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A multiscale modeling method is proposed to derive effective thermal conductivity in two-phase
graded particulate composites. In the particle-matrix zone, a graded representative volume element
is constructed to represent the random microstructure at the neighborhood of a material point. At the
steady state, the particle’s averaged heat flux is solved by integrating the pairwise thermal
interactions from all other particles. The homogenized heat flux and temperature gradient are further
derived, through which the effective thermal conductivity of the graded medium is calculated. In the
transition zone, a transition function is introduced to make the homogenized thermal fields
continuous and differentiable. By means of temperature boundary conditions, the temperature
profile in the gradation direction is solved. When the material gradient is zero, the proposed model
can also predict the effective thermal conductivity of uniform composites with the particle
interactions. Parametric analyses and comparisons with other models and available experimental
data are presented to demonstrate the capability of the proposed method. © 2005 American Institute
of Physics. �DOI: 10.1063/1.2039998�
I. INTRODUCTION

Graded materials are characterized by spatially varied
microstructures of constituent phases and gradual variation
of effective material properties. These microstructures are
not only found in natural materials such as bamboo and
wood,1 but also occur in some civil engineering materials
and constructed facilities.1,2 For instance, asphalt pavements
are typically constructed in layers, where material gradients
such as density �vertically graded air void concentration� are
built into the pavement through roller compaction. Addition-
ally, when a layer is compacted onto a dissimilar substrate
layer, a macroscopically sized interface zone arises due to
the intermingling of coarse aggregates, which are approxi-
mately 5–25 mm in diameter, and the binder materials. In
addition, above the groundwater table, the moisture content
varies in the vertical direction, which also creates material
property gradients. Finally, the temperature field in pave-
ments also varies, particularly with depth from the surface,
causing the viscoelastic asphalt surfacing materials to exhibit
significant physical property gradients �creep compliance,
fracture toughness, etc.�. Since thermal cracking of pave-
ments is a devastating pavement distress that can occur in
cold and/or rapidly changing climates, the ability to accu-
rately predict thermal fields within a pavement as a function
of time is essential in the selection of materials to avoid this
problem.3

Materials with graded microstructures, or functionally
graded materials �FGMs�, have been successfully manufac-
tured for various applications.1,2,4 In ceramic/metal FGMs, a
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continuous trade-off of fracture toughness and high thermal
conductivity of metals is made with ceramic hardness and
low thermal conductivity. In heat and impact protection ap-
plications, the material multifunctionality consists of the
ability to provide structural support by virtue of the metallic
portions of FGMs, and the simultaneous ability of the same
material system to provide the required thermal or impact
resistance by virtue of the ceramic portions of FGMs. The
effective thermal properties in the gradation direction are es-
sential for designing these materials and predicting their ser-
vice behaviors.5

Effective thermal conductivity of heterogeneous materi-
als has been extensively investigated in theoretical, numeri-
cal, and experimental methods6–9 considering different par-
ticle shapes, sizes, and volume fractions. While FGMs have
been designed and fabricated by diverse methods to achieve
the gradual material transition in the gradation direction,
very limited analytical investigations are available to tackle
the spatial variation of microstructure.10 Conventional com-
posite models such as Maxwell-Garnett’s model11 and the
self-consistent method12 have been directly applied to esti-
mate the effective thermal conductivity of FGMs. Because
they were originally developed for homogeneous mixtures
with constant particle concentration, those models are not
able to capture the material gradient nature of FGMs. Fur-
thermore, no direct interactions between particles are taken
into consideration.10

The purpose of this work is to investigate the effective
thermal conductivity and temperature profile in FGMs with
particle interactions and particle distributions. We place an

FGM between two parallel platens and apply constant tem-
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peratures T1 and T2 on the two platens, respectively. The
FGM, illustrated in Fig. 1�a�, microscopically contains a
particle-matrix zone with dispersed particles filled in con-
tinuous matrix, followed by a skeletal transition zone in
which the particle and matrix phases cannot be well defined
because the two phases are interpenetrated into each other as
a connected network. The transition zone is further followed
by another particle-matrix zone with interchanged phases of
particle and matrix.13 For simplicity, both phases are as-
sumed to be isotropic solids, and in the particle-matrix zones
particles are assumed to be identical spheres fully bonded to
the matrix in the absence of interfacial thermal resistance.14

A formulation is proposed to derive the averaged heat
flux field of both phases in the particle-matrix zone, and a
transition function is constructed to solve the averaged fields
in the transition zone. From the relation between the effec-
tive flux and temperature gradient, the effective thermal-
conductivity distribution in the gradation direction is deter-
mined. In the course of derivation, a microscopic
representative volume element �RVE�,13,15 as seen in Fig.
1�b�, is proposed to statistically represent the microstructure
in the neighborhood of a material point in the particle-matrix
zone, and the equivalent inclusion method6,16 is employed to
derive the averaged heat flux of particles in the RVE.

When we only consider one particle-matrix zone, the
present model can be used to predict the behavior of graded
materials where the particle and matrix phases do not be-
come interchanged. If the gradient of the volume fraction
distribution is zero, the FGM is reduced to a standard com-
posite containing uniformly dispersed particles and an ex-
plicit simplified solution of the effective thermal conductiv-
ity is provided. Mathematically, the effective thermal
conductivity is a quantity analogous to effective electric con-
ductivity, dielectric permittivity, magnetic permeability, or
water permeability in a linear static state, so this method can
be easily extended to those problems as well.5,17

The remainder of this paper is organized as follows. Sec-
tion II briefly reviews the equivalent inclusion method and
formulates the pairwise particle interaction. Section III em-
ploys the pairwise interaction in the microscale thermal
analysis of FGMs and solves the relation of averaged heat

FIG. 1. Schematic of the modeled FGM plate, placed between two platens
with fixed temperatures T1 and T2: �a� the macrosystem and �b� illustration
of the RVE in the neighborhood of the material at point X0.
fluxes of two phases for a material point in the particle-

Downloaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to 
matrix zone. Section IV calculates the effective thermal con-
ductivity and temperature profile in the gradation direction of
FGMs. Section V presents some parametric studies and fur-
ther compares the proposed model with other models and
available experimental data.

II. PAIRWISE PARTICLE INTERACTION

To investigate the disturbed elastic field for a single el-
lipsoidal inhomogeneity filled in the infinite domain under a
uniform far-field loading, Eshelby16 proposed the equivalent
inclusion method, in which the inhomogeneity is transferred
to the same material as the matrix but an eigenstrain is in-
troduced in the inclusion domain to simulate the material
mismatch. Hatta and Taya6 extended Eshelby’s method to
heat conduction problems. Since then, the equivalent inclu-
sion method has been widely employed in modeling the ef-
fective thermal conductivity of heterogeneous
composites.18,19

Consider a single spherical particle with the radius a
embedded in an infinite, homogeneous matrix under a uni-
form heat flux field q0. Because the particle and the matrix
have different thermal conductivities, denoted as k1 and k0,
respectively, the heat flux in the neighborhood of the particle
will be distorted. Based on the equivalent inclusion method,
the material mismatch can be simulated by introducing a
distributed doublet6 with the strength q*�x� on the particle
domain �, so the total domain is treated as a homogeneous
material with thermal conductivity k0 and subjected to a uni-
form flux q0 and a doublet on the particle domain. Then the
local temperature gradient �T�x� in the equivalent homoge-
neous domain comes from two sources: the applied uniform
flux q0 and the disturbed flux q� due to q*�x�, namely,

�T�x� = −
1

k0
�q0 + q��x�� , �1�

where q��x� can be solved by the Green’s-function
technique20 as

q��x� = �
�

��x − x�� · q*�x��dx�, �2�

in which ��x−x�� is the so-called modified Green’s
function20 for the scalar potential written as

��x − x�� =
1

4�
� � �� , �3�

with �=1/ �x−x��. It represents the response flux at an arbi-
trary point x due to the unit source flux at a certain point x�.
Here, the source flux is a distributed doublet on the particle
domain �, so the disturbed flux at any point x is written as
an integral in Eq. �2�.

In the real configuration with the particle being different

from the matrix, the Fourier law of heat conduction reads
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q�x� = �− k1 � T�x� , x � �

− k0 � T�x� , x � � .
� �4�

From the flux equivalent condition, the flux in the real par-
ticle should be equal to that in the equivalent inclusion, so
we obtain

− k1 � T�x� = − k0 � T�x� + q*�x�, x � � . �5�

It is noted that, in the equivalent inclusion, the flux includes
the temperature-induced flux and the prescribed doublet q*.
Using Eqs. �4� and �5�, we can solve

q*�x� =
k1 − k0

k1
q�x� . �6�

Combining Eqs. �1�, �2�, and �6�, we can derive that the
doublet and heat flux field in the particle domain are still
uniform as

q*�x� = 3�q0, x � � , �7�

and

q�x� = �q0, x � � , �8�

with

� =
3k1

k1 + 2k0
, � =

k1 − k0

k1 + 2k0
. �9�

Here

�
�

��x − x��dx� = − �/3 for x � � �10�

is used with � being the second-rank unit tensor or the Kro-
necker delta tensor.

Let us further add another identical particle into the do-
main. Then, the disturbed flux comes from the two particle
source domains as

q��x� = �
�

��x − x�� · q*�x��dx�

+ �
��

��x − x�� · q*�x��dx�, �11�

in which �� represents the new particle domain. The distrib-
uted doublet and total heat flux in the particle domains will
no longer be uniform due to the particle interaction when the
particle center-to-center distance is not too large. Expanding
the distributed doublet and heat flux of particles in a polyno-
mial form of the local coordinates,18,21,22 we can also solve
Eqs. �1�, �6�, and �11� for the heat flux field. After a lengthy
but straightforward derivation, the averaged heat flux in each
spherical particle domain is calculated as22

q̄ = ��1 − ��3 + �2�6�q0 + 3����3 + �2�6�n � n · q0

+ O��8� , �12�
where
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n = �x1 − x2�/�x1 − x2�, � = a/�x1 − x2� , �13�

with x1 and x2 being the centers of two particles, respec-
tively. Comparing Eqs. �8� and �12�, we can find that the
additional particle provides an interaction on the averaged
field of the first particle as22

d�x1,x2� � q̄ − �q0

= ���3��− � + 3n � n�

+ ��3�� + 3n � n�� · q0 + O��8� , �14�

which is the so-called pairwise thermal interaction between
particles.

III. MICROSCALE THERMAL ANALYSIS OF FGMS

Consider a typical FGM microstructure �Fig. 1�a�� con-
taining two phases A and B with isotropic thermal conduc-
tivities kA and kB, respectively. The global coordinate system
of the FGM is denoted by �X1 ,X2 ,X3� with X3 being the
continuous gradation direction. The overall grading thickness
of the FGM is t. Three material zones exist in the gradation
direction: Zone I �0�X3�d1� including phase A particles
with phase B matrix, zone III �d2�X3� t� including phase B
particles with phase A matrix, and the transition �or interme-
diate� zone II �d1�X3�d2�. We place this FGM between
two parallel platens and apply temperatures T2 and T1 at the
lower and upper platens �T2�T1�, respectively. In each
particle-matrix zone, particles are assumed to be identical
and be fully bonded to the matrix. A steady-state problem,
without heat sources in the FGM, is considered.

For any macroscopic material point X0 �Fig. 1�a�� in the
range of 0�X3�d1 �zone I�, the corresponding microstruc-
tural RVE �Fig. 1�b�� contains a number of microparticles of
phase A embedded in a continuous matrix of phase B so that
the overall volume fraction of particle phase A and the its
gradient should be consistent with the macroscopic counter-
parts ��X3

0� and �d� /dX3�X3=X3
0. The microscopic coordinate

system �x1, x2, and x3� is constructed with the origin corre-
sponding to X0. All microparticles are assumed to be spheri-
cal with identical radius a�a	 t� for straightforward formu-
lation. As seen in Fig. 1�b�, the whole RVE domain is
denoted as D and the ith microparticle �i=1,2 ,3 , . . . ,
� do-
main is denoted as �i centered at xi. For the ease of formu-
lation, a particle centered at the origin is assumed and de-
noted as �0.

Due to the particle interactions in the RVE, the local heat
flux field in each particle is nonuniform for many particles
embedded in the matrix. However, we can write the averaged
heat flux of the central particle in two parts: the material-
mismatch interaction between the central particle and the
matrix in Eq. �8� and the pairwise interaction between the
central particle and all other particles in Eq. �14� as

	q
A�0� = �	q
B�0� + �
i=1




d�0,xi� , �15�

where the angular brackets 	·
A and 	·
B denote the volume
averages over phase A and phase B in the X1−X2 layer, re-

spectively.
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Because all the particles are statistically distributed in a
random way, the probability of particle distribution can be
introduced to statistically demonstrate the particle interaction
effect. Therefore, the pairwise interaction �i.e., the second
term of the right-hand side of Eq. �15�� can be further inte-
grated over all possible particle positions as13

	d
�0� = �
D

d�0,x�P�x�0�dx , �16�

where P�x �0� is the conditional number density function
used to find a particle centered at x when the first particle is
located at 0. For statistically homogeneous composite mate-
rials containing randomly distributed spherical particles with
the volume fraction �, the particle probability density func-
tion is frequently proposed as23

P�x�0� =
3�g�x�
4�a3 , �17�

where x denotes the distance from x to 0, or �x�. The term
3� / �4�a3�, in fact, indicates the total number of particles
per unit volume. The other term g�x� is the radial distribution
function of particles proposed by Percus and Yevick24 to es-
timate the particle nonuniformity effect in the radial direc-
tion.

For the FGM considered, since the microparticles in
RVE are distributed in a continuously increasing manner in
the gradation direction, the particle density function is pro-
posed as

P�x�0� =
3g�x�
4�a3 ���X3

0� + e−x/��,3�X3
0�x3� . �18�

Here the expression enclosed by the square brackets is con-
structed on the basis that the averaged volume fraction of
particle in the RVE is ��X3

0�, the gradient of particle volume
fraction is �,3�X3

0�, and in the far field the particle concentra-
tion must not be beyond the range of zero to the maximum
particle concentration. Thus, an exponential function is intro-
duced to attenuate the gradation term exponentially. The pa-
rameter �, which controls the attenuating rate, will be deter-
mined under the conditions that the maximum volume
fraction of particles in the RVE should not be greater than
the maximum volume fraction in particle-matrix zone and
the minimum one should not be less than zero. Thus, it is
calculated by the following condition:

� =
e

�,3�X3
0�

min��,�c − �� , �19�

where �c denotes the maximum volume fraction in the
particle-matrix zone. Since the particle interaction is quickly
attenuated with the increment of the distance between par-
ticles, those particles in the neighboring domain of the cen-
tral particle should contribute the majority part for the aver-
aged flux of the central particle.

In the chosen RVE, due to the graded microstructure, the
matrix’s averaged heat flux changes in the gradation direc-
tion. It should be differentiable and bounded over the RVE.
To analytically integrate Eq. �16�, the averaged heat flux

B
	q
 �x3� is approximated by the Taylor expansion. Because
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the thermal interaction between the central particle and the
particles far away from it is negligible, only the particles in
the close neighborhood of the central particle may have no-
ticeable interaction on the central particle. As a first-order
approximation, we truncate the Taylor expansion of 	q
B�x3�
to linear term in terms of x3 so that Eq. �16� can be analyti-
cally integrated and rewritten as

	d
�0� = ��X3
0�D�0� · 	q
B�0� + �,3�X3

0�F�0� · 	q
,3
B �0� ,

�20�

where

D = �
D

3g�x�
4�x3 ����− � + 3n � n�

+ ��3�� + 3n � n��dx ,

F = �
D

e−x/�3g�x�
4�x

����− � + 3n � n� + ��3�� + 3n

� n��n3
2dx . �21�

The above two integration terms D and F can be further
simplified. The volume element dx=dx1dx2dx3 can be ex-
pressed as dx=x2d�dx, where x� �x� and d� is the surface
element on the unit sphere 
 centered at the origin of the
coordinates. The integrals in Eq. �21� along the surface of 

can be explicitly derived and then only one-dimensional nu-
merical integration in terms of x should be calculated as

Dij = �
2a


 g�x�
x

6��2�3�ijdx ,

Fij = �
2a




3g�x�xe�x/�����
−
�ij

3
+

�ij + 2�i3� j3

5
�

+ ��3
�ij

3
+

�ij + 2�i3� j3

5
��dx . �22�

Substituting Eq. �20� into �15� and recognizing that the
origin of the local coordinates in the RVE corresponds to the
global coordinate point X0 of FGMs, we can obtain the par-
ticle’s averaged flux in terms of the arbitrary material point
X3 as

	q
A�X3� = �	q
B�X3� + ��X3�D�X3� · 	q
B�X3�

+ �,3�X3�F�X3� · 	q
,3
B �X3� . �23�

Interchanging the matrix and particle phases, we can simi-
larly derive the relation between the averaged fluxes of two
phases in the range of d2�X3� t �zone III�.

IV. EFFECTIVE THERMAL BEHAVIOR OF FGMS

Due to the temperature difference between the upper and
lower boundaries, a steady-state heat flux is induced in the
gradation direction of the FGM. The particle distribution in
each X1-X2 layer is statistically homogeneous. Thus, based
on the energy balance, the averaged heat flux in each X1-X2

layer at the steady state should be the same, which is denoted
0 0 0
as q with q1=q2=0. The averaged heat flux and temperature
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gradient in the X1-X2 layer are defined as the volume average
of the flux and temperature gradient on the two phases, and
are expressed as

	q
�X3� = q0 = ��X3�	q
A�X3� + �1 − ��X3��	q
B�X3�

�24�

and

	�T
�X3� = − ��X3�	q
A�X3�/kA − �1 − ��X3��

�	q
B�X3�/kB. �25�

From the relation between the averaged heat flux and tem-
perature gradient, we can calculate effective thermal conduc-
tivity in the X1-X2 layer.

With the combination of Eqs. �23� and �24�, the parti-
cle’s averaged flux 	q
A�X3� and the matrix’s averaged flux
	q
B�X3� in the FGM gradation direction X3 can be solved in
terms of the averaged flux q0. Since Eq. �23� is a set of
ordinary differential equations, we also need the appropriate
boundary conditions. In the particle-matrix zone with 0
�X3�d1, the boundary at X3=0 corresponds to the 100%
matrix material �i.e., ��0�=0�. The corresponding boundary
conditions can be proposed as

	q
B�0� = q0. �26�

Therefore, the averaged flux field in both phases can be nu-
merically solved on the basis of standard backward Eulerian
method. Similarly, in the other particle-matrix zone with the
range of d2�X3� t �zone III�, we can also calculate the av-
eraged flux fields by interchanging the matrix and particle
phases. It is noted that, for those FGMs whose particle vol-
ume fraction does not start from 0%, the boundary condition
in Eq. �26� is no longer valid. The modified boundary con-
dition of 	q
B�0� can be still obtained in terms of q0 with the
aid of the uniform composite model as seen in Eq. �34�,
which will be discussed later in this section.

For the transition zone II �d1�X3�d2�, the particle and
matrix phases cannot be well defined because the two phases
may be interpenetrated into each other as a connected net-
work. As a consequence, the averaged flux fields of both
phases cannot explicitly be determined through the above
framework. Following Yin et al.,13 a phenomenological tran-
sition function is introduced as

f�X3� = �1 − 2
��X3� − ��d1�
��d1� − ��d2� ����X3� − ��d2�

��d1� − ��d2� �2

, �27�

so that the averaged flux of each phase �A or B� in the tran-
sition zone II can be approximated as the combination of the
solutions for two particle-matrix zones. Namely,

	q
zone-II
A or B�X3� = f�X3�	q
zone-I

A or B�X3� + �1 − f�X3��

�	q
zone-III
A or B �X3� . �28�

Once we obtain the averaged flux of each phase in the
FGM, the overall averaged heat flux and temperature gradi-
ent at each X1-X2 layer can be further obtained from Eqs.
�24� and �25�. Then we can solve the effective thermal con-

ductivity at that layer as
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k̄�X3� = − q3
0/	T,3
�X3� . �29�

It is noted that the proposed transition function satisfies the
requirement that the effective FGM thermal conductivity
should be bounded, continuous, and differentiable in the gra-
dation direction.

The temperature distribution in the gradation direction is
essential for investigation of thermoelastic behavior of
FGMs.12,25 Once the effective thermal conductivity is solved,
the temperature gradient in the gradation direction of FGMs
is related to the heat flux q0 under the Fourier law as Eq.
�29�. The heat flux q0 essentially depends on the boundary
conditions on the upper and lower surfaces. Obviously, the
two platens in Fig. 1�a� provide constant temperature bound-
ary conditions as

�T�X3=0 = T2, �T�X3=t = T1. �30�

Integrating the temperature gradient in the gradation direc-
tion in Eq. �29�, we can obtain the following equation:

�
0

t q3
0

k̄���
d� = T2 − T1. �31�

Since k���� has been solved, the heat flux q0 can be calculated
with q1

0=q2
0=0 from the above equation, and then the tem-

perature distribution in the gradation direction is written as

T�X3� = T2 − �
0

X3 q3
0

k̄���
d� . �32�

It is noted that although these formulations are devel-
oped for FGMs, if the gradient of the microstructure is zero
or the volume fraction of particles is constant in all direc-
tions, this model is still applicable to the uniform composites
with randomly dispersed particles. Then Eq. �23� is reduced
into

	q
A = �	q
B + �D · 	q
B. �33�

Combining Eqs. �24� with �33�, we can directly solve the
averaged fluxes of both phases in terms of q0 as

	q
B = ����� + �D� + �1 − ����−1 · q0,

	q
A = �� + �1 − ����� + �D�−1�−1 · q0. �34�

Therefore, we can easily solve the temperature gradient
through Eq. �25�, from which we conclude that the tempera-
ture linearly changes between the two platens. Using an ap-
proximation of the particle radial distribution function g�x�
=1 in Eq. �21�, we can explicitly solve for D and then write
the effective thermal conductivity as22

k̄ = kB
���1 + ��/4��2� + �1 − ��

��kB/kA���1 + ��/4��2� + �1 − ��
. �35�

Here we assume phase A being particles and phase B being
matrix. From Eqs. �14� and �21�, we know that the terms
including � describe the pairwise interactions between par-
ticles. When dropping all terms related to �, Eq. �35� is

11
reduced to Maxwell-Garnett’s model.
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V. NUMERICAL RESULTS AND DISCUSSION

In Fig. 1�a�, the temperatures of the upper and lower
boundaries of the FGM are prescribed through two constant-
temperature platens with temperatures T1 and T2, respec-
tively. For simplicity, we set dimensionless temperatures T1

=1 and T2=0. A steady-state heat flux field is induced in the
FGM. Obviously, the temperature distribution depends on
the thermal property of each phase and microstructure of the
FGM. Figure 2 shows the effect of phase thermal-
conductivity contrast ratio. Specifically, the effective thermal
conductivity �Fig. 2�a�� in the FGM gradation direction in-
creases as the volume fraction of phase A increases, ranging
from zone I �phase A as particle phase� to zone II �transition
zone� to zone III �phase A as matrix phase�. A continuous
and differentiable jump is observed in the transition zone II
when the phase-conductivity contrast ratio is large. Unless
otherwise stated, the lower and upper bounds d1 and d2 are
conveniently selected where the corresponding volume frac-

FIG. 2. Effect of thermal-conductivity contrast ratio on �a� the effective
thermal conductivity and �b� temperature distributions in the FGM.
tions are 40% and 60%, respectively, which follows Bao and
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Cai’s suggestion.26 Here linear volume fraction distribution
is considered. The temperature distributions are illustrated in
Fig. 2�b�. In zone I, the temperature increases faster than that
in zone III due to the smaller effective thermal conductivity.
It is noted that if phase A is the same as phase B, the FGM is
reduced to a homogeneous material, then the temperature
field should be linearly distributed in the gradation direction.
The larger the thermal conductivity of phase A, the higher
the temperature field in the FGM except at the upper and
lower boundaries. Because the temperature field has higher-
order continuity than the thermal conductivity, the curves for
the temperature distribution are quite smooth in the entire
FGM.

Changing the phase volume fraction distribution also af-
fects the thermal responses of FGMs. Awaji et al.27 studied
temperature distributions in the alumina/nickel FGMs with
different volume fraction distributions using the parallel

FIG. 3. �a� Effective thermal-conductivity distribution and �b� temperature
distribution in an alumina/nickel FGM between the proposed model simu-
lation. The curves denote the proposed prediction; the symbols denote the
parallel model �Ref. 27�.
model. Figure 3 illustrates the effective thermal conductivity
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and temperature distribution in the gradation direction of
FGMs and compares the proposed predictions with those of
the parallel model. The FGMs include alumina as phase A
and nickel as phase B with the thermal conductivities as kA

=28.2 W/mK and kB=90.1 W/mK,27 respectively. The tran-
sition zone is bounded as ��d1�=40% and ��d2�=60%. It is
shown from Fig. 3 that the effective thermal conductivity of
the alumina/nickel FGMs is in the range of kB–kA as ex-
pected. However, at a given location, the effective conduc-
tivities are strongly dependent on the phase volume fraction
distribution, suggesting that the overall thermal behavior can
be tailored through phase distribution pattern for desired
FGM material design. It is noted that the parallel model of-
fers an upper bound for the effective thermal conductivity of
composites, and thus provides a higher prediction compared
to the proposed model. Although the effective thermal con-
ductivities for different volume fraction distributions are
quite different, both models show that the temperature distri-
butions in the gradation direction are still similar when the
thermal conductivities of both phases are not overly differ-
ent. However, the heat flow through the FGMs should be
much different for the three cases of volume fraction distri-
butions.

Conventional composite models �e.g., Maxwell-
Garnett’s model11� do not directly take into account the local
particle interactions and gradient effects of phase volume
fractions. On the contrary, our proposed model adopts the
pairwise local interaction between particles and includes the
effect of material gradient in the multiscale framework.
Therefore, the proposed prediction depends not only on the
phase volume fraction, but on the gradient of volume frac-
tion as well. More specifically, the second term of the right-
hand side in Eq. �23� denotes the pairwise interaction contri-
bution while the third term represents the gradient effect.
Disregarding these two interaction terms, we find that the
proposed model recovers the standard Maxwell-Garnett’s
model. Equation �35� simplifies the interaction contribution
but does not include the gradient effect. To clearly show the
effect of the particle interactions, we consider a FGM only
including one particle-matrix zone with the phase thermal-
conductivity contrast ratio kA /kB=100 and a hyperbolic tan-
gent volume fraction distribution function28 ��X3�
=0.5 tanh��X3� with the homogeneity parameter selected as
�=1. With the increase of X3, the gradient of volume frac-
tion is reduced and thus the top end of the material is gradu-
ally transformed to a uniform composite with volume frac-
tion equal to 0.5. Although the thickness of this FGM can be
unlimited, Fig. 4 shows the effective thermal-conductivity
distribution in the range of 0�X3�2. When the volume
fraction is small, the three methods provide the similar pre-
dictions due to small particle interactions. However, for a
large volume fraction, Maxwell-Garnett’s model provides the
smallest prediction; whereas the FGM model produces the
highest one. Because the simplified model in Eq. �35� does
not consider the nonuniformity effect of particle distribution
due to the central particle, it gives a lower estimate than the
FGM model. When the precision is not highly emphasized,
Eq. �35� can be used as a substitute for the FGM model due

to the simplicity and explicitness.
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Numerical simulations of the proposed model are also
compared with available experimental data to demonstrate
the validity of the model. Figure 5 shows the effective
thermal-conductivity distribution in a ZrO2/NiCoCrAlY
FGM with the linear volume fraction distribution. In the ex-
periments of Khor and co-workers,29,30 the thermal conduc-
tivity and density of NiCoCrAlY are measured as 4.3 W/mK
and 7.324 g/cm3, respectively. The thermal conductivity and
density of ZrO2 directly from FGM are obtained as 2 W/mK
and 6 g/cm3.31 Setting the transition zone as the volume
fraction of ZrO2 from �=40% to 60%, we obtain the effec-
tive thermal-conductivity distribution varying with the
weight fraction of ZrO2 in Fig. 5. Due to the difficulty in the
remelting of ZrO2 powders during spraying, there are some
gaps or pores formed between ZrO2 particles when the vol-

FIG. 4. Effect of the particle interactions on the effective FGM conductivity
distribution.

FIG. 5. Comparisons of effective thermal-conductivity distribution in a
ZrO2/NiCoCrAlY FGM between the proposed model simulation and ex-

perimental data �Ref. 30�.
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ume fraction of ZrO2 is large.30 Thus, we can see that the
measured effective thermal conductivity for 100% ZrO2 is
much lower than 2 W/mK. Otherwise, the proposed model
provides a good agreement with the experimental data.

In a linear static state, effective electric conductivity, di-
electric permittivity, magnetic permeability, and water per-
meability can be solved mathematically analogous to effec-
tive thermal conductivity, so the proposed model can also be
employed in those problems for graded materials. Sanchez-
Herencia et al.32 measured the electric conductivity of an
alumina �Al2O3� and yttria tetragonal zirconia polycrystal-
line �Y-TZP� FGM and compared with the corresponding
uniform composites. Figure 6 shows the comparison of ef-
fective conductivity distribution between the proposed pre-
diction and experimental data. The electric conductivities of
Al2O3 and Y-TZP are 2.7�10−8 and 1.0�10−2 S/cm, re-
spectively. In the simulation, linear volume fraction distribu-
tion is employed and the transition zone is bounded as
��d1�=78% and ��d2�=95%. It is noted that here the perco-
lation limit is as high as 78%. When the volume fraction is
less than the percolation limit, the good conductor Y-TZP is
the matrix so electric flux is readily transmitted; but when
the volume fraction is larger than the percolation limit,
Y-TZP becomes the discrete particles so the effective electric
conductivity rapidly decreases and approaches the conduc-
tivity of Al2O3.

When the gradient of volume fraction distribution is van-
ished, the proposed FGM model can also be used to predict
the effective thermal conductivity of uniform composites.
Wong and Bollampally33 measured the effective thermal con-
ductivities of epoxy-based composites containing three kinds
of fillers as silica, alumina, or silica-coated aluminum nitride
�SCAN�. The thermal conductivities are given as kepoxy

=0.195, ksilica=1.5, kalumina=36, and kSCAN=220 W/mK, re-
spectively. In Fig. 7, we see that the proposed model is in
close agreement with the experimental data of silica-filled

FIG. 6. Comparisons of effective conductivity distribution in an
Al2O3/Y-TZP FGM between the proposed model simulation and experi-
mental data �Ref. 32�.
epoxy, whereas it provides much lower estimates for the two
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other composites. As seen in the experiments, silica particles
are perfectly spherical but the two other fillers have very
irregular shapes. Because the proposed model is developed
for spherical particles, it produces a reasonably good predic-
tion for the silica composites. In addition, for the proposed
model, when the conductivity of particles is much higher
than that of matrix, further increasing particle’s conductivity
will not change the effective conductivity very much because
those good conductors are isolated by the matrix. Thus we
can see that the curves for alumina and SCAN are very close
though their thermal conductivities are much different. How-
ever, in the experiments because particles are irregular, they
can readily connect with each other in the composite and
form some “channels” through which heat flux can easily
pass. Thus, the effective conductivity much increases along
with the particle’s conductivity. Because the mixtures with a
high volume fraction of nonspherical particles are very com-
mon in engineering materials, an extension of this work to
rigorously consider the effect of the particle shape and con-
nected microstructure is underway.

VI. CONCLUSIONS

Effective thermal conductivity of graded materials is
crucial for the calculation of the temperature profile and in-
vestigation of the thermomechanical behavior of these mate-
rials. This paper studies the effective thermal conductivity
and temperature profile in FGMs considering the pairwise
particle interactions and particle distributions. First, the pair-
wise particle thermal interaction is defined by the equivalent
inclusion method. Then placing an FGM between two paral-
lel platens with different constant temperatures, we investi-
gate the heat flux distribution in the FGM at the steady state.
In the microscale, a graded RVE is constructed to simulate
the graded microstructure. Considering pairwise particle in-
teractions in the RVE, a formulation is proposed to derive the
averaged heat flux fields of both phases in the particle-matrix

FIG. 7. Comparisons of effective thermal conductivity of uniform compos-
ites between the proposed model and experimental data �Ref. 33�.
zone and a transition function is constructed to solve the
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averaged fields in the transition zone. From the relation be-
tween the effective flux and temperature gradient in the gra-
dation direction, the effective thermal-conductivity distribu-
tion is solved.

When we only consider one particle-matrix zone, this
model can be used to predict general graded materials whose
particle and matrix phases are not interchanged. If the gradi-
ent of the volume fraction distribution is zero, the FGM is
reduced to a composite containing uniformly dispersed par-
ticles and an explicit approximation solution of the effective
thermal conductivity is provided. By dropping the interaction
term, this model recovers Maxwell-Garnett’s model. This
method can be easily extended to solve effective electric
conductivity, dielectric permittivity, magnetic permeability,
and water permeability of graded composites in a linear
static state. Parametric analyses and comparisons with other
models and available experiments are conducted to further
validate the proposed model.
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