiation and propagation in Mode-I as well as in mixed-mode fracture prob-

lems. The examples include spontaneous rapid crack growth in homogeneous and FGM strips,

dynamic crack propagation in actual monolithic and epoxy/glass FGM beams (three-point

bending) under impact loading, and mixed-mode crack propagation in pre-cracked steel

and graded plates.
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1. Introduction

Functionally graded materials or FGMs are a new generation of engineered com-

posites characterized by spatially varied microstructures accomplished through non-

uniform distribution of the reinforcement phase with different properties, sizes and
shapes, as well as by interchanging the roles of reinforcement and matrix (base)

materials in a continuous manner. This new concept of engineering the material

microstructure and recent advances in material processing science allows one to fully

integrate material and structural design considerations (Miyamoto et al., 1999; Pau-

lino et al., 2003).

The initial emphasis for FGMs focused on the synthesis of thermal barrier coat-

ings for aerospace applications, however, subsequent investigations have addressed a

wide variety of applications (Suresh and Mortensen, 1998). Many of these applica-
tions involve dynamic events such as blast protection for critical structures and ar-

mors for ballistic protection. For example, a functionally graded armor composite

with a tailored ceramic to metal through-thickness gradient combines the beneficial

effects of ceramics (e.g., hardness) and metals (e.g., toughness) in the same material

system while suppressing adverse strength reduction that would occur with discrete

interfaces (Chin, 1999) – also see (Gooch et al., 1999) for an investigation of func-

tionally graded TiB/Ti armors. Other applications of FGMs include bone and dental

implants, piezoelectric and thermoelectric devices, and optical materials with graded
refractive indices (Paulino et al., 2003; Suresh and Mortensen, 1998). Parallel to

advancements in FGM manufacturing and experimentation, methodologies to eval-

uate and predict FGM properties and behaviors have been developed. For example,

homogenization technique and higher-order theory have been adopted to evaluate

effective material properties and responses (Aboudi et al., 1999, 2003; Yin et al.,

2004).

Fracture mechanics of FGMs has been an active area of research during recent

years (Erdogan, 1995). Eischen investigated mixed-mode cracks in non-homoge-
neous materials and proposed a path-independent J2 formulation by incorporating

strain energy along the crack surfaces (Eischen, 1987a,b). Dolbow and Gosz

(2002) presented an interaction energy integral method for accurate evaluation of

mixed-mode stress intensity factors at FGM crack tips. Kim and Paulino

(2002a,b,c, 2003, 2004) provided techniques for evaluating mixed-mode stress inten-

sity factors, J-integrals, interaction integrals, T-stress, and crack initiation angles un-

der static and quasi-static conditions for both isotropic and orthotropic materials.

To fully exploit their multi-functionality and high performance, further understand-
ing of the dynamic fracture behavior of FGMs is desired, especially when these mate-

rials are exposed to hostile environments and subject to impact loading. This area,

however, remains fairly unexplored so far.

Among the various numerical schemes addressing static and dynamic fracture

problems, cohesive zone models (CZMs) are of growing interest for fracture model-

ing and are currently widely used in simulations for both homogeneous and

non-homogeneous material systems. Various models have been proposed, their

advantages, disadvantages and limitations being debated – see (Xu and Needleman,
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1995, Geubelle and Baylor, 1998, Zavattieri and Espinosa, 2001; Pandolfi and Ortiz,

2002). CZMs incorporate a cohesive strength and finite work to fracture in the

description of material behavior, and allow simulation of near-tip behavior and

crack propagation. The concept of ‘‘cohesive failure’’ is illustrated in Fig. 1 for ten-

sile (mode I) case. It is assumed that a cohesive zone, along the plane of potential
crack propagation, is present in front of the crack tip. Within the extent of the cohe-

sive zone, the material points which were identical when the material was intact, sep-

arate to a distance D due to influence of high stress state at the crack tip vicinity. The

cohesive zone surface sustains a distribution of tractions T which are function of the

displacement jump across the surface D, and the relationship between the traction T

and separation D is defined as the constitutive law for the cohesive zone surface. As

an example, in the exponential model by Xu and Needleman (1995), the constitutive

law indicates that with increasing interfacial separation D, the traction T across the
cohesive interface first increases smoothly, reaches a maximum value at the critical

separation d, then decreases, and finally vanishes at a characteristic separation value,

here denoted as dc, where complete decohesion is assumed to occur. The subscript n

(normal) is attached to the parameters in Fig. 1 to denote the tensile (Mode I) frac-

ture case. Moreover, in Mode-II or mixed-mode case the tangential traction–separa-

tion behavior should be included.

Barenblatt (1959, 1962) proposed the CZM first for perfectly brittle materials that

accounted for atomic interaction near a crack tip. Around the same time-frame
(Dugdale, 1960) extended the concept to perfectly plastic material by postulating

the existence of a process zone at the crack tip region. This model assumes constant

cohesive traction (equals to yield strength) along the entire span of the process zone.

Afterwards, models considering materials exhibiting progressive softening behavior

(thus the traction–separation is a decreasing function) are also developed – see (Ba-

žant and Cedolin, 1991; Bažant and Planas, 1998). Later, the cohesive zone concept

was adapted into numerical simulation schemes. For instance, Needleman (1987)

considered the inclusion debonding case using a potential-based cohesive traction–
separation relationship. Tvergaard (1990) investigated the fiber debonding problem
nc ∆nnT
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Fig. 1. Schematic representation of: (a) the cohesive zone concept and (b) the cohesive tractions along a

cohesive surface at the crack tip vicinity.
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considering both normal and tangential separations using a CZM without the poten-

tial form. Xu and Needleman (1995) later developed a potential-based model incor-

porating both normal and tangential traction–separation relationships. This model

was widely used later on due to its simplicity and its potential form. It incorporates

a hardening part in the traction–separation curve (shown in Fig. 2), which leads to
artificial reduction of stiffness. Existing CZMs exhibiting similar behavior include the

bilinear model proposed by Geubelle and Baylor (1998) and Zavattieri and Espinosa

(2001). Another noteworthy CZM in the literature is the extrinsic model proposed by

Camacho and Ortiz (1996), which eliminates the artificial compliance typical of the

intrinsic models mentioned above. Ortiz and co-workers developed models for three-

dimensional (3-D) fracture growth and fragmentation simulation (Ortiz and Pan-

dolfi, 1999; Ruiz et al., 2001). Depending on implementation, the extrinsic model

may lead to time-discontinuous numerical results (Papoulia et al., 2003). The Virtual
Internal Bond model (Klein and Gao, 1998; Klein et al., 2000) is occasionally also

categorized as a CZM type, which is essentially an elastic continuum model that

can simulate material weakening at a high strain region and thus introduce a crack

at the weakened region. During recent years, the CZM became an active research

field (Brocks and Cornec, 2003). Although the majority of the literature on CZMs

addressed fracture analysis in brittle materials, CZMs are also employed to investi-

gate ductile fracture (Cornec et al., 2003; Jin et al., 2003; Li and Chandra, 2003;

Tvergaard, 2003). Many models have been proposed that consider increasing phys-
ical complexity, e.g., rate-dependent behavior, thermomechanical behavior, damage,

fatigue, and viscoelasticity (Knauss and Losi, 1993; Costanzo and Walton, 1997; Lee

and Prakash, 1999; Yoon and Allen, 1999; Roe and Siegmund, 2003; Hattiangadi

and Siegmund, 2004). There has been discussions and debates over the pros and cons

of each model (Falk et al., 2001).

The aforementioned CZM approach has the promise of simulating fracture pro-

cess where cracking occurs spontaneously. The fracture path and speed become nat-

ural outcome of the simulation rather than being specified ad hoc or a priori. In this
paper, a novel cohesive zone model developed for FGMs (Jin et al., 2002) is adopted
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Fig. 2. The intrinsic potential-based exponential cohesive model in: (a) pure tension and (b) pure shear.



Zhengyu (Jenny) Zhang, G.H. Paulino / International Journal of Plasticity 21 (2005) 1195–1254 1199
to simulate dynamic crack growth in FGMs. Section 2 describes the overall dynamic

updating scheme and non-homogeneous material approximation methodology used

in the investigation, followed by a description of CZMs for FGMs in Section 3. Sec-

tion 4 presents examples which verify the numerical simulation procedure and illus-

trate the influence of material variation over dynamic behavior and failure of
materials. Thus the behavior is influenced by the length scales introduced by the frac-

ture process and the material gradient – see (Detournay and Garagash, 2003) for a

related discussion on scaling. The work presented in this paper focuses on two-

dimensional (2-D) fracture.
2. Numerical scheme

The three essential components of cohesive zone modeling of dynamic fracture in

FGMs are briefly described here, namely, the dynamic updating scheme, the material

gradation and the actual CZM incorporated into finite element scheme. The detailed

CZM formulation for FGM will be addressed in Section 3.

2.1. Finite element scheme incorporating cohesive elements

To incorporate a CZM into the numerical scheme for dynamic fracture, the cohe-
sive element is developed and implemented as part of the finite element scheme,

which follows a cohesive traction–separation relationship, e.g., the models discussed

in Section 1. In contrast, the conventional finite element, which is now called ‘‘bulk

element’’, follows conventional stress–strain relationships (continuum description).

Fig. 3 illustrates the concept of the two classes of elements (bulk and cohesive).

The bulk behavior of the material is accounted for by conventional volumetric ele-

ments, whose constitutive relationship is defined, for example, by Hooke�s Law. To
model fracture initiation and propagation, cohesive elements are positioned along
the potential path or region of crack propagation, and attached to the volumetric

elements. They are capable of performing decohesion, depending on whether the
Fig. 3. Schematic representation of bulk elements and cohesive elements in the finite element formulation.

The notation is as follows: T denotes traction, D = (Dn,Dt) denotes separation; r denotes stress, and E

denotes strain.
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decohesion force along the cohesive surface has exceeded the cohesive strength. The

constitutive law of cohesive elements is inherently embedded in the finite element

model, so that the presence of cohesive elements allows spontaneous crack propaga-

tion, and thus it is very promising in the investigation of bifurcation and/or impact

dynamic loading problem, where multiple crack paths are possible.

2.1.1. Principle of virtual work

The FEM formulation with cohesive elements can be derived from the principle of

virtual work, as described below. The principle of virtual work of the dynamic finite

element formulation can be expressed as (Xu and Needleman, 1995):Z
X

divr� q€uð Þdu dX�
Z
C
ðT� rnÞdu dC ¼ 0; ð1Þ

where X represents domain area (or volume), C denotes boundary line (or surface)

with normal vector n, u is the displacement vector, T is the traction at the boundary,

and r is the Cauchy stress tensor. The superposed dots in €u denote differentiation

with respect to time ð€u ¼ o2u=ot2Þ, and q is the material density. Considering the exis-

tence of cohesive surface, applying the divergence theorem and integration by parts

to the general expression in (1), one obtains the following expression:Z
X

r : dEþ q€u � duð Þ dX�
Z
Cext

Text � du dC�
Z
Ccoh

Tcoh � dDu dC ¼ 0; ð2Þ

where Cext represents the boundary line on which external traction Text is applied,
and E is the Green strain tensor. The contribution of cohesive traction–separation

work is accounted by the last term integrating over the internal cohesive surfaces

Ccoh on which the cohesive tractions Tcoh and displacement jumps Du are present.

The integrals in Eqs. (1) and (2) are carried out in the deformed configuration.

When the expression is cast into the undeformed configuration, work conjugates

other than r and E are used instead. With all quantities referred to undeformed con-

figuration, the following expression is obtained instead:Z
X

S : dEþ q€u � duð Þ dX�
Z
Cext

Text � du dC�
Z
Ccoh

Tcoh � dDu dC ¼ 0; ð3Þ

where S denotes the second Piola–Kirchhoff stress tensor, which is related to the

Cauchy stress tensor r as follows (e.g., Belytschko et al., 2000)

S ¼ JF�1rF�T; where J ¼ det F ð4Þ
and F denotes the deformation gradient tensor.
2.1.2. Explicit dynamic scheme

In the present work, the explicit central difference time stepping scheme (see,

Bathe, 1996; Belytschko et al., 1976) is used, and the updating scheme for nodal dis-

placements, accelerations and velocities from time step (n) to (n + 1) is:

unþ1 ¼ un þ Dt _un þ 1
2
Dt2€un; ð5Þ



Zhengyu (Jenny) Zhang, G.H. Paulino / International Journal of Plasticity 21 (2005) 1195–1254 1201
€unþ1 ¼ M�1ðF� Rintðnþ1Þ þ Rcohðnþ1Þ Þ; ð6Þ

_unþ1 ¼ _un þ
Dt
2
ð€un þ €unþ1Þ; ð7Þ

where Dt denotes the time step, M is the mass matrix, F is the external force vector,

Rint and Rcoh are the global internal and cohesive force vectors, which are obtained

from the contribution of bulk and cohesive elements, respectively.
2.2. Generalized isoparametric element formulation for FGMs

The formulation described above applies to both homogeneous and FGM prob-

lems. To treat the material non-homogeneity inherent in the problem, we can use
either homogeneous elements with constant material properties at the element level,

which are evaluated at the centroid of each element; or graded elements, which incor-

porate the material property gradient at the size-scale of the element. Due to the rea-

sons discussed below, the later approach is adopted here.

Two alternative schemes for graded elements have been proposed by Anlas et al.

(2000) and Kim and Paulino (2002a). In general, the graded element has been dem-

onstrated to result in smoother and more accurate stresses than the homogeneous

elements. In this investigation, the scheme proposed by Kim and Paulino (2002a)
is adopted. The same shape functions are used to interpolate the unknown displace-

ments, the geometry, and the material parameters, and hence earned the name Gen-

eralized Isoparametric Element Formulation or GIF. The interpolations for material

properties (E,m,q) are given by

E ¼
Xm
i¼1

NiEi; m ¼
Xm
i¼1

Nimi; q ¼
Xm
i¼1

Niqi; ð8Þ

where Ni are the shape functions.

Both homogeneous and graded elements are implemented in the present code, and

graded elements are used to model FGMs. These elements will be particularly ben-

eficial within regions with coarse mesh discretization or with high stress gradients.

The bulk elements employed to address the problems presented in this work are

T6 elements. The choice of triangular elements rather than quadrilateral elements

is because the former elements allow crack growth along more arbitrary directions.

The cohesive elements are quadratic line elements, and full integration scheme is
used throughout the study.
2.3. Wave speed in FGM and time step control

The stability of conventional explicit finite element schemes is usually governed by

the Courant condition (Bathe, 1996), which provides an important upper limit for

the size of the time step Dt:
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Dt 6
‘e
Cd

; ð9Þ

where ‘e is the shortest distance between two nodes in the mesh, and the dilatational

wave speed Cd is expressed in terms of the material elastic constants E = E(x),

m = m(x), and density q = q(x) as

CdðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðxÞð1� mðxÞÞ

ð1þ mðxÞÞð1� 2mðxÞÞqðxÞ

s
: plane strain; ð10Þ

CdðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðxÞ

ð1þ mðxÞÞð1� mðxÞÞqðxÞ

s
: plane stress: ð11Þ

The presence of cohesive elements requires the time step to be further decreased in

order to assure computational stability, due to discontinuous wave propagation

across the cohesive surfaces. The reduction of time step depends on the element size,

cohesive strength, and material stiffness (Baylor, 1998; Zhang, 2003). Because mate-

rial properties for non-homogeneous materials (e.g., FGMs) vary in space, Cd is no

longer a constant. To simplify the implementation, the maximum wave speed is cal-
culated depending on the profile of the material property, and a uniform maximum

time step is applied to the whole structure.
3. Cohesive zone model for FGMs

A volume-fraction based phenomenological cohesive zone model for FGM that

introduces two material specific parameters to account for the interaction between
different material phases was presented by Jin et al. (2002). This effective model is

briefly described in Section 3.1. A related model (Zhang, 2003) is proposed in Section

3.2, which is based on actual quantities (rather than effective ones). A bilinear model

is presented in Section 3.3, which alleviates the artificial compliance problem by

allowing adjustment of its initial stiffness. Besides, when certain assumptions of these

models differ from the experimental observations, another approach is taken, which

is described in Section 3.4.
3.1. Cohesive model using effective traction–separation

The notation below follows the paper by Jin et al. (2002), except for the substitu-

tion of the subscripts ‘‘met’’ and ‘‘cer’’, which originally denoted metal and ceramic

phases, to ‘‘1’’ and ‘‘2’’, so that the notation is more general. The model by Jin et al.

(2002) uses effective displacement jump Deff and effective cohesive traction Teff when

dealing with mixed mode fracture, which are defined as

Deff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

n þ g2D2
t

q
; ð12Þ
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T eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T 2

n þ g�2T 2
t

q
; ð13Þ

where Dn and Dt denote the normal and tangential displacement jumps across the

cohesive surface, and Tn and Tt denote the corresponding normal and shear tractions

across the cohesive surface. The parameter g assigns different weights to the opening

and sliding displacements and it is the ratio of tangential cohesive strength Tmax
t to

normal cohesive strength Tmax
n , i.e., g ¼ Tmax

t =Tmax
n .

With these two effective quantities introduced, the energy potential in 2-D case

takes the form
/fgmðx;DeffÞ ¼
V 1ðxÞ

V 1ðxÞ þ b1½1� V 1ðxÞ�
eTmax

1 d1 1� 1þ Deff

d1

� �
exp �Deff

d1

� �� �

þ 1� V 1ðxÞ
1� V 1ðxÞ þ b2V 1ðxÞ

eTmax
2 d2 1� 1þ Deff

d2

� �
exp �Deff

d2

� �� �
;

ð14Þ

where Tmax
i and di denote the maximum cohesive traction and the corresponding

displacement jump value D at T 1 ¼ Tmax
1 for material phase i, i = 1,2. The param-

eter V1(x) denotes volume fraction of the material phase 1, while b1 and b2 are

two cohesive gradation parameters that describe the transition of failure mecha-

nisms from pure material phase 1 to pure material phase 2. With the above for-

mulation, the cohesive traction reduces to that of the material 1 when V1 = 1 and

to that of the material 2 when V1 = 0, as expected. The two additional parame-

ters, b1 and b2, which are material-dependent, should be calibrated by experi-
ments. For instance, by conducting fracture test of FGMs using standard

specimen geometries, e.g., compact tension (CT) test, fracture behavior of the

material can be measured (e.g., load versus crack extension length relationship),

and compared with numerical simulations using different b1 and b2 values. For

instance, the TiB/Ti FGM CT specimens with parameters b2 = 1 and b1 = 1, 3,

5, respectively, were simulated, and load-crack extension responses were reported

in Jin et al. (2002). Their results indicate that the fracture resistance reduces with

increasing b1. Hence, once the same test is performed on actual TiB/Ti fracture
specimens, the values of parameters b1 and b2 can be determined by matching

the experimental results and the computational ones. The normal and tangential

cohesive traction thus follows:
T n ¼
o/fgm

oDn

¼
o/fgm

oDeff

oDeff

oDn

¼ T eff

Deff

� �
Dn; ð15Þ

T t ¼
o/fgm

oDt

¼
o/fgm

oDeff

oDeff

oDt

¼ g2
T eff

Deff

� �
Dt; ð16Þ
where
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T eff ¼
o/fgm

oDeff

¼ V 1ðxÞ
V 1ðxÞ þ b1½1� V 1ðxÞ�

eTmax
1

Deff

d1

� �
exp �Deff

d1

� �

þ 1� V 1ðxÞ
1� V 1ðxÞ þ b2V 1ðxÞ

eTmax
2

Deff

d2

� �
exp �Deff

d2

� �
if Deff ¼ Dmax

eff and _Deff P 0 : loading; ð17Þ

in which Dmax
eff is the maximum value of Deff attained in loading history, and

T effðxÞ ¼
T �

eff

Dmax
eff

� �
Deff if Deff < Dmax

eff or _Deff < 0 : unloading: ð18Þ

Notice that T �
eff is the value of Teff at Deff ¼ Dmax

eff computed from Eq. (17). The load-

ing–unloading condition is introduced to retain irreversibility of fracture path, as

illustrated in Fig. 4(a).
The cohesive force–displacement relationships of material phases 1 and 2 are illus-

trated in Fig. 4, where it is obvious that the cohesive energy (the area under cohesive

curve) for material phase 2 (e.g., ceramic phase), is only a small portion of that for

material phase 1 (e.g., metal phase).

3.2. Cohesive model using actual traction–separation

The model described above (Jin et al., 2002) was used to investigate quasi-static
crack growth in Ti/TiB FGMs. Its merits include simplicity and a straightforward
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1 versus D/d1 for material phase 1;
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1 versus D/d1 for material phase 2.
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formulation in 3-D. However, whether its ‘‘effective’’ feature works for mixed-mode

problems remains an issue, as all the problems under investigation in Jin et al. (2002)

were Mode-I problems, and cohesive elements were prescribed along the fracture

plane that is subjected to pure Mode-I loading. Care needs to be taken when using

this model to deal with mixed-mode problems. When Mode-II fracture is involved
(even for homogeneous material), the local fracture behavior becomes involved

and depends on the material microstructure, since the grain size, shape, surface

roughness, etc. affect the friction behavior when sliding occurs. Moreover, the above

effective model by Jin et al. (2002) does not differentiate the material toughness in

Mode-I and Mode-II. Although the parameter g indicates different cohesive

strengths of the two modes, the critical displacement jumps for the two modes are

also in proportional relationship, resulting in the same Mode-I and Mode-II fracture

energy. Therefore, a new FGM cohesive zone model is proposed which uses the ac-
tual quantities to describe the traction–separation relationship along normal and

tangential directions, respectively. To this end, the Xu and Needleman (1995) model

is extended to the FGM case, and material parameters similar to those by Jin et al.

(2002) are introduced in the FGM model to account for material interaction.

Assume that the energy potential of each individual material phase takes the

exponential form (Xu and Needleman, 1995):

/1ðDÞ ¼ /n1 þ /n1 exp � Dn

dn1

� �

� 1� r1 þ
Dn

dn1

� �
ð1� q1Þ
ðr1 � 1Þ � q1 þ

ðr1 � q1Þ
ðr1 � 1Þ

Dn

dn1

� �
exp �D2

t

d2t1

 !( )
; ð19Þ

/2ðDÞ ¼ /n2 þ /n2 exp � Dn

dn2

� �

� 1� r2 þ
Dn

dn2

� �
ð1� q2Þ
ðr2 � 1Þ � q2 þ

ðr2 � q2Þ
ðr2 � 1Þ

Dn

dn2

� �
exp �D2

t

d2t2

 !( )
ð20Þ

in which superscripts 1 and 2 denote the two individual material phases (e.g., metal

and ceramic, respectively), and parameters D = [Dn,Dt] denote the displacement jump
across the cohesive surface in normal and tangential directions. Other parameters in

the expressions that, respectively, refer to material phases 1 and 2 are explained here-

by without subscript (1 or 2) notation: parameters /n and /t are the energies re-

quired for pure normal and tangential separation, respectively; dn and dt are the

critical opening displacement for normal and tangential separation, which are related

to the cohesive normal strength Tmax
n and tangential strength Tmax

t as

/n ¼ eTmax
n dn; /t ¼

ffiffiffiffiffiffiffi
e=2

p
Tmax

t dt; ð21Þ

q = /t//n, and r is defined as the value of Dn/dn after complete shear separation with
Tn = 0. The cohesive traction force vectors associated with material phases 1 and 2 in

the 2-D case comprise traction in normal and tangential directions:
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T1 ¼ T n1; T t1½ �; T2 ¼ T n2; T t2½ �;
and can be derived directly from the energy potentials as follows:

T1 ¼ � o/1

oD
; T2 ¼ � o/2

oD
: ð22Þ

The resulting normal and shear traction components are obtained as (subscripts

omitted)

T n ¼ �/n

Dn

� exp �Dn

dn

� �
Dn

dn
exp �D2

t

d2t

 !
þ ð1� qÞ

ðr � 1Þ 1� exp �D2
t

d2t

 !" #
r � Dn

dn

� �( )
;

ð23Þ

T t ¼ �/n

Dn

2
dn
dt

� �
Dt

dt
qþ ðr � qÞ

ðr � 1Þ
Dn

dn

� �
exp �Dn

dn

� �
exp �D2

t

d2t

 !
ð24Þ

for each material phase. Let

TFGM ¼ T FGM
n ; T FGM

t

� 	
denote the traction force vector across the cohesive surfaces of a two-phase FGM,

which comprises normal and tangential traction force component. The cohesive trac-

tion TFGM is approximated by the following volume fraction-based formula

TFGMðxÞ ¼
V 1ðxÞ

V 1ðxÞ þ b1½1� V 1ðxÞ�
T1 þ

1� V 1ðxÞ
1� V 1ðxÞ þ b2V 1ðxÞ

T2; ð25Þ

where the material parameters b1 and b2 account for the reduction of fracture tough-

ness due to interaction of material phases, and should be calibrated with experimen-
tal data.

When both materials have the same properties and parameters b1 = b2 = 1, the

above formulation reduces to that of Xu and Needleman (1995) model for homoge-

neous materials. This model avoids effective quantities like effective separation Deff,

which is dubious for FGM problems (due to the complicated microstructure-induced

fracture mechanisms). The main drawback is that two additional material parame-

ters, used for the tangential cohesive strength Tmax
t and associated energy /t, are

needed in comparison to the earlier effective model by Jin et al. (2002).
3.3. Bilinear cohesive model

As discussed in the literature (e.g., Baylor, 1998, Klein et al., 2000, Zhang, 2003),
insertion of cohesive elements introduces fictitious compliance to the structure. This

effect is inherent to the ‘‘intrinsic’’ CZM approach. However, if carefully treated,

this unwelcome effect can be restricted to certain limits within which extent the

numerical analysis can still reliably simulate the problem. The magnitude of artificial
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compliance introduced is primarily related to the initial slope of the traction–separa-

tion law. A stiffer slope represents more rigid initial bonds between bulk elements,

resulting in less fictitious compliance. To minimize mesh size dependence, the com-

pliance introduced to the system should ideally be the same for various mesh discret-

izations. This requirement is difficult to satisfy for the Xu and Needleman (1995)
model, for which the traction–separation law has a defined shape, and thus defined

initial slope.

A bilinear cohesive model is thus adopted in favor of its adjustable slope attribute.

Zavattieri and Espinosa (2001) presented a bilinear cohesive zone model, for which

the material fails when the parameter k (which is a function of the normal and tan-

gential separations) reaches the unity. Here, we specialize the expression for k as

follows:

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dn

dn

� �2

þ Dt

dt

� �2
s

: ð26Þ

The parameters Dn, Dt are the current normal and tangential cohesive interface sep-

arations, while dn, dt are the critical separation values at which the interface is con-

sidered to have failed in the two modes, respectively. Similarly to the model by
Geubelle and Baylor (1998), the choice of a ‘‘critical separation’’ kcr allows the users
to specify the initial slope of the cohesive law. Apparently, the value of kcr ought to
be close to zero to ensure initially stiff cohesive bonds. The cohesive law is stated as

T n ¼ Tmax
n

Dn

dn

1� k�

k�ð1� kcrÞ
; ð27Þ

T t ¼ Tmax
t

Dt

dt

1� k�

k�ð1� kcrÞ
; ð28Þ

where k* is defined as

k� ¼
kcr if k 6 kcr;

k if k > kcr:

�

The traction–separation relationships for pure Mode I and pure Mode II cases are

plotted in Fig. 5. In Fig. 5(a), the traction–separation relationship in the compression

region has the same slope as in the tension region. To maintain irreversibility of

interface weakening, the parameter k is set to retain its maximum value throughout

the loading history.

k ¼ maxðkcurrent; kpreviousÞ:

In order to simulate crack propagation in FGM, we extended the bilinear model of

Fig. 5 to incorporate material gradation using material dependent parameters as de-

scribed in Section 3.2. The cohesive traction vector for FGM (TFGM) is approxi-

mated by the volume fraction-based formula, Eq. (25), and the traction forces

associated with each material phase (T1 and T2) are determined from Eqs. (27)
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Fig. 5. Bilinear cohesive model: (a) pure normal traction–separation and (b) pure tangential traction–

separation.
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and (28), while the separation parameter k (Eq. (26)) is evaluated for each material

phase. The following expressions thus follow:

T FGM
n ðxÞ ¼ V 1ðxÞ

V 1ðxÞ þ b1½1� V 1ðxÞ�
Tmax

n1

Dn

dn1

1� k�1
k�1ð1� kcr1Þ

þ 1� V 1ðxÞ
1� V 1ðxÞ þ b2V 1ðxÞ

Tmax
n2

Dn

dn2

1� k�2
k�2ð1� kcr2Þ

; ð29Þ

T FGM
t ðxÞ ¼ V 1ðxÞ

V 1ðxÞ þ b1½1� V 1ðxÞ�
Tmax

t1

Dt

dt1

1� k�1
k�1ð1� kcr1Þ

þ 1� V 1ðxÞ
1� V 1ðxÞ þ b2V 1ðxÞ

Tmax
t2

Dt

dt2

1� k�2
k�2ð1� kcr2Þ

; ð30Þ

where the subscripts 1 and 2 denote the two material phases, and the other material

parameters V1(x), b1 and b2 follow the same definitions as in Section 3.2.
3.4. Cohesive model employing experimental fracture toughness data

The above two cohesive zone models for FGMs introduce additional material

parameters to account for the reduction of cohesive strength due to interaction be-
tween constituent components. Such phenomenological models can be employed

when experimental fracture toughness data are available for individual material con-

stituents (monolithic materials), and also for the FGMs. However, there are in-

stances in which the FGM data should be employed explicitly in the simulation.

This happens, for example, for the real epoxy/glass FGM system tested by Rousseau

and Tippur (2001a). The above three models, with their specific prescriptions of the

introduced material parameters, assume monotonically increasing critical energy

release rate as the volume fraction of the tougher phase increases. However, the
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fracture test (Rousseau and Tippur, 2001a) reveals a different trend. This observa-

tion motivates the fourth CZM approach for FGMs in which the fracture toughness

becomes a direct input into the numerical simulation, instead of being computed

from individual components by either mixture or micromechanics relations. Section

4.2 provides further detail of this issue.
4. Numerical examples

Three examples are provided to illustrate the application of the cohesive models

introduced above to both homogeneous and FGM systems. For the first two prob-

lems, small deformation is employed because the fracture process is relatively simple:

it is Mode-I controlled, and the crack path is restrained along a pre-defined line;
moreover, the objectives of the simulations are still achieved using such assumption.

For the third example, which simulates crack propagation under mixed-mode condi-

tions, the cohesive elements are inserted in a large region, and finite deformation is

employed (Zhang, 2003) to simulate crack propagation involving finite rotations at

the crack tip region. The examples are briefly discussed below.

� Spontaneous rapid crack growth in homogeneous and FGM strips. This example

investigates the influence of mesh refinement, orientation on the simulation
results, as well as energy balance, which provides valuable insight into the energy

exchange in the fracture process. Further, crack nucleation is simulated for the

strip without an initial crack using the CZM approach. The cohesive model used

in this problem is the effective model described in Section 3.1. Because this exam-

ple involves Mode I fracture only, either the model of Section 3.1 or Section 3.2

provide the same results.

� Dynamic fracture propagation of monolithic and FGM beams under impact loading.

This example provides an opportunity to employ real FGM material parameters
and compares results of the present numerical analysis with those of the experi-

ments by Rousseau and Tippur (2001a). The cohesive model used in this problem

is the one described in Section 3.4 using experimental fracture toughness data.

Small deformation assumption is used in the finite element formulation.

� Mixed-mode crack growth in steel and FGM plates. The dynamic crack propaga-

tion in homogeneous materials is based on the experiments by Kalthoff and Win-

kler (1987). The cohesive model used in this problem is the bilinear model of

Section 3.3. Finite deformation assumption is used in the finite element
formulation.

4.1. Spontaneous rapid crack growth in homogeneous and FGM strips

A strip with a semi-infinite crack subjected to uniform normal displacement at

clamped upper and lower edges has been employed to illustrate path-independent
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J calculation in static case (Rice, 1968) and dynamic case (Freund, 1998). A

similar problem setting which uses finite strip and initial crack was employed

by Baylor (1998) to investigate the bilinear cohesive model. In this section, the

same problem is investigated for homogeneous as well as graded material systems.

Features of the rapid propagation of a straight crack along a predefined path in-
side the finite strip subjected to initial stretch is studied. First, the mesh conver-

gence of the numerical method is investigated. Results of the crack tip velocity

reveal a criterion for mesh size versus crack tip process zone size that depends

upon material properties. Next, energy balance is investigated in detail, which

also provides verification information for the numerical implementation. After-

wards, graded material property is adopted to investigate the influence of material

variation. Moreover, to further explore the capability of simulating spontaneous

crack nucleation, the elastic strip with initial strain problem is extended to the
FGM case without initial crack prescribed. By manipulating material properties

of the FGM strip, the crack can nucleate at the high stress region and propagate

thereafter.
4.1.1. Problem description

The geometry and boundary conditions for the strip problem are illustrated in

Fig. 6. The strip is initially stretched uniformly by imposing an initial displacement

field

uðx; y; t ¼ 0Þ ¼ 0; vðx; y; t ¼ 0Þ ¼ �0y; ð31Þ
which results in a uniform strain field at the initial time. The upper and lower sur-

faces are held fixed and a small crack length a is introduced at the left edge at time

t = 0. For the homogeneous strip case, the material is taken as polymethylmethacry-

late (PMMA) (Xu and Needleman, 1995), and its properties are given in Table 1. For

the FGM problem, the detailed material properties are described for each case in la-
ter sections.
4.1.2. Mesh convergence

The domain is discretized uniformly by T6 elements of various element sizes as

shown in Fig. 7 and Table 2. Cohesive elements are inserted along the mid-plane
Fig. 6. Domain and boundary conditions of the strip for dynamic fracture simulation.



Table 1

Material properties for PMMA Xu and Needleman (1995) strip subjected to initial stretch

E (GPa) m q (kg/m3) GIc (N/m) Tmax (MPa) d (lm) CR (m/s)

3.24 0.35 1190 352.3 324 0.4 939

2h

Fig. 7. Mesh discretization with T6 elements for elastic strip subjected to initial stretch. Cohesive elements

are inserted at half-height, along the horizontal direction (dashed line), and h is defined as distance

between nearest nodes of the cohesive element. This figure shows a coarse mesh with h = 50 lm.

Table 2

Mesh discretization associated with Fig. 7

Mesh h (lm) # Nodes # Bulk elements # Cohesive elements

(a) 50 246 80 19

(b) 25 810 320 38

(c) 16.7 1694 720 57

(d) 12.5 2898 1280 76

(e) 8.33 6566 2882 114

(f) 6.25 10,914 5120 152

(g) 5.56 13,718 6480 171
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y =H in order to constrain the crack path along its original plane and prevent crack

branching.

Driven by the strain energy stored in the pre-stretched strip, the crack quickly
propagates along the predefined path. In actual applications, unless the crack path

is constrained, the crack tip speed can hardly reach 50% of Rayleigh wave speed

due to energy dissipation mechanisms, for example, from void growth and micro

cracks formation at the immediate crack tip vicinity. However, the theoretical crack

tip speed is the Rayleigh speed, and for the problem under consideration, as the ini-

tial stretch increases, the strain energy stored in the system also increases, and thus

the fracture speed approaches the Rayleigh speed CR of PMMA, which is 939 m/s.

It is essential to investigate the convergence of the numerical scheme in terms of
the relation between the characteristic cohesive length scale d and mesh size h. Here h

is defined as the minimum nodal distance of cohesive elements (see Fig. 7). Since

quadratic elements are used, one element length equals 2h. A static analysis estimate

of the cohesive zone size for a constant traction–separation relation (Rice, 1968) is
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‘k ¼
p
8

E
1� m2

GIc

T 2
ave

; ð32Þ

where for the exponential cohesive law, Tave = 0.453Tmax. For PMMA (Table 1), the

estimated cohesive zone size is ‘k = 23.6 lm.

The influence of mesh size on the evolution of the crack tip position is shown in

Fig. 8 for an initial stretching parameters �0 = 0.035. The crack tip is defined as the
right-most point along the fracture plane for which D � 6d, where D denotes the

interface displacement jump.

Evidently, mesh size plays an important role in the spontaneous propagation of

fast cracks. To drive the crack to propagate through the whole length of strip, the

minimum initial stretch can be estimated as �0 = 0.031. The detailed derivation will

be given in the energy balance discussion. Therefore, for �0 = 0.035 case in Fig. 8,

the initial strain energy stored in the elastic strip is high enough to drive the crack

to propagate through the whole strip. However, when the mesh is too coarse
(h = 50 lm), the crack does not propagate at all. As the mesh is progressively refined

(see Table 2), the solution converges as shown in Fig. 8. The curve for velocity

Ccrack = CR is an ideal case in which the crack starts to propagate at t = 0 through

the crack path at Rayleigh wave speed.

For �0 = 0.035 case, the following three meshes produce very close results in terms

of simulation time for the crack to propagate through the strip: h = 5.56 lm, h = 6.25

lm and h = 8.33 lm, and the following two meshes also give good results: h = 12.5

lm, h = 16.7 lm, which differ from the result given by the mesh with h = 5.56 lm
only by 5% and 7%, respectively. The results for various mesh refinement and initial
Fig. 8. Normalized crack tip location versus normalized time considering initial stretch �0 = 0.035 and

various levels of mesh refinement. The notation CR denotes the Rayleigh wave speed (CR = 939 m/s for

PMMA).
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stretches suggest that the characteristic element size should be chosen two or three

times smaller than the cohesive zone size to ensure convergence. For example, for

this strip problem, when h 6 8.33 lm, which is around one third of the estimated

cohesive zone size, the results are acceptable. This is consistent with suggestions

made by other researchers (Geubelle and Baylor, 1998; Klein et al., 2000). Moreover,
this requirement can be relaxed for some particular cases. For instance, for this strip

problem, at sufficiently high initial stretch, a larger cohesive element size can produce

converged result, but it is difficult to generalize this observation to other problems.

A similar test is performed to model crack arrest under dynamic conditions, as

depicted in Fig. 9, which shows the effect of initial stretching of the elastic strip on

the crack propagation. When a sufficient amount of energy is stored initially in

the system and adequately refined mesh is used in the simulation, the crack speed

approaches the Rayleigh wave speed CR. For instance, for �0 = 0.5, the crack tip
speed, i.e., the slope of the curve, is almost parallel to that of the ideal case where

crack tip speed equals Rayleigh wave speed (Ccrack = CR curve). However, for initial

stretch �0 < 0.031, the crack arrests.

4.1.3. Mesh orientation

The results presented in Figs. 8 and 9 are obtained for the meshes shown in Fig. 7,

which has a certain mesh orientation bias, i.e., the diagonal lines that bisect the

quads into T6 elements are all aligned in the �45� direction, with respect to the
Cartesian coordinate x. To address whether a specific mesh orientation influences

the computational results in the current problem, two additional mesh orientations

are employed to simulate the same problem. They are plotted in Fig. 10, for diagonal
Fig. 9. Normalized crack tip location versus normalized time for various initial stretching parameter �0.

The notation CR denotes the Rayleigh wave speed (CR = 939 m/s for PMMA).
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Fig. 10. Three mesh orientations: (a) h = �45o, (b) h = 45o and (c) Union-Jack mesh.

Fig. 11. Normalized crack tip location versus time for three different mesh orientations according to Fig.

10; initial stretch �0 = 0.035, and characteristic cohesive element size h = 5.56 lm.
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lines in 45� direction with respect to the Cartesian coordinate x (Fig. 10(b)), and

‘‘Union-Jack’’ mesh configuration (Fig. 10(c)).

The numerical simulations are performed using a mesh with h = 5.56 lm. Since

the cohesive elements are inserted along a predefined straight line and are of the same

characteristic size in all three meshes, the results are expected to be similar. This is
verified by the results in Fig. 11, which compare the crack tip location of the three

meshes, for the initial stretch �0 = 0.035. Apparently, the results of the two �biased�
meshes, in the sense that the elements are not symmetric with respect to the Cartesian

coordinate x, coincide with each other within plotting accuracy, while the ‘‘Union-

Jack’’ mesh result is slightly different, especially at longer time.

4.1.4. Energy balance and verification of results

The elastic strip problem presents an appropriate example to examine conversion
among energies during dynamic fracture. There are two analytical solutions avail-

able that allow verification of the computational results. First, the initial boundary
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condition is such that an analytical evaluation of the initial strain energy is easily ob-

tained. Second, the cohesive elements are prescribed along a defined path, hence the

total fracture energy required for the crack to propagate through the entire strip can

be readily computed. Moreover, the dissipated fracture energy presents a large por-

tion of the total initial energy, and thus the conversion between the stored strain en-
ergy and dissipated fracture energy is evident.

4.1.4.1. Energy balance expression. There are a total of six energy components of

interest, i.e.,

� External work ðEextÞ: work done by external loading.

� Kinetic energy (K): energy of motion.

� Strain energy due to elastic deformation of the bulk elements (Ubulk): elastic
energy stored in the bulk material.

� Deformation energy due to elastic deformation of the cohesive elements (Ucoh):

elastic energy stored in the cohesive surfaces.

� Total cohesive energy ðEcohÞ: sum of elastic cohesive energy (recoverable) and dis-

sipated fracture energy (irrecoverable).

� Fracture energy ðEfracÞ: energy dissipated by the generation of new surfaces to

form advancing crack(s).

For the current problem under discussion, the external work is kept constant,

with value equal to the initial strain energy due to deformation. At any time instant,

the total energy in the system is conserved, i.e.,

Etot ¼ U þ K þ Efrac ¼ const:; ð33Þ
where

U ¼ Ubulk þ U coh ð34Þ
represents the total recoverable elastic energy of the system.

4.1.4.2. Initial strain energy. For the above described initial condition, i.e., uniform

stretch along the Cartesian y-direction at t = 0, the strain energy stored in the strip

can be obtained analytically as:

Ubulk ¼ w� A ¼ 1
2
rij�ij � A ¼ 1

2
ryy�yy � A ¼ 1

2

E
1� m2

�2yy � A; ð35Þ

where w denotes strain energy density and A is the strip area. Since the initial stretch

is only along the y-direction, all stress and strain components vanish except ryy and
�yy. When the initial stretch �0 = 0.032, the strain energy calculated from the analyt-

ical expression (35) and the finite element method (FEM) are

Ubulk ¼ 0:756184615 N m; UFEM
bulk ¼ 0:756184642 N m;

which are the same up to seven significant digits.



Fig. 12. Evolution of various energy components for the dynamic fracture problem in the PMMA strip

with applied stretch �0 = 0.032, and characteristic cohesive element size h = 6.25 lm.
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4.1.4.3. Energy evolution. The evolution of various energy components for the spon-

taneous crack propagation simulation in the elastic strip with �0 = 0.032 is shown in

Fig. 12. During the dynamic simulation, some elastic energy Ucoh is stored in the

cohesive elements, which consists only of a nominal fraction of the total recoverable

energy U. The total cohesive energy Ecoh can be decomposed into recoverable elastic
part Ucoh and dissipated fracture energy Efrac, and once the crack propagates through

the entire strip, the fracture energy Efrac reaches a constant value.

Fig. 12 shows the total elastic energy U, kinetic energy K, energy dissipated by

fracture Efrac and the sum of these terms. Energy conservation is verified as required.

Apparently, the strain energy initially stored in the system gradually converts to frac-

ture energy and drives the crack to propagate. A small portion of strain energy is

converted to kinetic energy, which oscillates in equilibrium with the strain energy.

If the strip is not pre-cracked, and no crack formation is allowed, then the energy
components involved in the problem are the strain energy and the kinetic energy

only. More strain energy is converted to the kinetic energy component.

4.1.4.4. Fracture energy required for crack propagating through strip. Since the cohe-

sive elements are prescribed along a predefined path and at the end of simulation

they are all debonded, the energy required for the entire fracture process can be eval-

uated analytically:

Efrac ¼ GIA ¼ 352:3 N m=m2 � ð1:9� 10�3 m� 1 mÞ ¼ 0:66935 N m;

while the finite element result is

EFEM ¼ 0:66944 N m;
frac
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which verifies (to a certain extent) the numerical implementation of cohesive

elements.

The minimum initial stretch needed for the crack to propagate through the entire

strip length can also be estimated. If kinetic energy (K) and elastic cohesive energy

(Ucoh) are neglected, i.e., assuming that all initial strain energy Ubulk (Eq. (35))
can be converted into fracture energy Efrac, then Ubulk � Efrac. Thus the initial stretch

needed for crack propagating through the strip is obtained as �0 = 0.0301. However,

part of the initial strain energy is converted to kinetic energy (K) and elastic cohesive

energy (Ucoh). The elastic cohesive energy is nominal throughout the simulation, and

we just estimate the kinetic energy. When the strip is stretched only along the y-direc-

tion at t = 0, the left and right boundaries of the strip are kept straight. Afterwards,

these two boundaries tend to deform in a curved shape due to Poisson�s ratio effect.

The kinetic energy can be estimated as the difference in strain energy from initial
deformation shape to this curved deformation shape, which is estimated numerically

from Fig. 12 as K = 0.05 N m. Hence, the initial stretch needed for the crack to prop-

agate through the entire strip is �0 � 0.0312. This is consistent with the results shown

in Fig. 9.

4.1.5. Crack propagation in an FGM strip

Now we consider an FGM strip with an initial crack and linear material property

variation along the Cartesian direction x subjected to initial stretch as described in
the homogeneous case. As explained previously, the graded element formulation ap-

proach is adopted in this study, and thus material properties are computed at nodal

points and interpolated to Gauss points of elements. This concept also holds for

cohesive elements. The detailed material properties are provided in Table 3. Young�s
modulus is three times as high at left side (4.86 GPa) as the right side (1.62 GPa), and

the average Young�s modulus is kept the same as the homogeneous PMMA strip.

Poisson�s ratio and material density are assumed to remain constant. The cohesive

strength is kept as Tmax(x) = E(x)/10 and thus varies linearly along the x-direction.
For the sake of simplicity, the critical interface separation is kept constant at the le-

vel d = 0.4 lm. The cohesive elements are again inserted along the ligament on the

half-height plane (a < x < L, y = H), where a = 0.1 mm (same as before). For the cur-

rent problem, Mode I fracture dominates, and the two FGM cohesive zone models

discussed in Sections 3.1 and 3.2 will produce the same results. The necessary param-

eters for the effective quantity model (described in Section 3.1) are chosen as

b1 ¼ b2 ¼ 1; g ¼
ffiffiffi
2

p
:

Table 3

Material properties for linearly graded FGM strip subjected to initial stretch

Location E (GPa) m q (kg/m3) GIc (N/m) Tmax (MPa) d (lm)

x = 0 4.86 0.35 1190 528.4 486 0.4

x = L 1.62 0.35 1190 176.1 162 0.4

Average 3.24 0.35 1190 352.3 324 0.4



Fig. 13. Normalized crack tip location versus normalized time for FGM strip subjected to various initial

stretches (�0). Notice that, as expected, the Rayleigh wave speed varies along the Cartesian x direction.

Fig. 14. Evolution of various energy components for the dynamic fracture problem in the FGM strip with

applied stretch �0 = 0.032, and characteristic cohesive element size h = 6.25 lm.
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The stored strain energy drives the crack to propagate, and the numerical simu-

lation results of crack tip location versus time for various �0 values are illustrated
in Fig. 13.

Notice that the crack tip velocity is no longer constant, as in the previous exam-

ple. This is due to the non-homogeneous material property. When the input energy is
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sufficiently large, the crack tip velocity approaches the Rayleigh wave speed, which

also depends on material location (i.e., CR = CR(x)). One observes that as the input

energy increases, the crack tip velocity approaches the theoretical Rayleigh wave

speed.

Again, energy balance is obtained, as illustrated in Fig. 14 for the initial stretch
�0 = 0.032. Notice that the fracture energy curve exhibits non-linear curvature (cf.

Fig. 12). Obviously, the fracture energy required for the cohesive elements to lose

cohesion is larger at left side than at right side, as indicated by the material property

variation (Table 3).

First the numerical result of initial strain energy is checked with the theoretical

value, which is computed according to expression (35) as

Ubulk ¼
1

2

3:24� 109

1� 0:352
0:0322 � ð4� 10�7Þ ¼ 0:756184615 N m:

The numerical result is UFEM
bulk ¼ 0:756184642 N m, which agrees with the theoretical

value up to seven digits (same agreement as before, with the homogeneous strip

case). Note that the uniform stretch results in non-uniform stress field, hence the

strain energy density also varies linearly along the x-direction, and the above formu-

lation uses the average value of Young�s modulus for simplicity.
The energy required for the crack to propagate through the strip is

Efrac ¼ �GIA ¼ 343:4� ð1:9� 10�3Þ ¼ 0:65246 N m

and the numerical result is

EFEM
frac ¼ 0:65262 N m;

which agrees with the analytical value up to 3 digits. The energy release rate �GI in the

above expression is the average value of GI along a 6 x 6 L.

4.1.6. Spontaneous crack nucleation in an FGM strip

So far, the discussion in this section has been restricted to strips with an initial

crack. For homogeneous material, a pre-crack is necessary for crack propagation

to start. On the other hand, for FGM, since the material property is graded, uniform

stretch results in non-uniform stress field, thus crack may nucleate at the region of
relatively high stress and low cohesive strength, and thus crack may propagate

spontaneously.

Consider an FGM strip with linear material variation along the Cartesian direc-

tion x, which is subjected to uniform stretch. The material properties are given in
Table 4

Material properties for FGM strip without pre-crack subjected to initial stretch

E (GPa) m q (kg/m3) d (lm) T 1
max ðMPaÞ T 2

max ðMPaÞ T 3
max ðMPaÞ T 4

max ðMPaÞ
x = 0 4.86 0.35 1190 0.4 297 267 237 208

x = L 1.62 0.35 1190 0.4 297 267 237 208

Average 3.24 0.35 1190 0.4 297 267 237 208
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Table 4. Young�s modulus is three times as high at one side (4.86 GPa) as the other

(1.62 GPa), and the average Young�s modulus is the same as the homogeneous

PMMA strip. The Poisson�s ratio and material density remain constant. The critical

interface separation is kept constant at the level d = 0.4 lm. Notice that multiple

cohesive strength values ðT 1
max to T 4

maxÞ are provided in Table 4. The reason will
be discussed shortly. The cohesive elements are prescribed along the ligament on

the half-height plane (0 < x < L, y = H), but without initial crack.

To nucleate a crack, the local stiffness, cohesive strength and stretch need to sat-

isfy certain conditions, and the Poisson�s ratio effect also plays a role. These issues

are discussed next.

4.1.6.1. Critical stretch. In order to nucleate a crack with the CZM approach, the lo-

cal stress must attain the level of the cohesive strength Tmax to allow one or several
nodes to experience debonding. Therefore, the material properties and the range of

stretch values employed in previous sections cannot induce crack nucleation. For in-

stance, provided the cohesive strength is E(x)/10, then the applied stretch �0 = 0.05

cannot induce high enough local stress to form a crack. The relationship between lo-

cal stiffness E, cohesive strength Tmax and applied stretch �0 must reach roughly

�0 � E/Tmax. After carrying out simulations for various Tmax and �0 values, we con-

clude that at the critical value

�0 � 0:82
E

Tmax

ð36Þ
Fig. 15. Normalized crack tip location versus normalized time for FGM strip subjected to various initial

stretches (�0) and Tmax. The notation CR denotes the Rayleigh wave speed, which varies along the

horizontal direction.
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crack nucleation will occur for the material system described in Table 4. Therefore,

the cohesive strength T 1
max to T 4

max listed in Table 4 correspond to the following crit-

ical applied stretch: �0 = 0.05, 0.045, 0.04 and 0.035, where E is taken as the value at

the left side (4.86 GPa). The numerical simulation result of crack tip location versus

time is illustrated in Fig. 15 for these four cases.
For the above material system, the FGM strip is stiffer at the left side (E = 4.86

GPa), and stress is proportional to material stiffness. Thus the stress is higher at

the x = 0 vicinity, and crack initiates if Eq. (36) is satisfied. One observes from

Fig. 15 that the crack initiation does not take place immediately. A short while after

the simulation starts, the first nodal debonding occurs at x = 0.07L, i.e., not a

boundary node. This is due to the Poisson�s ratio effect, as will be discussed later.

After this node is debonded, it serves as a crack nucleation location and the crack

quickly runs in both directions, as shown by the turning of the curves in Fig. 15
at beginning stages. The crack tip location curve is not straight as in the homoge-

neous strip problem because, due to material non-homogeneity, the wave speed is

varying along the x direction. The ideal case where the crack begins to propagate

at t = 0 from the left edge with the Rayleigh wave speed is also plotted for reference.

For the four cases discussed above, the crack tip velocities, i.e., the slope of the

curves, differ marginally, and they are approaching the Rayleigh wave speed.

The energy evolution during the fracture process is investigated and the result for

the case �0 = 0.35 is plotted in Fig. 16. First the numerical result of initial strain en-
ergy is checked with the theoretical value, which is computed from expression (35),

using the average value of Young�s modulus, as follows:
Fig. 16. Evolution of various energy components for the dynamic fracture problem in the FGM strip with

applied stretch �0 = 0.035, and characteristic cohesive element size h = 6.25 lm.
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Ubulk ¼
1

2

3:24� 109

1� 0:352
0:0352 � ð4� 10�7Þ ¼ 0:904615385 N m:

The numerical result is UFEM
bulk ¼ 0:904615338 N m, which agrees with the theoretical

value up to seven digits.

The energy required for the crack to propagate through the strip is

Efrac ¼ �GIA ¼ expð1ÞTmaxd� ð2� 10�3Þ ¼ 0:452322 N m;

while the FEM result is

EFEM
frac ¼ 0:452342 N m;

which agrees with the theoretical prediction up to 4 digits and energy conservation is

again obtained. The curve denoting fracture energy evolution is almost a straight line

because the cohesive strength is constant along the x-direction in this simulation, and

the slight curvature is only introduced by the non-linear crack tip speed.

4.1.6.2. Poisson’s ratio effect. For a one-dimensional problem, the coefficient in Eq.

(36) would be 1 instead of 0.82. The reduction of critical stretch required for crack to

nucleate in this problem is due to the Poisson�s ratio effect. The initial condition dic-

tates a uniform elongation in the Cartesian y-direction while all nodes are kept sta-

tionary in the x-direction. When the dynamic simulation starts, the nodes at left and

right edges tend to vibrate along the x-direction due to the Poisson�s ratio effect. This

movement causes the nodes adjacent to them to move inside, yet those nodes are un-

der constraint and cannot move freely. Therefore, interior nodes that are closer to
the left edge endure larger stresses, and hence one of them debond first. Since this
Fig. 17. Normalized crack tip location versus normalized time for FGM strip subjected to initial stretch

�0. The Poisson�s ratio is set to m = 0. Notice that the Rayleigh wave speed varies along the horizontal

direction.



Zhengyu (Jenny) Zhang, G.H. Paulino / International Journal of Plasticity 21 (2005) 1195–1254 1223
effect is caused by the Poisson�s ratio effect, a test was performed to check if it van-

ishes with m = 0, which is described below.

Consider an FGM strip, which is subjected to initial stretch �0 = 0.035, with the

same material properties as described in Table 4, except for the Poisson�s ratio,

which is set to be m = 0. The boundary conditions are the same as in the previous
example problem. The cohesive strength corresponding to the critical stretch is cal-

culated as Tmax = E(x = 0) · �0 = 170 MPa. The numerical simulation result of crack

tip location versus time is illustrated in Fig. 17. As expected, the first debonded node

is the boundary node, and the crack quickly propagates through the strip. Notice

that the average Rayleigh wave speed is CR = 1020 m/s when m = 0.
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Fig. 18. Material gradation and Young�s modulus variation of glass/epoxy FGM: (a) schematic

representation of glass particles volume fraction distribution and modulus variation in FGM plate and (b)

experimental data of Young�s modulus variation in FGM beam. Discrete data points retrieved from

Figure 1 of Rousseau and Tippur (2000), representing experimentally evaluated Young�s modulus at

normalized length n = Y/W = 0, 0.17, 0.33, 0.58, 0.83 and 1.
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4.2. Dynamic fracture of epoxy/glass FGM beams under impact loading

The FEM scheme incorporating graded bulk and cohesive elements was verified in

the previous section, with emphasis on mesh convergence, mesh orientation and en-

ergy balance. Equipped with this knowledge, we proceed to investigate a real FGM
fracture problem. To date experimental data of real FGMs subjected to dynamic

loading are rare. Rousseau and Tippur (2000, 2001a,b, 2002a,b) have conducted

some pioneering work on dynamic experiments of polymer-based FGMs. In the

present study, numerical simulations of the specimens investigated by Rousseau

and Tippur (2001a) are carried out in conjunction with the present cohesive model

approach, which leads to further insight into the dynamic fracture behavior of

FGMs.

The FGMs under test were epoxy/glass materials, with epoxy as matrix and glass
particles dispersed in the matrix. In the manufacturing process, glass particles of

mean diameter 42 lm were dispersed into epoxy matrix, and due to higher mass den-

sity (qglass = 2470 kg/m3, qepoxy = 1150 kg/m3), glass particles sank gradually into the

slowly curing matrix, and finally a smooth distribution of monotonically increasing

(from top to bottom) volume fraction of glass spheres was formed (Fig. 18(a)).

Experiments on both monolithic (with uniform volume fraction of particle inclusion

in the material) and FGM specimens under dynamic loading were carried out. Rous-

seau and Tippur (2002b) reported material property change under dynamic load,
investigated stress fringe patterns and stress intensity factors for both crack along

and perpendicular to material gradation. Standard finite element simulation was car-

ried out using ABAQUS to predict crack initiation time, and the conclusion was

drawn that crack initiates earlier for a beam softer at the cracked side than a beam

stiffer at the cracked side (Rousseau and Tippur, 2001b). In this section, numerical

simulations of Rousseau and Tippur�s experiments are performed, and results turn

out to be consistent with their predictions.
V =5m/s
E2

E1

L=152mm

W=37mm

a=7.4mm
x

y

E0

0

Fig. 19. Geometry, load and boundary conditions for epoxy/glass beam under low velocity impact

loading. The parameters E0, E1 and E2 denote Young�s modulus at the crack tip, bottom surface and top

surface, respectively.



Table 5

Material properties of three-point bending FGM specimen, obtained from Rousseau and Tippur (2001a)

Vf E (GPa) m q (kg/m3)

0 4.74 0.35 1150

0.5 10.74 0.30 1810
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Fig. 20. Cohesive energy of epoxy/glass FGM versus volume fraction of glass particle inclusion.

Experimental data are retrieved from the paper by Rousseau and Tippur (2000, Fig. 3), and the smooth

curve is obtained by least square fitting of experimental data.
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4.2.1. Problem description

The geometry and boundary conditions are depicted in Fig. 19. An FGM beam is

subjected to low velocity (5 m/s) impact loading, which is applied at the center point

of the top surface. Material gradation is along the Cartesian y-direction, and an ini-

tial crack of length a = 0.2W = 7.4 mm is predefined at the center of the bottom face

of the beam.

The epoxy/glass FGM is manufactured such that it possesses a smooth transition
profile of volume fraction of glass spheres (Vf) varying from 0% at one side to 50% at

the other, and in between the Vf variation is approximately linear. The material

properties with volume fraction Vf = 0 and Vf = 0.5 are listed in Table 5.

The cohesive energy is non-linear with respect to glass inclusion volume fraction

and is plotted in Fig. 20. The critical energy release rate data were obtained by con-

ducting 3-point-bending test on monolithic glass/epoxy specimen of different volume

fraction of glass inclusions (Rousseau and Tippur, 2002a). Fig. 20 shows that the

cohesive energy curve attains maximum value at volume fraction of glass inclusion
around 22%, rather than at the maximum glass inclusion volume fraction of 50%.

A comparison of the model described in Section 3.1 with the experimental result

by Rousseau and Tippur (2000) reveals that in the former, the energy grows mono-

tonically as volume fraction of metal phase increases; while, in the latter, it increases

at small volume fraction of glass inclusion, and then decreases gradually when the

volume fraction of inclusion exceeds 22%. Rousseau and Tippur (2001a) explained
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that the underlying mechanism for this interesting phenomena is due to the fact that

the strength of glass is much higher than that of epoxy, and thus the crack develops

along the interfaces between the two phases rather than penetrating the glass parti-

cles. Therefore, the presence of glass inclusion makes the crack path tortuous, and

results in greater crack surface area, hence larger fracture resistance. On the other
hand, however, at higher volume fraction, the glass particles tend to agglomerate

and form local defects. Thus the toughness becomes a competition of the two mech-

anisms, and as glass volume fraction increases, the toughness first increases, attains

its maximum value, and then it drops gradually.

To investigate the influence of material variation on crack initiation and propaga-

tion features, five sets of material properties of different gradation profiles were used

in the simulation:

1. FGM: crack is located on the compliant side, i.e., if we designate subscript 1 to

indicate bottom surface and 2 top surface, then E2 > E1, and the specimen is

impacted on the stiffer side.

2. FGM: E2 < E1, crack is located on the stiffer side, and impacted at the more com-

pliant side.

3. Homogeneous: Vf = 0.1, i.e., E1 = E2 = Young�s modulus E0 at crack tip in case 1.

4. Homogeneous: Vf = 0.4, i.e., E1 = E2 = Young�s modulus E0 at crack tip in case 2.

5. Homogeneous: Vf = 0.25, i.e., E1 = E2 = median value of Young�s modulus in case
1 and 2.

In the last three cases, the material under investigation is a composite, which is

essentially a monolithic specimen with uniform volume fraction of each phase.

For the sake of convenience, this ‘‘macroscopically uniform’’ material specimen is

referred to as ‘‘homogeneous’’ from now on.

4.2.2. Effective material property

Under dynamic load, material behaves stiffer than in static case. Experimental

data for FGM properties under quasi-static and dynamic load are given in Rousseau

and Tippur (2000, 2001b), respectively. Under static load, Young�s modulus varia-

tion is between range E = 2.6 GPa at Vf = 0 to E = 8 GPa at Vf = 0.5 (the numbers

are read from Rousseau and Tippur (2000, Fig. 1)), while under dynamic load,

Young�s modulus varies from E = 4.5 GPa at Vf = 0 to E = 11 GPa at Vf = 0.5

(the numbers are read from Rousseau and Tippur (2001b, Fig. 5)). The variation

in Poisson�s ratio was not reported, and presumably it would be within a moderate
range that would not affect the results noticeably. Thus m is assumed to be the same

as in the static case. As for the mass density q, it is regarded as constant whether un-

der static or dynamic loading. Due to emphasis of this work on dynamic analysis, the

material property under dynamic load is used.

Multiple theories exist to estimate effective properties of typical epoxy/glass com-

posites. In the present study, the Mori–Tanaka method is employed. Rousseau and

Tippur (2002a) have reported good agreement between this estimation and experi-

mental results for the static case, and here we assume that this method also gives
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acceptable estimation of material properties under dynamic load. To obtain the

effective property at nodal points, first the volume fraction of glass phase (Vf) is cal-

culated at each node. Next, the bulk modulus j and the shear modulus l of the com-

posite are computed:

j ¼ jm 1þ V f

3ð1�V f Þjm
3jmþ4lm

þ jm
ji�jm

" #
; ð37Þ

l ¼ lm 1þ V f

6ð1�V f Þ jmþ2lmð Þ
5 3jmþ4lmð Þ þ lm

li�lm

" #
; ð38Þ

where the subscripts m and i denotes the matrix and the inclusions, respectively, and

jm ¼ Em

3ð1� 2mmÞ
; lm ¼ Em

2ð1þ mmÞ
; ji ¼

Ei

3ð1� 2miÞ
; li ¼

Ei

2ð1þ miÞ
: ð39Þ

Thus the effective Young�s modulus and Poisson�s ratio are given by (see, Nemat-

Nasser and Hori, 1993; Soboyejo, 2003):

Eeff ¼
9l� j
lþ 3j

; meff ¼
1:5j� l
lþ 3j

: ð40Þ

Effective material properties versus volume fraction of glass sphere inclusion Vf are

plotted in Fig. 21. In the current computation, Vf is assumed to vary linearly in the

FGM gradation direction. Therefore, Fig. 21 effectively shows the material property

gradation profile in the FGM beam along the Cartesian y-direction.
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Fig. 22. Mesh for three-point bending beam subjected to impact loading. Mesh contains 14,991 nodes
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4.2.3. Discontinuity issues

T6 elements are used in the bulk discretization, and the mesh is illustrated in Fig.
22. Cohesive elements are prescribed along the path at x = 0 (the symmetry line), so

that the crack will propagate along the defined path.

Based on the discussion in the previous Section, the choice of cohesive element

size should take into account the cohesive zone size ‘k (Eq. (32)) as well as the max-

imum cohesive strength Tmax and the critical opening displacement d. A high cohe-

sive strength, e.g., E/Tmax = 10 would result in a shorter cohesive zone size, and thus

induce a more stringent element size requirement. In this problem, E/Tmax = 10 gives

cohesive zone size of approximately 15.5 lm. Notice that due to non-homogeneous
material property, the determination of ‘k is based on sampling at a number of
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points of different volume fraction (Vf) of glass inclusion, and then the smallest ‘k is
chosen, which occurs at Vf = 0.50, the stiffest edge. According to the convergence

requirement (Geubelle and Baylor, 1998; Klein et al., 2000), the element size should

be at most 1/2 to 1/3 of the cohesive zone size, so this estimation gives element size of

at most 8 lm, which leads to a very large number of nodes and elements, hence heavy
computation load. However, since cohesive elements are inserted only along a de-

fined line, we can assume that using a lower Tmax value would not add too much

compliance to the structure. The elastic compliance added to the structure can be

estimated similarly to (Zavattieri and Espinosa, 2001) – see also (Baylor, 1998; Klein

et al., 2000):

Eadd ¼
Tmax

d
� bs ¼

E=50

0:4� 10�6
� 76� 10�3 ¼ 3800E;

where bs is taken as half of the beam specimen length. The ratio of structural com-

pliances before and after cohesive element insertion is thus estimated to be 1:1/(1 + 1/
3800) = 1:1.0003. Therefore, E/Tmax = 50 is used, which results in ‘k = 387 lm. The

element size shown in Fig. 22 refers to 2h = 185 lm, so the cohesive zone spans at

least 2 cohesive elements, which is roughly within the convergence requirement.

If an insufficiently refined mesh is used, which violates the convergence rule, then

a crack appears ahead of the main crack front. For example, when the E/Tmax = 10

ratio is used, and the element size held at 2h = 185 lm, which is much larger than

cohesive zone size ‘k = 26.6 lm, the crack pattern illustrated in Fig. 23 is obtained.

As can be seen in this plot, before the crack tip node experiences complete
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Fig. 23. Premature crack front for FGM beam under dynamic load (Fig. 19).



Table 6

Material properties and crack initiation time for three-point bending homogeneous beam

Vf E (GPa) m q
(kg/m3)

Cd

(m/s)

GIc

(N/m)

Tmax

(MPa)

d (lm) ‘k (lm) h (lm) ti (ls) t�i

0.10 5.517 0.3406 1282 2218 1175.3 110.3 3.92 1166 92.5 120 7.2

0.25 7.020 0.3257 1480 2327 1459.6 140.4 3.82 1136 92.5 117 7.4

0.40 9.010 0.3103 1678 2476 1101.8 180.2 2.25 666 92.5 92 6.2
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Fig. 24. Crack tip location versus normalized time for homogeneous beams with Vf=0.1, 0.25 and 0.4;

Dilatational wave speed Cd = 2218, 2317 and 2476 m/s for beams with Vf = 0.1, Vf = 0.25 and Vf = 0.4,

respectively.
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decohesion, some other nodes ahead are separated. This undesirable effect, however,

can be avoided by careful control of the cohesive element size.

4.2.4. Results

First, results for the three homogeneous beams of Section 4.2.1 are presented. Ta-

ble 6 gives the material properties and crack initiation time for these three cases. The

crack tip location with respect to normalized time is plotted in Fig. 24. The dilata-

tional wave speed Cd is defined by Eq. (11) with constant material properties (E,

q, m) for plane stress case. The times ti and t�i denote crack initiation time in absolute

scale (seconds) and normalized scale (ti · Cd/W, where W is the height of the beam),

respectively.
On an absolute time scale, the stiffer the material, the earlier the crack starts to

propagate (i.e., tðV f¼0:4Þ
i < tðV f¼0:25Þ

i < tðV f¼0:1Þ
i , cf. Table 6). Three factors are attributed

to this observation. First, in a stiffer media, waves propagate faster, and stress con-

centration accumulates at a higher speed, so that the crack tends to grow earlier than

in the softer media. Fig. 24 uses normalized time, thus the influence of different wave
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speed is partly excluded. The normalization changes the relative position of the

curves corresponding to Vf = 0.1 and Vf = 0.25. Second, for linear elasticity problem,

the force applied and the stress induced are proportional to the specimen stiffness

when displacement loading is prescribed. This effect is also present here although

the problem under investigation clearly exhibits non-linearity through the cohesive
model. Third, the material resistance capacity against fracture, represented by the

cohesive energy shown in Fig. 20 for material with different glass volume fraction,

controls the crack initiation and propagation behavior. Notice that the sequence

of crack initiation times normalized with respect to the average dilatational wave

speed is the same as the order of fracture energy (i.e., t�ðV f¼0:4Þ
i <

t�ðV f¼0:1Þ
i < t�ðV f¼0:25Þ

i , cf. Table 6). Since the local maximum cohesive strength Tmax

is assumed to be proportional to the local Young�s modulus (E/Tmax = 50), the stiffer

material gives higher Tmax value. Although this seems to enhance the resistance of
local material against crack initiation, it also causes the critical separation d to de-

crease, since the exponential cohesive law states cohesive energy GIc = eTmaxd. All

these factors are combined to produce the crack initiation and propagation behav-

iors shown in Fig. 24.

After crack initiation, the crack tip appears to remain at a ‘‘plateau’’ status for

around 130 lm, during which the crack front advances very little. After careful

examination of the deformation shape of the beam, we can explain the ‘‘plateau

stage’’ as follows: when impact load is applied on the top surface of the beam, first
a compressive stress wave propagates downwards, then reflects at the bottom sur-

face, and propagates upward as tensile wave. During the same time, since velocity

is imposed continuously, the subsequent waves also propagate downwards and re-

flect. After a short while, the combined effect of superimposed waves that propagate

back and forth become rather complicated, and at the crack tip, the rx stress, which
is the primary driver for crack extension, does not necessarily increase monotoni-

cally. In fact, it can be observed that the crack mouth opening displacement

(CMOD) first increases, then decreases, and increases again during certain phase
of the simulation. At an early stage, when the stress at the initial crack tip attains

critical value, one pair of nodes break up, then it takes another time interval for

the stress to arrive at an equally high level to break up the next pair of nodes. This

is the ‘‘plateau’’ stage. However, in the long run, the bending effect predominates

over the wave effect and local deformation at the crack tip monotonically increases,

and thus the crack propagates at a much faster velocity.
Table 7

Material properties and crack initiation time for three-point bending homogeneous and FGM beams

Material E (GPa) m q
(kg/m3)

Cd

(m/s)

GIc

(N/m)

Tmax

(MPa)

d
(lm)

ti
(ls)

t�i tExperiment
i

a

Vf = 0.10 5.517 0.3406 1282 2218 1175.3 110.3 3.92 120 7.2 –

Vf = 0.25 7.020 0.3257 1480 2327 1459.6 140.4 3.82 117 7.4 –

Vf = 0.40 9.010 0.3103 1678 2476 1101.8 180.2 2.25 92 6.2 –

FGM:E2 > E1 7.292 0.3252 1480 2308 1166.2 145.8 2.94 101.5 6.3 6.0–6.4

FGM:E2 < E1 7.292 0.3252 1480 2308 1166.2 145.8 2.94 113.4 7.1 7.0–7.4

a Experimental results from Rousseau and Tippur (2001a).
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When the crack speeds up, it propagates smoothly to the top surface. Crack exten-
sion evaluated at the normalized time (Fig. 24(b)) also reveals that fracture energy

controls the crack propagation: the crack propagates slowest for the specimen with

highest fracture energy (1459.6 N/m for Vf = 0.25 versus 1175.3 N/m for Vf = 0.10

and 1101.8 N/m for Vf = 0.40).

Next we proceed to investigate the influence of material gradation. The relevant

material properties and crack initiation time are listed in Table 7.

The crack tip location with respect to time is plotted in Fig. 25 and the following

observations can be made:

� The crack tip location profiles of the FGM beams are bounded between results for

the two homogeneous cases.

� For E2 > E1 case (the beam is more compliant at cracked surface), crack initiates

at t = 101.5 ls; for E2 < E1 case (the beam is stiffer at cracked surface), crack ini-

tiates at t = 113.4 ls. This trend is consistent with the prediction made by Rous-

seau and Tippur (2000). However, this is different from the homogeneous cases,

for which crack initiates earlier in the stiffer material.
� After the first node experiences decohesion, both cases experience a time interval

during which the crack extends slowly. It is relatively longer for the E2 > E1 case,

with a ‘‘plateau’’ time of around 170 ls, and shorter for the E2 > E1 case, with a

‘‘plateau’’ time of around 110 ls.
� After the crack propagation speed up, at first the crack tip of beam with E2 > E1 is

ahead of that of the beam with opposite material gradation (E2 < E1), as illus-

trated in the stress field rx plot in Fig. 26. However, the crack tip in the

E2 < E1 case accelerates faster than the other, and at time around 360 ls, the crack



Fig. 26. Comparison of stress field rx (units: Pa) at t = 300 ls for FGM beams subjected to three-point

bending; (a) beam softer at bottom (E2 > E1); (b) beam stiffer at bottom (E2 < E1).
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tips in both cases reach the same crack tip location (represented by the crossing of
curves in Fig. 25), and afterwards the one in the E2 < E1 case keeps advancing

ahead of the other one.

� Comparison of crack propagation time between experiments (Rousseau and Tip-

pur, 2002a) and numerical simulation shows good agreement (Table 7). The nor-

malized crack initiation time t�i ¼ t � Cd=W from the experiment (Rousseau and

Tippur, 2001a) is within the range 6.0–6.4 for the compliant-bottom beam

(E2 > E1) and 7.0–7.4 for the stiff-bottom beam (E2 < E1), respectively, while

the numerical simulation results are 6.3 and 7.1, respectively. However, the exper-
iment does not observe a significant ‘‘plateau’’ stage after crack initiation. This

may be understood as the artificial compliance effect due to the cohesive law

adopted in the simulation. The presence of cohesive elements in the mesh before

the numerical simulation starts inevitably introduces artificial compliance to the

structure. By using initially rigid cohesive model, this effect can be eliminated.

Another difference in the experiment setting and the numerical simulation is asso-

ciated with the crack tip modeling. In the experiment, the crack tip is a 150 lm
sized notch, while the simulation assumes initially sharp crack. This may suggest
more singular stress fields for the numerical simulation compared to the experi-

ment. However, during the simulation, the cohesive elements located at the crack

tip region respond to the finite tensile stress with opening displacement before the
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elements suffer complete separation (no load bearing capacity). Therefore singu-

larity is not activated at the crack tip. Thus this issue may not be a major contrib-

uting factor for the ‘‘plateau’’ stage in the simulation.

The comparison of velocities of both FGM and homogeneous beams can be
clearly observed in Fig. 27, which shows the crack extension speed versus time.

For the sake of clarity, the time axis is shifted by t � ti, in which ti denotes crack

initiation time. Two factors contribute to the crack propagation speed: local stress

rx, which is the primary driving force of crack extension; and fracture resistance.

For the homogeneous beams, the difference in fracture energy and the higher

stress associated with higher stiffness are the main causes of the different crack

propagation speeds. Therefore, the crack advances faster in the Vf = 0.4 beam

than in the Vf = 0.1 beam. On the other hand, although the average stiffness
and fracture energy are the same for the two FGM beams (see Table 7), the

crack speeds are much different. In the softer bottom beam, after crack propaga-

tion picks up speed (during the time range 200–300 ls), the crack propagates fas-

ter than the stiffer bottom beam. This can be understood as follows: in FGM

beams, shift of the neutral axis position from the geometrical center introduces

a significant stress difference at the crack tip, compared to the homogeneous case.

For instance, for a softer-bottom beam (E2 > E1), the neutral axis is shifted to-

wards the upper surface compared to the homogeneous beam, leading to a longer
distance measured from the neutral axis to the crack tip location, denoted as yc.

Since the crack tip stress is positively related to yc for bending problem (for a

static pure bending problem rx = Myc/I in which M and I denote bending mo-

ment and the second moment of area, respectively), the shift results in higher

stress value at the crack tip for the softer-bottom beam (E2 > E1) compared to

a homogeneous beam under same loading condition. This trend is reversed for
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the stiffer-bottom beam (E2 < E1). Apparently, higher stress level tends to acceler-

ate the crack extension speed, and the crack propagates faster in the softer-

bottom beam case than the stiffer-bottom beam case. Without overlooking the

other factors influencing crack speed, e.g., local fracture resistance and reflective

stress waves, we emphasize the importance of material gradation by inducing neu-
tral axis shift on the crack propagation behavior in the bending beam problem.

The stress field rx plots for the two FGM beams at time t = 300 ls are shown in

Fig. 26. Clearly, the crack tip location is more advanced in the beam with E2 < E1

(stiffer bottom) than in the beam with E2 > E1 (softer bottom) at this time instant.

To further illustrate the difference of crack evolution pattern in the two FGM beams,
Fig. 28. Difference in value of stress field rsoftbottom
x � rstiffbottom

x (units: Pa) for three-point bending FGM

beam at different times: (a) t = 250 ls, crack tip of the stiffer-bottom beam begins to take speed, (b) t = 300

ls, both cracks speed up, crack tip of softer-bottom beam is below that of stiffer-bottom beam, (c) t = 350

ls, crack tip of softer-bottom beam catches up with that of the stiffer-bottom beam and (d) t = 400 ls,
crack tip of softer-bottom beam overtakes that of the stiffer-bottom beam.
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the difference of stress field rx for the two FGM specimens, calculated as

rsofter bottom
x � rstiffer bottom

x , is plotted in Fig. 28, in the undeformed configuration.

The positive values, represented by contours of red color, indicate regions where

the stress of softer-bottom beam is higher compared to stiffer-bottom at certain time

instant, while the negative values, represented by contours of blue color, indicate the
reverse situation. Since the peak values for each case occur at the crack tips, the cen-

ters of the red and blue contours indicate the crack tips of the softer-bottom beam

and stiffer-bottom beam, respectively. Apparently, first the crack tip of the stiffer-

bottom beam advances ahead of the softer-bottom beam, but the situation reverses

at around t = 360 ls and height 24mm.

4.3. Mixed-mode dynamic crack propagation

The two examples in Sections 4.1 and 4.2 illustrate the application and versatility

of the CZM approach in dynamic fracture simulations for homogeneous and graded

materials. In both examples, the fracture paths are predefined and the crack grows in

Mode I only. This section is devoted to study mixed-mode dynamic fracture.

A clear understanding of physical mechanisms governing the dynamic crack prop-

agation under mixed-mode loading remains elusive. General observation drawn pri-

marily from quasi-static analysis indicate that under mixed-mode loading, the

existing crack tends to grow according to the local Mode-I condition, e.g., in the
direction of maximum hoop stress at the immediate vicinity of the crack tip. Another

widely adopted fracture criterion in quasi-static crack propagation analysis is based

on energy consideration, in which the crack tries to find the path of least resistance

and thus maximize the energy release rate (Anderson, 1995). These approaches re-
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(b) 2-D plane-strain FEM simulation model.
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quire evaluation of external fracture criterion during simulation. In this section, the

cohesive zone model is employed to study a mixed-mode dynamic crack propagation

problem, where the cohesive elements allow crack initiation and turning of crack

paths to occur spontaneously without predefining crack path nor prescribing a sep-

arate fracture criterion.

4.3.1. Kalthoff–Winkler experiments

Kalthoff and Winkler (1987) tested specimens, as shown in Fig. 29(a), where a

plate with two edge notches is subjected to an impact by a projectile. The two

notches extend to around half plate width. The experiments demonstrated different

fracture/damage behaviors of a maraging steel material under various loading rates.

Depending on the loading rate v0 and notch tip radius r0, the crack tip experiences

different stress intensity factor rate. At lower strain rate factor v0/r0, brittle fracture
occurs with a propagation angle of around 70� from the original crack plane. At

higher strain rate factor, failure occurs due to the shear localization originated from

shear band formation ahead of the notch. The maraging steel used in the original

experiments is X2 NiCoMo 18 9 5, and the counterpart material in the ANSI system

is maraging steel 18Ni(300) (alternatively labeled as 18Ni1900 as in Belytschko et al.

(2003), in which 1900 MPa represents material tensile strength in metric unit system,

while 300ksi is measured in English units). The material properties are listed in Table

8. Notice the factor of notch tip radius in this problem: with a sharp crack, shear
band damage mode can occur at even low impact loading rate. For the mesh used

in this study, the notch tip is originally sharp (r0 = 0), and theoretically it results

in infinite v0/r0 ratio. However, the presence of cohesive elements eliminates stress

singularity at the crack tip and introduce a finite separation at the crack tip. More-

over, when the notch tip is subjected to the influence of impinging stress wave, it does

not retain a (r0 = 0) shape.

Both the brittle failure and the shear band failure modes have been studied exten-

sively (e.g., Zhou et al., 1998 for the latter case). In this study, we only attempt to
simulate the brittle failure mode. Belytschko et al. (2003) modelled these experiments

using the extended FEM (XFEM) with both loss of hyperbolicity criterion and ten-

sile stress criterion. The overall crack propagation angle of around 58� was reported
for the former, and 65� for the latter. The Virtual Internal Bond model combined

with meshfree methods were employed by Klein et al. (2000), and produced an aver-

age crack growth angle of 63� and 79� depending on the texture of integration grid.

Both studies also reported simulations using (Xu and Needleman, 1995) cohesive

model, but with different mesh discretization and cohesive strength. In this study,
we investigate the overall crack propagation angle, crack initiation time and
Table 8

Material properties of 18Ni(300) steel and cohesive model parameters used in simulating Kalthoff–Winkler

Experiments Belytschko et al. (2003)

E (GPa) m q (kg/m3) Cd (m/s) GIc (kJ/m
2) Tmax

n ðGPaÞ dn (lm)

190 0.3 8000 5654 22.2 1.733 25.63
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propagation speed with a set of progressively refined element sizes. The impact load-

ing rate is chosen as 16.54 m/s, following the work by Belytschko et al. (2003). Since

the problem possesses symmetry, only half of the geometry is modelled, as shown in

Fig. 29(b).
4.3.2. Bilinear cohesive model and initial stiffness considerations

The crack trajectory in this problem is not known a priori. In order to simulate

crack propagation along arbitrary path, cohesive zone elements are inserted into a

relatively large region through which the crack may potentially grow, as shown in

Fig. 29(b). Initially, all bulk elements are bound together with cohesive force

provided by the cohesive elements. Fracture occurs at high stress regions, where

the local stress overcomes cohesive strength and the cohesive elements gradually lose

resistance capability against separation, until complete decohesion takes place.
In the previous two examples where crack paths are predefined, there is essentially

one line of cohesive elements added to the finite element mesh, and hence mesh

refinement does not affect structure stiffness, as the total area of cohesive elements

remains the same for various mesh discretizations. For the mixed-mode fracture

problem under study, on the other hand, mesh refinement implies that larger total

area of cohesive elements are inserted, along with larger capacity to dissipate energy,

and addition of artificial compliance to the system. Therefore, the bilinear model dis-

cussed in Section 3.3 is adopted in this study in favor of its adjustable initial slope.
The material property and typical cohesive model parameters used in this study

are given in Table 8. Due to lack of experimental information about the CZM

parameters, we assume

GIIc ¼ GIc; Tmax
t ¼ Tmax

n ; dt ¼ dn;

where the fracture toughness of opening and sliding modes are related to cohesive

strengths and critical openings as

GIc ¼ 1
2
Tmax

n dn; GIIc ¼ 1
2
Tmax

t dt

for the bilinear cohesive model. In this study, the cohesive strength adopted in the

bilinear model is relatively low ðTmax
n ¼ E=110Þ as compared to the usual case when

the model by Xu and Needleman (1995) is employed ðTmax
n ¼ E=10Þ. However, a stiff

initial slope is chosen (k 6 0.01) to limit the artificial compliance introduced. For

example, when a 80 · 80 grid mesh is used, the additional compliance introduced
can be estimated as (Zavattieri and Espinosa, 2001)

Eadd ¼
Tmax

n

kcrdn
� h ¼ E=110

0:01ð25:63� 10�6Þ
� 0:1=80

3
¼ 14:8E;

where h is an equivalent cohesive element spacing estimated as grid spacing over

number of cohesive elements within a unit grid. For these parameters, the addi-

tional elasticity introduced Eadd within the cohesive elements region is much lar-

ger than the material Young�s modulus E as long as the interface separation

experienced by the cohesive elements does not exceed kcdn. As the mesh is refined,
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e.g., 100 · 80 and 120 · 120 grids, the initial slope is also adjusted to maintain the

same value of Eadd.

Two sets of calculations are carried out to investigate the capabilities of the

bilinear cohesive model. The first set aims to study the effect of mesh orientation

on the fracture propagating path. With sufficiently refined mesh, the crack is as-
sumed to find the same path for different meshes. Three rectangular unit cells
Fig. 30. Fracture path for different mesh designs considering GIIc = GIc. The blue elements denote the

region with cohesive elements, and all simulations use cohesive strength Tmax
n ¼ E=110 except for (c), which

uses Tmax
n ¼ E=30; (a) 80 · 80 grid; (b) 100 · 64 grid; (c) 80 · 80 grid; (d) 64 · 100 grid.
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with aspect ratios of height/width = {25/16,1,16/25} are considered. Therefore, the

plate geometry is discretized into 64 · 100, 80 · 80 and 100 · 64 rectangles, each

divided into 4 T6 elements. The second set of calculations investigate the effect

of mesh size. Results obtained from 100 · 100 and 120 · 120 are compared to

that from 80 · 80, for instance.

4.3.3. Results

The fracture paths for three aspect ratios of the ‘‘unit mesh grid’’ are shown in

Fig. 30. These results indicate that, despite the different mesh orientation bias, the

overall crack propagation paths of the three different meshes are similar. Notice that

the crack path is not straight, but tends to propagate further towards the right sur-

face when it moves closer to the boundary (see Fig. 30(a)). In order to avoid this

‘‘boundary effect’’, the crack angle is measured up to about first 2/3 crack length
(the crack tip projection on x-axis is x = 0.08 m). The propagation angle is estimated

to be around 72–74�, which agrees well with the experimental prediction (70�).
In all the cases shown in Fig. 30, the crack first propagates for a short distance at

a right angle from the original crack path, and then zigzags through the inclined ele-

ment edges and vertical edges in the meshes with grid aspect ratio of 1 and 25/16

(Fig. 30(a), (c) and (d)), while it propagates primarily along the inclined element

edges for the remaining case of grid aspect ratio 16/25, resulting in an apparently

smoother crack path (Fig. 30(b)). Additional calculation for the 80 · 80 grid mesh
is carried out using a different cohesive strength Tmax

n ¼ E=30. The crack path is

remarkably similar to the one with Tmax
n ¼ E=110 case, especially during the begin-

ning stage of crack propagation. A close comparison of the final fracture pattern
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Table 9

Crack initiation time for different meshes

Mesh grid Crack init. time (ls) Mesh grid Crack init. time (ls) Mesh grid Crack init. time (ls)

80 · 80 20.7 100 · 100 19.3 120 · 120 18.5

64 · 100 20.0 80 · 120 19.1 96 · 148 18.8

100 · 64 19.1 120 · 80 18.8 150 · 96 18.5
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smoothed crack velocity history.
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for the three different mesh orientations is shown in Fig. 31(a). Clearly, the crack

finds similar paths in meshes with different aspect ratio bias.

Two different sets of meshes of further refinement are tested, with 100 · 100,

120 · 80, 80 · 120 grids, and 120 · 120, 150 · 96, 96 · 148 grids, respectively. Each

set of three meshes represent the three different aspect ratios discussed above.
Although not all the results are reported here, the simulations demonstrate very sim-

ilar global crack path for these settings, e.g., as shown in Fig. 31(b) for mesh with as-

pect ratio of 1. The computational crack initiation times are summarized in Table 9.

Crack length versus time is plotted in Fig. 32 (a) for 5 typical meshes used in the

study. Clearly, the crack evolution with time maintains similar speed in all the cases
Fig. 33. Stress field rx and crack evolution in a 120 · 120 grid mesh: (a) crack pattern at t = 30 ls after
crack propagation starts, (b) close-up of stress field at crack tip at t = 30 ls, (c) crack pattern at t = 40 ls
and (d) crack pattern at t = 60 ls.
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investigated. When computing the crack speed using discrete data at each time step,

local oscillation of relatively small amplitude occurs due to mesh discretization effect

involved in crack propagation. In order to focus on the global crack speed variation

trend instead of local oscillation, the smoothened crack tip speed is calculated by

taking derivative of a polynomial fitting curve of crack length. The crack tip velocity
is thus plotted in Fig. 32(b). After crack initiation, the crack speed maintains a rel-

atively steady speed around 1800 m/s, about 65% of the Rayleigh wave speed. This

value is similar to that reported by Belytschko et al. (2003).

Although the overall crack path follows a slanted direction, the initial crack prop-

agation always shows a short vertical segment in all the mesh cases studied. Other

researchers (Klein et al., 2000; Belytschko et al., 2003) also reported similar results

when using the cohesive model approach. This is not incidental, and the stress con-

tour plots in Fig. 33 illustrate the critical role of wave propagation and reflection on
the crack propagation direction. When the load is applied along the left edge of the

lower plate section (below the initial crack plane), it creates compressive waves which

propagate continuously rightwards along the lower plate section. Before the first tide

of stress waves reach the initial crack tip, the stress distribution across the height

direction of the lower section is fairly uniform, while the upper plate section remains

stress-free. When the wave reaches the crack tip, the upper crack surface near the

crack tip stays stationary, while the lower crack surface near the crack tip is under

the influence of a rightward compressive wave. This creates a tearing effect at the
crack tip. Afterwards, the waves continue to propagate rightwards in the lower plate

section as compressive wave, and also propagate around the crack tip into the upper

section (above the initial crack plane) of the plate. The stress waves along the upper

crack surface are now tensile propagating towards left edge. Therefore the upper and

lower surfaces of the crack are subjected to influence of stresses of opposite sign and

direction along the Cartesian x coordinate, and a strong tearing effect is created at

the crack tip. The principle tensile stress at the crack tip is thus in x direction, and

the crack tip begins to open up and propagate in vertical direction when the local
stress built up is high enough to overcome the cohesive strength. This initiation time

occurs around 19 ls (Table 9). The crack maintains vertical path until the reflective

wave from the right boundary reaches the crack tip region. The additive stress wave

is now tensile, and when it interferes with the initial crack tip stress field, the princi-

ple tensile stress is no longer in pure x direction, and thus results in a slanted crack

path. The crack turning time for different meshes are reported in Table 10. Clearly,

all the cases indicate a similar time instant of around 28 ls, which is approximately

the time needed for the first tide of the reflective waves to reach the crack tip:
Table 10

Crack turning time for different meshes (see Fig. 33(b))

Mesh grid Crack deviation time (ls) Mesh grid Crack deviation

time (ls)
Mesh grid Crack deviation

time (ls)

80 · 80 28.4 100 · 100 28.2 120 · 120 28.3

64 · 100 29.9 80 · 120 29.7 96 · 148 30.1

100 · 64 27.8 120 · 80 28.1 150 · 96 28.4
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tturn �
1:5� W

Cd

¼ 1:5� 0:1

5654
¼ 26:5 ls;

where W is the width of the specimen.

Another interesting issue is the different toughness associated with Mode I and

Mode II fracture modes. In Section 4.3.2, we assumed that both the opening and

sliding modes have the same fracture toughness. This assumption is not strictly true

for real materials, which generally possess higher sliding toughness than opening
toughness. Material property manuals usually only report the Mode I fracture

toughness, as opening fracture is the dominant failure mode, and the experimental

techniques for measuring the Mode I fracture toughness are far more mature than

those for the Mode II toughness. To test how significant the aforementioned

assumption influences the fracture behavior, we further carried out simulations using

different sliding fracture toughness:

GIIc ¼ 3GIc; Tmax
t ¼ Tmax

n ;

GIIc ¼ 3GIc; Tmax
t ¼ 3Tmax

n ;

while the Mode I fracture parameters are maintained the same as before. Fig. 34 pre-

sents the crack trajectories in the two cases. Further comparison of these two spec-

imens with GIIc = GIc specimen are summarized in Fig. 35. Evidently, the simulated

fracture paths (cf. Fig. 34(a) and (b), and Fig. 35(a)) using different GIIc values are

close, especially during the beginning stage of crack growth. It is easily understood
that the overall crack velocity (Fig. 35(b)) is slower for simulations using higher GIIc
Fig. 34. Crack path for fracture toughness GIIc = 3GIc. The blue elements denote the region with cohesive

elements and simulations are performed using 80 · 80 grid meshes: (a) Tmax
t ¼ Tmax

n and (b) Tmax
t ¼ 3Tmax

n .
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Fig. 35. Influence of different Mode II and Mode I fracture toughness ratios: GIIc = GIc and GIIc = 3GIc:

(a) final crack paths and (b) smoothed crack velocity history.

Zhengyu (Jenny) Zhang, G.H. Paulino / International Journal of Plasticity 21 (2005) 1195–1254 1245
values, as increased toughness hinders crack propagation. However, the difference is

minor and the overall trends of crack growths are similar. Within the limited scope

of the present work, the underlying mechanism to explain the relatively minor influ-

ence of different sliding toughness is that when the crack advances, the local crack

growth is controlled by the opening fracture mode, so that as long as the Mode I

toughness used in the simulations are the same, the fracture behaviors are similar.

On the other hand, the mode toughness ratio GIIc/GIc = 3 used in the simulation is
moderate. Other mode toughness ratios are tested, and the trend of crack paths

(including that shown in Fig. 35) suggests that with higher sliding toughness and

higher sliding strength, the crack growth angle, particularly the part towards the
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‘‘boundary’’, is closer to an overall angle of 70�, the experimental result. However,

this issue certainly warrants further investigation.

4.3.4. Influence of material variation

Following the homogeneous material example, this section extends the study to
simulation of the same experimental setting with graded material properties. For

the sake of comparison with the previous results, the hypothetical material proper-

ties used in this section are conceived based on the homogeneous maraging steel de-

scribed in Table 8. Although the variation of a wide range of material property

parameters will contribute to changing fracture behavior, this study focuses on

two of the most important material properties in dynamic fracture problem. One

is the fracture toughness, as it is directly related to the material resistance capacity;

and the other is material stiffness, as it is related to wave propagation velocity and
local stress level. To isolate the influence of different parameters on the fracture

behavior, first the simulation is carried out with graded fracture parameters (includ-

ing fracture toughness and cohesive strength), and next with both graded Young�s
modulus and fracture parameters (including fracture toughness and cohesive

strength).

4.3.4.1. Graded cohesive strength and fracture toughness. Consider a linear variation

of fracture toughness G and cohesive strength Tmax
n inside the cohesive region along

the Cartesian x-direction, i.e., G(x) and Tmax
n ðxÞ. The material properties are given in

Table 11, where subscript 1, 2 and tip denote the left side, right side and the initial

crack tip of the specimen. The material properties for the homogeneous specimen are

also included. For the graded specimens, the bulk material remains homogeneous,

and the fracture toughness gradation within the cohesive element region is linear.

The Mode-I and Mode-II fracture toughness and cohesive strength are assumed to

be the same, i.e., GIc ¼ GIIc; Tmax
n ¼ Tmax

t . The specimen with G(W) = 2G(0) is de-

noted as ‘‘LHS weaker’’ case, while the other one with opposite material gradation
profile (i.e., G(0) = 2G(W)) is denoted as ‘‘RHS weaker’’ case.

Since the bulk material is homogeneous, the wave propagation speed is constant for

all three cases, and the stress carried by the wave propagation builds up at the crack tip

at the same rate. The critical stage of crack initiation depends on the local material

toughness, and presumably takes place earlier for the specimen weaker at the initial
Table 11

Material property for pre-notched plate with graded fracture toughness, which is subjected to mixed-mode

dynamic loading

Material E

(GPa)

Cd

(m/s)

G1

(kJ/m2)

Gtip

(kJ/m2)

G2

(kJ/m2)

Tmax
1

ðGPaÞ
Tmax
tip

ðGPaÞ
Tmax
2

ðGPaÞ
kcr tinit

(ls)

Homogeneous 190 5654 22.2 22.2 22.2 1.733 1.733 1.733 0.01 20.7

FGM-LHS weaker 190 5654 22.2 22.2 44.4 1.733 1.733 3.466 0.01 20.7

FGM-RHS weaker 190 5654 44.4 44.4 22.2 3.466 3.466 1.733 0.01 26.6

The bulk material is homogeneous.
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Fig. 36. Comparison of fracture path for different cohesive toughness and strength gradation profiles.

Results obtained using 80 by 80 grid mesh: (a) final crack paths, (b) two cohesive strength gradation

profiles. cohesive strength varies between E/110 to E/55 within the cohesive region; case 1: fracture

toughness and cohesive strength are lower at LHS; case 2: fracture toughness and cohesive strength are

lower at RHS, (c) crack length versus time and (d) crack tip speed versus time.
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crack tip. The results are compared in Fig. 36 for the graded specimens with the

homogeneous case of same mesh discretization and time step control.

As expected, the specimen with lower cohesive strength at crack tip (‘‘LHS weaker’’
case in Fig. 36(b)) experiences crack initiation earlier. For this material profile, the

cohesive strength is the same as in the homogeneous case, hence the crack initiation

times for the two cases are almost identical (tinit = 20.7 ls for both cases, see Table

11). The crack initiation time for ‘‘RHS weaker’’ specimen is around

tinit = 26.6 ls, close to the time when the reflected waves reach the crack tip, and

therefore the crack starts to propagate at a slanted angle, instead of along the vertical

direction as in the homogeneous case. One observes that as the fracture toughness is
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graded, the crack tends to propagate more into the weaker region (Fig. 36(a)), while

the homogeneous case is in between of the two graded cases.

The influence of fracture toughness on dynamic crack propagation can also be ob-

served in the crack speed evolution profile (Fig. 36(c) and (d)). For the homogeneous

case, the average fracture toughness is lower than the graded material cases, resulting
in lower resistance against crack advance, and thus the overall crack speed is highest

among the three. The ‘‘LHS weaker’’ specimen possesses similar material properties

compared to the homogeneous case at the region where the crack starts to propa-

gate, therefore the initial crack speed is also similar to that of the homogeneous

one. As the crack propagates into tougher regions, the crack speed becomes slower

than that of the homogeneous case. On the other hand, the ‘‘RHS weaker’’ specimen

exhibits the reverse behavior: the crack speed is slower in the beginning, and then

accelerates as the crack advances into the region of lower fracture resistance.

4.3.4.2. Graded modulus, cohesive strength and fracture toughness. The next set of sim-

ulations consider linearly graded Young�s modulus E, fracture toughness G and

cohesive strength Tmax
n along the Cartesian x direction, i.e., E(x), G(x) and Tmax

n ðxÞ.
The material properties are given in Table 12. The average material properties for

the two graded specimens are the same as those of the homogeneous case, and the

specimen which possesses E and G values at the right-hand-side twice as high as

the left-hand-side is denoted as ‘‘LHS softer’’ case, while the other one with opposite
material gradation profile is denoted as ‘‘RHS softer’’ case. Since the bulk material is

graded, the wave propagation speed varies for the FGM case, while it is constant for

the homogeneous case.

The crack paths and evolutions with time are plotted in Fig. 37 for the graded

specimens as well as the homogeneous case. Apparently, the crack tends to grow into

the weaker region (Fig. 37(a)). After the velocity loading is applied to the lower left

surface, the stress waves propagate rightwards and the stress concentration builds up

at the crack tip. Since the material fracture toughness at the initial crack tip (x = 0.05
m, y = 0.0275 m) are the same for all three cases, the crack initiation time is primarily

determined by the rate of stress concentration at the crack tip. Because the material

stiffness varies along the x direction, the stress waves propagate at varying speeds.

For the ‘‘RHS softer’’ specimen, the average stiffness between the left surface (where

the load is applied) and the crack tip is higher than the other two cases, and conse-

quently the average wave speed is faster. Therefore, it takes shorter time for the
Table 12

Material property for pre-notched plate with graded modulus, fracture toughness and cohesive strength,

which is subjected to mixed-mode dynamic loading

Material E1

(GPa)

Etip

(GPa)

E2

(GPa)

G1

(kJ/m2)

Gtip

(kJ/m2)

G2

(kJ/m2)

Tmax
1

ðGPaÞ
Tmax
tip

ðGPaÞ
Tmax
2

ðGPaÞ
tinit
(ls)

Homogeneous 190 190 190 22.2 22.2 22.2 1.733 1.733 1.733 20.7

FGM-LHS softer 127 190 253 14.8 22.2 29.6 1.155 1.733 2.301 24.8

FGM-RHS softer 253 190 127 29.6 22.2 14.8 2.301 1.733 1.155 18.2
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Fig. 37. Comparison of fracture paths for graded stiffness and graded fracture toughness along the

Cartesian x direction. Results obtained using 80 by 80 grid mesh: (a) final crack paths, (b) material

gradation profiles for E and cohesive strength. Case 1: material is softer and has lower fracture toughness

at LHS; case 2: material is softer and has lower fracture toughness at RHS; average E and Tmax
n are kept

the same as the homogeneous case, (c) crack length versus time and (d) crack tip speed versus time.
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crack tip tensile stress to reach the critical value for this case than the opposite mate-

rial gradation case, and thus the crack initiates earlier. The crack initiation time for

the ‘‘RHS softer’’ specimen (Tinit = 18.2 ls) is 6.6 ls earlier than the ‘‘LHS softer’’

specimen (Tinit = 24.8 ls), while the homogeneous case exhibits a crack initiation

time in between (Tinit = 20.7 ls), as shown in Table 12 and Fig. 37(c). After crack

initiation, two factors control crack propagation speed: the local fracture toughness

represented by the cohesive properties, and the crack extension driving force, which
is related to the material stiffness, since the stress level resulting from forced displace-

ment is lower in compliant material than in stiffer material. Therefore, when the

crack in ‘‘RHS softer’’ specimen grows along a slanted direction into materials of

gradually lower fracture toughness and lower stiffness, the lower fracture resistance

tends to accelerate crack propagation, while the lower stress level accompanied by

the compliant material tends to decelerate crack extension. The two effects partly
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counteract each other. Similar effects are in action in the reversed material gradation

profile case (‘‘LHS softer’’ specimen). Therefore, it is not surprising that the differ-

ence in crack propagation velocities for the two cases and the homogeneous case

is relatively small compared to the previous test with only cohesive strength graded

(compare Fig. 36(d) and Fig. 37(d)).
5. Conclusions

In this study, the dynamic fracture behavior of homogeneous and functionally

graded materials under dynamic loading is investigated. A research code is developed

using explicit dynamic scheme with time step control due to varying wave speed in

FGMs and presence of cohesive elements. Two basic types of elements are employed

in the present investigation: graded elements in the bulk material, and graded intrinsic

cohesive elements to model fracture. The graded elements are associated with non-

homogeneous elastic constitutive relationships of the bulk material, and the graded

cohesive elements are associated with traction–separation relationships to describe
physical conditions at the crack tip (actual and fictitious) and the fracture evolution.

Thus two competing length scales are present: one due to material gradation

(‘FGM = 1/c if E(x) = E0e
cx) and the other due to the fracture process (‘k � (Kc/

Tave)
2), which have been discussed in the previous examples.

Intrinsic CZMs are investigated for FGMs, including the potential-based surface

network approach based on effective quantities. The main drawbacks of this ap-

proach include the artificial compliance introduced with the embedded cohesive ele-

ments, the attenuation of crack tip stress singularity due to cohesive surface
separation, and the crude approximation of mode mixity by using effective quanti-

ties. As an alternative, (Xu and Needleman, 1995) model was extended to treat

FGMs, which eliminates the dependence upon effective quantities, and may provide

certain advantages when mixed-mode effect is prominent and material toughness is

significantly different for Mode-I and Mode-II fracture. Further, a bilinear model

is adapted for the FGM case, which provides the advantage of adjustable initial stiff-

ness. When cohesive elements are assigned in a large region, adjusting the traction–

separation curve initial stiffness helps to limit the artificial compliance introduced
into the computational framework and to maintain a comparable basis for meshes

with different mesh discretization.

Examples are presented to verify the computational code and to investigate the

dynamic fracture behavior of FGMs considering crack propagation in predefined

and non-predefined paths. As illustrated in the study, the cohesive approach is prom-

ising for modeling generalized fracture without predefined fracture criteria. It proves

to be an attractive alternative approach for investigating a broad range of fracture

phenomena, especially for dynamic fracture propagation problems involving non-
predefined crack paths. Comparison of results of numerical simulation with those

from experiments indicates that the cohesive zone approach is capable of qualita-

tively capturing the fracture evolution characteristics in homogeneous and graded
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materials, however, the quantitative match of results may require extensive calibra-

tion of cohesive zone model parameters.
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