
Downl
Waldemar Celes
Tecgraf/PUC-Rio,

Computer Science Department,
Pontifical Catholic University

of Rio de Janeiro,
Rua Marquês de São Vicente 225,

Rio de Janeiro,
RJ, 22450-900, Brazil

Glaucio H. Paulino1

e-mail: paulino@uiuc.edu
Department of Civil and

Environmental Engineering,
University of Illinois at Urbana–Champaign

Newmark Laboratory,
MC-250,

205 North Mathews Avenue,
Urbana, IL 61801-2397

Rodrigo Espinha
Tecgraf/PUC-Rio,

Computer Science Department,
Pontifical Catholic University

of Rio de Janeiro,
Rua Marquês de São Vicente 225,

Rio de Janeiro,
RJ, 22450-900, Brazil

Efficient Handling of Implicit
Entities in Reduced Mesh
Representations
State-of-the-art numerical analyses require mesh representation with a data structure that
provides topological information. Due to the increasing size of the meshes currently used
for simulating complex behaviors with finite elements or boundary elements (e.g., adap-
tive and/or coupled analyses), several researchers have proposed the use of reduced mesh
representations. In a reduced representation, only a few types of the defined topological
entities are explicitly represented; all the others are implicit and retrieved “on-the-fly,”
as required. Despite being very effective in reducing the memory space needed to repre-
sent large models, reduced representations face the challenge of ensuring the consistency
of all implicit entities when the mesh undergoes modifications. As implicit entities are
usually described by references to explicit ones, modifying the mesh may change the way
implicit entities (which are not directly modified) are represented, e.g., the referenced
explicit entities may no longer exist. We propose a new and effective strategy to treat
implicit entities in reduced representations, which is capable of handling transient non-
manifold configurations. Our strategy allows, from the application point of view, explicit
and implicit entities to be interchangeably handled in a uniform and transparent way. As
a result, the application can list, access, attach properties to, and hold references to
implicit entities, and the underlying data structure ensures that all such information
remains valid even if the mesh is modified. The validity of the proposed approach is
demonstrated by running a set of computational experiments on different models sub-
jected to dynamic remeshing operations. �DOI: 10.1115/1.2052830�

Keywords: Topological Data Structure, Reduced Representation, Implicit Entities, Finite
Element Mesh
1 Introduction
Different topological data structures have been proposed for

representing finite �or boundary� element meshes �1–8�. Efficient
access to adjacency information among the topological entities
that compose the model is crucial to implement mesh generation
algorithms �9,10� and to support dynamic, adaptive analyses
�11–17�. In fact, to be able to efficiently modify the mesh under
the course of the simulation, one needs a data structure that pro-
vides computational efficiency for both querying adjacency topo-
logical relationships and applying remeshing operators. Moreover,
due to the increasing size of the meshes currently being used �18�,
different works have proposed the use of reduced �or compact�
mesh representations �3–8�. By using reduced representation, one
tends to minimize mesh storage space, which in turn allows han-
dling of large models required for simulating complex behaviors
�e.g., with finite elements or boundary elements�. Despite being
very effective in reducing the memory space needed to represent
such large models, reduced representations face the challenge of
ensuring the consistency of all information attached to implicit
entities, especially when the mesh undergoes modifications.

A reduced topological representation can be achieved by: �i�
implicitly representing adjacency relationships, and/or �ii� implic-
itly representing topological entities. In either case, all implicit
information has to be efficiently retrieved, as required, “on-the-
fly.” From the application point of view, there should be no dif-
ference in the way explicit or implicit information is handled. For

1To whom correspondence should be addressed.
Contributed by the Engineering Simulation and Visualization Committee for pub-

lication in the JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING.
Manuscript received October 11, 2004. Revised August 1, 2005. Guest Editor: K.

Shimada.

348 / Vol. 5, DECEMBER 2005 Copyright ©

oaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASME
instance, an implicit adjacency relationship can be retrieved based
on others explicitly stored; however, the client application should
have access to any relationship without being aware of the differ-
ence in the internal representation. If a performance penalty for
retrieving implicit relationships exists �and it is usually the case�,
this penalty should be kept under reasonable limits—the time for
retrieving any topological relationship should be proportional to
the number of retrieved entities. Similarly, if topological entities
are implicitly represented, an application should be allowed to
freely list, access, attach properties to, and hold references to
them. In an adaptive analysis, for instance, the underlying data
structure has to ensure that all such attached information remains
valid even if the mesh is modified. This is not a simple task:
implicit entities are commonly described by references to explicit
ones, and modifying the mesh may change the way implicit enti-
ties �which are not directly modified� are represented �e.g., the
referenced explicit entities may no longer exist�.

This paper addresses the problem of managing reduced repre-
sentations. Based on a novel and complete topological mesh data
structure that explicitly represents only nodes and elements �8�,
we propose a new and effective strategy to handle implicit entities
�such as edges and facets�. Our strategy allows, from the applica-
tion point of view, explicit and implicit entities to be interchange-
ably handled in a uniform and transparent way. The validity of the
proposed approach is demonstrated by running a set of computa-
tional experiments on different models subjected to dynamic re-
meshing operations.

The remainder of this paper is organized as follows: Section 2
describes previous work on topological data structures for mesh
representation. Section 3 discusses important issues related to
managing implicit entities. Section 4 briefly reviews the original
reduced data structure of Ref. �8� and introduces a compact index-

based representation for supporting large models. Section 5 pre-

2005 by ASME Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Downl
sents the strategy to support dynamic remeshing. Finally, Sec. 6
presents an analysis of the proposed approach to manage reduced
representation and, in Sec. 7, some concluding remarks are drawn.

2 Related Work
The use of topological data structures for representing and

modeling solids was significantly advanced by Baumgart’s �19�
winged-edge data structure for representing manifold polyhedron
surfaces. Since then, several different data structures have been
presented for both manifold �20,22� and non-manifold �21,23–25�
boundary representations or B-reps. They �B-reps� are appropriate
for representing geometric models, which, in general, are de-
scribed by means of generalized polyhedron meshes, handling
nonplanar edges and faces �22�. Attempts to use such sophisti-
cated data structures for representing finite element meshes re-
sulted in highly integrated frameworks �from geometry modeling
to mesh generation� �1,2�; however, such topological data struc-
tures impose a prohibitive cost in storage space for representing
large meshes.

The constraints imposed by domain-based methods, e.g., finite
element method, on the domain discretization call for the use of
“lighter” topological data structures for mesh representation.
Lightweight data structures are also essential for computer graph-
ics where several approaches have taken advantage of the fixed
topology of cells in both two-dimensional �2D� and three-
dimensional �3D� simplicial meshes �triangular meshes, for 2D;
and tetrahedral meshes, for 3D�. Several proposals for represent-
ing such simplicial meshes make use of the fixed topology of each
cell �triangle or tetrahedron�, thus achieving highly reduced rep-
resentations �26–29� while being able to retrieve all important
topological adjacency relationships. Important works in this field
include the development of topological data structures for multi-
resolution representation �30–33�, progressive transmission �34�,
and mesh compression �35�. In these data structures, only vertices
and cells �triangles or tetrahedra� are usually explicitly repre-
sented, which is quite appropriate for computer graphics applica-
tions where only these entities need to be processed �e.g., visual-
ization applications only need access to the list of triangles or
tetrahedra�.

The representation of finite or boundary element meshes �36�
may take inspiration from the data structures used for representing
simplicial meshes. Two main differences should be considered.
First, a general mesh representation has to support element types
other than triangular or tetrahedral �e.g., quadrilateral, hexahedral,
pyramidal, and higher-order elements�, including mixed models.
This problem can be easily overcome with the use of element
templates: each type of finite �or boundary� element presents a
fixed and known local topology that can be coded in templates
�3,5,6,8�. The second, and more challenging, difference is related
to the need of accessing topological entities other than nodes and
elements. For instance, in finite element applications we need to
define the relationship of the mesh against the geometric domain,
an association called mesh classification �3�. Topological entities
such as edges and faces have to store classification information,
and such information has to be maintained through all mesh-
related algorithms, including mesh generation and enrichment
procedures �5,6�.

Different representations have been proposed for managing fi-
nite element meshes, defining the model by means of a set of
topological entities that includes, for 3D models, region, face,
edge, and vertex �3–7�. In order to achieve reduced representa-
tions, the authors have opted for explicitly storing only a few sets
of topological adjacencies, and not for explicitly storing faces
and/or edges �3,4�. More recently, a different approach has been
taken with the development of dynamic mesh representations that
extract from a database an appropriate representation for specific
needs whenever necessary �5–7�.

In our previous work �8�, we have opted for using a different set

of topological entities to be able to interchangeably work with

Journal of Computing and Information Science in Enginee

oaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASME
both 3D and 2D models: element, node, facet, edge, and vertex.
Only elements and nodes are explicitly represented in our com-
pact adjacency-based topological data structure. We also have in-
troduced the use of oriented entities �21� for finite element
meshes, which, as we shall demonstrate, greatly simplifies the
management of implicit entities.

3 Issues With Implicit Entities
Beall and Shephard �3� have pointed out issues regarding re-

duced representation that turn the use of implicit entities cumber-
some. The main problem arises when applying a remeshing op-
erator, as implicit entities, which are not directly modified, may
have their representations changed. This happens because the rep-
resentations of implicit entities have to be anchored to explicit
ones, i.e., their representations are based on references to explicit
entities. Therefore, the representations of implicit entities are in-
directly modified whenever the anchoring explicit entities are
modified.

The first question is then which representation to use for re-
trieving implicit entities. Each implicit entity has to be represented
in a consistent and unambiguous way, ensuring uniqueness in
equality tests. Previous works �3–6� have opted for associating a
unique identification number �ID� for each vertex �node� and for
representing implicit edges and faces based on the IDs of their
bounding vertices. Thus, each edge is represented by the IDs of its
two bounding vertices, and each face is, directly or indirectly,
represented by the IDs of its cyclic set of bounding vertices. Two
entities are then considered equal if they are represented by the
same set of IDs. In order to improve the performance of compari-
son operators, the IDs are stored in an ordered manner. The first
ID is chosen as the lowest numeric ID in the set and, for faces, the
second ID is chosen as the lowest numeric ID adjacent to the first
one. However, by describing an entity using an ordered set of IDs,
one is implicitly defining an orientation for such an entity, which
imposes additional challenges when the mesh undergoes modifi-
cations. Thus, we do not adopt such approach in our present work.

Beall and Shephard �3� have illustrated the side effects of re-
meshing operators over implicit entities by applying an edge col-
lapse operator to a 2D model, as shown in Fig. 1. Considering that
edges and faces are implicitly represented as described above, two
main problems arise: �i� implicit, not directly modified, entities
have their representation changed; and �ii� implicit entities have
their orientation changed. As illustrated in Fig. 1, the edge �2,6� is
collapsed, with vertex 6 replacing vertex 2. Before applying the
operator, the edge e is represented by �2,4�, and the face f is
represented by �1,2,4� �Fig. 1�a��. After the operator takes effect,
the representation of edge e is changed to e� �4,6�, and of face f to

Fig. 1 Effect of an edge collapse operator on implicit entities:
„a… the original model, „b… the modified model „see Ref. †3‡…. The
edge ˆ2,6‰ is collapsed with vertex 6 replacing vertex 2; edge e
ˆ2,4‰ and face f ˆ1,2,4‰ are changed to edge e� ˆ4,6‰ and face f�
ˆ1,4,6‰, respectively. Each arrow indicates the selected entity
orientation.
f� �1,4,6�, thus also changing their orientations.

ring DECEMBER 2005, Vol. 5 / 349

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Downl
In the development of the mesh-oriented database �MOAB� �7�,
the authors have opted for using opaque handles to represent en-
tities. They have used a 4-byte word as a handle, using 4 bits to
code the entity’s type and 28 bits to code the entity’s ID. By using
handle instead of pointers to objects, one can freely �and dynami-
cally� change object representations without affecting client appli-
cations. The MOAB’s authors have mentioned that entities can
have explicit or implicit representation. Recently, Tautges �37� has
described how semi-structured hexahedral meshes can be inte-
grated in the MOAB system using a very compact implicit repre-
sentation. However, for the general �unstructured� case, it is not
clear how implicit entities are managed and how IDs are assigned
to such implicit entities.

In order to keep the model consistent, any information stored in
entities that are not directly modified should remain valid. Be-
sides, if the client application holds a reference to such entities, it
should be able to use that reference in future queries or operations
on the model. The underlying data structure has to ensure, in a
transparent way, that all references to implicit entities, which are
not directly modified, remain valid. To our knowledge, such a
framework has not been investigated in the literature. This paper
presents a new and effective manner to handle implicit entities, in
a way that the client application can freely manipulate entities,
either explicitly or implicitly represented.

4 Reduced Topological Mesh Representation
In our previous work �8�, we have introduced a new reduced

topological data structure for representing finite or boundary ele-
ment meshes. The proposed data structure was designed to sup-
port, under the same framework, both 3D and 2D models, with
manifold domains �20�. More precisely, the external boundary of a
3D mesh must have 2-manifold topology; therefore, each edge on
the boundary is shared by exactly two boundary faces. Accord-
ingly, for 2D models, the external boundary must have 1-manifold
topology, with each vertex on the boundary having exactly two
boundary edges connected to it.

The data structure provides support for any type of element
defined by templates of ordered nodes, which include all
Lagrangian-type elements �T3, T6, Q4, Q8, Tetra4, Tetra10,
Hexa8, etc.�; however, one cannot mix 3D and 2D elements in a
single model at this stage. The mesh representation is complete, in
the sense that all adjacency relationships among the defined topo-
logical entities can be retrieved in time proportional to the number
of retrieved neighbor entities �8�.

4.1 Topological Entities. This data structure defines five to-
pological entities: element, node, facet, edge, and vertex. The
same set of topological entities is used to represent both 3D and
2D models. Element represents a finite �or boundary� element of
any type or order. Node represents a mesh node, including corner
and midside nodes. Facet is defined as the interface between two
elements. Accordingly, for 3D models, a facet corresponds to an
entity of dimension two; while, for 2D models, it corresponds to
an entity of dimension one. Edge defines the boundary of facets.
Finally, vertex defines the boundary of edges, thus being associ-
ated to a corner node �there are no vertices associated to midside
nodes�.

Although redundant for 2D models, where each facet corre-
sponds to one edge and vice-versa, the use of this set of topologi-
cal entities has brought important benefits for the design and
implementation of the data structure. It has allowed the concep-
tion of a unified framework for 3D and 2D models: the same
algorithm �i.e., same code� can be applied to any model, despite
its dimension. As an example, this set of entities allows adopting
the same procedure to insert cohesive elements along bulk ele-
ment interfaces for both 3D and 2D fragmentation simulation
models, based on topological classification of fractured facets �8�.
The redundancy, referred above, does not impose any additional

memory cost because, as we shall discuss, the entities are implic-

350 / Vol. 5, DECEMBER 2005

oaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASME
itly represented.
De Floriani and Hui �29� have demonstrated that encoding only

vertices and the top simplexes of simplicial complex is advanta-
geous to achieve reduced, and complete, representations. In the
context of mesh representation, we have opted for encoding only
nodes and elements, despite the model dimension. Accordingly, in
the data structure, only elements and nodes are explicitly repre-
sented. Each element stores its node incidence and the set of ad-
jacent elements,1 one for each element facet. If the element has
facets on the mesh boundary, it is represented by storing a corre-
sponding null adjacency reference. Each node, besides its geomet-
ric position, stores a reference to one of its incident elements.
Based on the adjacency information stored at the elements, we are
able to retrieve all adjacent elements to a node, provided that the
mesh domain is manifold. The other three topological entities,
facet, edge, and vertex, are implicitly represented. Different from
previous proposals �3–6�, these three entities have no associated
orientation—they are treated as nonoriented entities.

The data structure also introduces three oriented entities,
namely facet-use, edge-use, and vertex-use, which represent the
use of facet, edge, and vertex by an element, respectively. The
introduction of these oriented entities for mesh representation
makes it possible to distinguish a nonoriented entity �e.g., a facet�
from the oriented use of that entity by an element �e.g., a facet-
use�, which simplified the design, implementation, and use of the
data structure �see Ref. �8� for a detailed discussion�. Each finite
element in isolation is composed by a set of facets, edges, and
vertices. These local entities are labeled with local identification
numbers �local IDs�. The topology of each element is known in
advance and depends only on the element’s type �e.g., T3, T6,
Tetra4, Tetra10�. Consequently, for each type of element, we de-
fine its element template �3�. Based on an element template, we
can extract all adjacency relationships relating the local entities of
such element type. The local facets, edges, and vertices of an
element in isolation correspond, respectively, to the use of facets,
edges, and vertices of the mesh by that element. Therefore, the
element template provides access to adjacency relationships relat-
ing entity-uses within an element. The orientation of such entities
is implicitly defined by the element template. The diagram pre-
sented in Fig. 2 shows the five defined topological entities to-
gether with their topological attributes, which allow the access of
adjacency relationships.

An “internal facet” has two associated uses, corresponding to
the two interfacing elements, while an “external facet” has only
one associated use, since it represents a boundary facet. For 2D
models, each facet is mapped to a unique edge and each vertex
has a cyclically ordered set of associated uses. For 3D models,
each edge has a radially ordered set of associated uses and each
vertex has an unordered set of associated uses. Facet, edge, vertex,
and their associated uses are implicitly represented and retrieved,
when required, “on-the-fly.” One important point of the data struc-
ture is that facet, edge, and vertex are treated as nonoriented en-
tities. The absence of an implicitly defined orientation for these
entities greatly simplifies their management, since one does not
have to keep track of orientation changes when the mesh under-
goes modifications. Moreover, the orientations associated to facet-
uses, edge-uses, and vertex-uses do not change due to a mesh
modification operation. If an element is removed from the model,
all its associated uses are also removed. Conversely, as long as the
element using a referenced entity exists, the associated uses will
also exist, without having their orientation changed. The incidence
of an existent element may change, but its template, which defines
the orientations of the entity-uses, is fixed.

In order to easily handle these implicit entities, the data struc-
ture uses concrete types for their representation, thus being treated
as ordinary values, similar to any other built-in type of program-
ming languages �38�. By using concrete types, we can avoid the

1
Two elements are considered adjacent if they share the same facet.

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Downl
need of dynamic allocation while manipulating implicit entities,
facilitating the management of entity uniqueness and lifetime.
Each facet-use, edge-use, or vertex-use is represented by a refer-
ence to the associated element �the one that uses it� and a local ID,
indicating its position in the element template. Each facet, edge,
or vertex is simply represented by one of its uses. In order to
ensure uniqueness, only one use is elected to be the representative
use of the corresponding entity �facet, edge, or vertex�. In other
words, each facet, edge, or vertex is anchored to one element, and
the use associated to the anchoring element is used to define the
entity. To identify implicit entities and to ease their enumeration,
within each element, we also store bit flags �the anchors� that
indicate which facets, edges, and vertices are being anchored by
the element. Thus, given an element, we can easily extract the
representations of the implicit entities that are anchored to it. For
consistency purposes, the data structure ensures that the anchoring
element of a vertex is the one pointed to by the corresponding
node. Also, for nonlinear edges, the anchoring element of an edge
is the one pointed to by the corresponding midside node�s�. Thus,
given a node, we have direct access to the corresponding vertex
�for a corner node� or edge �for a midside node�.

One can argue that the anchor implicitly defines an orientation
for the implicit entities �inheriting the orientation of the anchoring
use�. However, no operation on the data structure relies on this
�implicit� orientation—the entities are treated as nonoriented. As a
consequence, if this �implicit� orientation changes, no special care
is taken. Therefore, if the application needs to attach an oriented
attribute to a nonoriented entity, the attribute orientation has to be
explicitly stored, together with the attribute itself. An alternative
would be to attach the attribute to a corresponding use, which is
an oriented entity. This latter option is usually the best choice

Fig. 2 Topological entities defined by the data structure: solid
boxes indicate explicit entities and dashed boxes indicate im-
plicit entities. The arrows illustrate access provided by the to-
pological attributes stored at the entities. From an element, we
have access to its node incidence, to its adjacent elements,
and to the anchored facets, edges, and vertices; from a node,
we have access to one of its incident elements; from a facet-
use, edge-use, and vertex-use, we have access to the anchor-
ing element; finally, from a facet, edge, and vertex, we have
access to the corresponding entity-use associated to the an-
choring element. Besides these direct topological accesses,
the data structure makes use of element templates to extract
topological relationships among the entity-uses associated to
each element.
�note that the orientation of an entity-use never changes�.

Journal of Computing and Information Science in Enginee

oaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASME
4.2 Index-Based Representation. In our original implemen-
tation �8�, we had opted for storing the nodes and elements of a
model using doubly linked lists, which facilitates the implemen-
tation of insertion and removal operations. Now, aiming at the
representation of very large models, we have decided to use an
array-based approach, which brings some useful benefits:

• The model as a whole needs much less memory to be rep-
resented due to the avoidance of memory fragmentation

• An extension to deal with out-of-core representation is
greatly simplified

• By using array indices �IDs� instead of pointers, we can
represent both explicit and implicit entities in a uniform way

The nodes of the model are stored in an array. Thus, each node
is represented by its numeric ID, which corresponds to its position
in the node array. Elements of the same type are also stored in
arrays �there is one array for each type of element present in the
model�. The data structure manages the need for reallocation of
such arrays, thus implementing dynamic arrays. A type ID is as-
signed to each type of element �T3, T6, etc.; or Tetra4, Tetra10,
etc.�. This type ID assignment can be done statically or dynami-
cally. When using the dynamic approach, the client application
registers the types of elements in use. The data structure uses this
type ID to access the element template and the corresponding
array of elements. For representing each element, we have used an
approach similar to the one used to define the handling of entities
in the MOAB system �7�: an element is defined by a 4-byte word,
4 bits being used to encode the element type ID and 24 bits to
encode the element ID �its position in the corresponding array�. In
this way, the data structure is able to handle 16 different types of
elements within a single model and 16 million elements of a given
type. The remaining 4 bits of the word are used to code implicit
entities. As mentioned above, each implicit entity is represented
by one of its uses, and each use is represented by its associated
element and a local ID. Thus, each facet, edge, and vertex is
represented by the anchoring element and a local ID. As illus-
trated in Fig. 3, the local ID is encoded in the remaining 4 bits. As
a result, all topological entities are represented in a uniform way
using a single word. If one needs to extend the limits �16 different
types of elements in a model or 16 million elements of a given
type� for supporting larger meshes, this can be done by using
words of 64 bits.

Differently from the MOAB system �7�, we have opted for not
treating entities as opaque objects. For each topological entity we
define a different �concrete� class, all of them having the 4-byte
word as the unique aggregate datum. By using different classes for
different entities, we are able to use the compiler’s type checking
and to extend the entity representation without affecting the client
application, what may be needed in a future version.

4.3 Handling Implicit Entities. From the client application
point of view, there should be no difference in the way explicit
and implicit entities are handled. The application has to be able to
access, enumerate, hold reference to, and attach properties to im-
plicit entities in the same way as it does with explicit ones. In the
proposed data structure, implicit entities can be accessed as a
result of an adjacency querying operation or via entity enumera-
tion. For enumerating all facets, edges, or vertices without dupli-
cation, we traverse all elements and, for each element, we collect

Fig. 3 The 4-byte word layout to identify elements and implicit
entities. The first 4 bits are only used for implicit entities.
all facets, edges, or vertices which are anchored to the current

ring DECEMBER 2005, Vol. 5 / 351

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Downl
element. Thus we are able to traverse all implicit entities in time
proportional to the number of elements �8�. Once the application
has access to an implicit entity, it can store its value for future
use—the data structure ensures its validity and uniqueness. It is
important to note that each time an implicit entity is accessed, its
corresponding value �concrete type� is returned. Thus, enumerat-
ing all entities is an operation that does not impose any memory
allocation or entity creation. Conceptually, the entities, although
not explicitly stored, always exist. When required, its representa-
tion �a numeric ID� is returned.

Another important issue is how to associate data with topologi-
cal entities. It is straightforward to provide the client the ability to
associate data with explicitly represented entities. It suffices to
add a generic pointer �void*� to each internal entity representation
and give the client access to such pointer. As the entities are stored
in arrays and identified by numeric IDs, another valid strategy is
to allocate all client data in an array parallel to the one used to
store the entities, thus reducing memory fragmentation. In order to
further reduce the required storage space, one can use a hash table
instead of an array. The use of a hash table imposes a performance
penalty to access the data, but it brings a significant gain in
memory use because the storage space is proportional to the
amount of associated data stored, not to the number of entities.
For instance, in an application that needs to classify the nodes
against the model’s geometry, the use of hash drastically reduces
the amount of memory space used, because only the boundary
nodes need to have associated data. In our data structure, as im-
plicitly represented entities are also identified by numeric IDs �the
4-byte words�, the use of a hash table to store the associated data
is the natural choice. In fact, we have opted for storing associated
data in hash tables, treating both explicit and implicit entities in
the same and uniform manner �we need a different hash table for
each type of topological entity because different entities may have
the same numeric ID; for instance, a facet may have the same ID
as an edge�.

5 Dynamic Remeshing Support
The major challenge of handling implicit entities is to maintain

the consistency of the data structure when the mesh undergoes
modifications. In order to support adaptive analysis, the data
structure has to provide a set of topological operators, allowing
the client application to request dynamic remeshing. Such opera-
tors modify the mesh locally, inserting, changing, and/or remov-
ing topological entities. For consistency, entities, which are not
directly modified, could not have their representation changed;
however, as implicit entities are anchored to explicit entities,
modifying such anchoring explicit entities inevitably modifies the
representation of the anchored implicit entities. The underlying
data structure has to transparently, from the client application
point of view, handle such representation changes. The client has
to be able to hold a reference to an implicit entity in order to use
it in a future operation, even if the entity’s representation changes
due to a mesh operation. Moreover, all data associated to implicit
entities have to be preserved if the entities are not directly modi-
fied.

5.1 Mesh Operators. Several local operators have been used
for mesh modification, including mesh simplification and mesh
refinement. The most popular operators are the ones based on
edges, such as edge collapse, and its inverse operator, vertex split
�16,39�. The advantage of edge-based operators is that they are
simple and may be applied to both 3D and 2D simplicial meshes
�tetrahedral and triangular meshes�. Other local operators, widely
used to achieve multi-resolution schemes for 3D visualization,
include element collapse, vertex removal, and polygon merging
�39�. Such operators can also be applied to modify finite or bound-
ary element meshes. Regardless of the operator used, the final
mesh configuration should be valid; indeed, as the final configu-

ration is known a priori, it can be validated before the operator is

352 / Vol. 5, DECEMBER 2005

oaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASME
effectively applied �16�. After mesh modification, adaptive analy-
sis usually requires an optimization process to improve the mesh
quality according to a predefined metric. This is usually carried
out by applying vertex displacement and, for 2D triangular
meshes, by performing edge swaps �40�. Except for the vertex
displacement, all others are topological operators, in the sense that
they impose topological changes to the model by inserting/
changing/removing topological entities.

In order to demonstrate the way implicit entities can be
handled, instead of implementing a large set of specific topologi-
cal operators, we have opted for working with four basic opera-
tors, which can be applied to any type of model

• Node insertion: inserts a new isolated node in the model
• Node removal: removes an isolated node from the model
• Element insertion: inserts a new element in the model, given

its node incidence
• Element removal: removes an element from the model

Other topological operators can be built on top of these four
operators. An edge collapse, for instance, can be achieved by re-
moving all elements incident to one of the edge vertices, remov-
ing the associated node, and then reinserting the elements that
were not adjacent to the collapsing edge. Figure 4 illustrates this
operation. However, it is easy to see that specific operators could
be implemented more efficiently. Our goal here is just to discuss a
strategy to maintain the consistency of implicit entities.

5.2 Nonmanifold Configurations. The data structure, as de-
scribed so far, is capable of representing models with manifold
boundary. However, during the course of a topological operation,
the model can assume nonmanifold boundary configurations. Al-
though the manifold configuration is restored by the end of the
operation, the data structure has to be able to represent transient
nonmanifold configurations. Figure 5 illustrates a nonmanifold
configuration as a result of removing an element from the model.
Similar configurations also arise if we construct the model from

Fig. 4 An edge collapse operator based on node and element
removals and insertions: „a… original model; „b… all elements
incident to a vertex are removed; „c… the isolated correspond-
ing node is removed; „d… all removed elements, which were not
adjacent to the collapsing edge, are reinserted with new
connectivity
scratch, inserting each element at a time.

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Downl
For a model composed by a set of elements, only two nonmani-
fold configurations may arise: two nonadjacent elements in 3D
sharing a same edge, and two non-adjacent elements, either in 3D
or in 2D, sharing a same vertex. The former configuration repre-
sents a singularity at a non-manifold edge and the latter a singu-
larity at a non-manifold vertex �29�, as illustrated in Fig. 6.

In order to cope with such transient nonmanifold configura-
tions, we have extended the original data structure. For each node,
instead of keeping a unique reference to an incident element, we
keep a list of references, each one to an incident element of each
connected component adjacent to the node. This way, we are able
to extract all elements incident to a given node. It is important to
note, however, that the data structure is not complete for such
non-manifold configurations, in the sense that it is not possible to
retrieve all adjacency relationships as described in our previous
work �8�. For instance, the radially ordered group of elements
around a 3D edge with linear elements cannot be retrieved based
uniquely on the topological information stored in the data struc-
ture. The goal here is to handle transient nonmanifold configura-
tions to be able to restore the complete topological data structure
when the manifold configuration is restored. For this purpose, it
suffices to retrieve all incident elements of a given node: for each
node in the list, we visit all adjacent elements of the correspond-
ing connected component.

Note that the existence of different edges or facets with the
same set of bounding nodes does not necessarily imply in non-
manifold configurations. Figure 7 illustrates a 2D mesh with two
different configurations. On the left �Fig. 7�a��, two distinguish
edges share the same end nodes in a manifold configuration—it is
topologically equivalent to a plate with a central hole. On the right
�Fig. 7�b��, one of the shared nodes is on the boundary of the
model, thus giving rise to a singularity at a nonmanifold vertex.
Because the proposed data structure does not use the bounding
nodes to represent implicit entities, the existence of different
edges and/or facets sharing the same set of nodes in a manifold
configuration is naturally supported. In fact, the occurrence of
such manifold configurations is quite common in fragmentation
simulations �8�, and not supporting them would be a major short-
coming of the data structure.

Fig. 5 Nonmanifold configuration after element removal

Fig. 6 Two distinct edges of a 2D mesh, sharing the same
bounding nodes, may result in different configurations: „a… a

manifold-configuration and „b… a nonmanifold configuration

Journal of Computing and Information Science in Enginee

oaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASME
5.3 Implicit Entity Lifetime. The proposed data structure has
been designed for representing models described by a set of nodes
and elements. We assume the absence of wire edges or dangling
faces in the model, which is needed because an implicit entity can
only appear as the boundary of an element. This decision should
not impose any restriction to the support of adaptive analysis. In
fact, the topological operators, which are usually used for mesh
simplification and refinement, result in a valid model under this
assumption. We then define the lifetime of implicit entities �facet,
edge, and vertex� in the following way: an implicit entity exists as
long as at least one of its uses exists, i.e., the entity exists if and
only if it has an incident element. Therefore, an isolated node does
not define a vertex �in fact, a vertex has been defined by a corner
node, so it presumes the existence of an element�. Accordingly, if
all incident elements to a given vertex are deleted, the vertex is
assumed to be deleted as well, and similarly for edges and facets.

As a consequence, applying a mesh operator can lead to undes-
ired side effects. Consider the 2D example illustrated in Fig. 4. If,
for instance, the facet bounded by the nodes 3 and 5 was on the
boundary of the model, removing the elements incident to node 2
would also remove the facet. When the new elements are inserted,
a new facet would be defined, but, if the original one had an
attribute attached to it, the attribute would be lost.

In order to overcome this limitation, we allow an implicit entity
to be locked. A locked entity is never removed. With this mecha-
nism, we can preserve the boundary facet mentioned above. We
lock the facet before removing the elements, unlocking it at the
end of the operation �after inserting the new elements�. A more
interesting approach consist of allowing the data structure to au-
tomatically lock/unlock implicit entities. The automatic locking
mechanism preserves all implicit entities with attached attributes,
by locking them before removing their last adjacent elements and
releasing the lock as soon as new adjacent elements are inserted.
In the proposed data structure, the client application can opt for
explicitly locking the entities or enabling the automatic
mechanism.

The locking is implemented by creating the concept of virtual
elements. The last element adjacent to a locked entity is not re-
moved from the data structure, but just unlinked from the model.
In other words, it becomes a virtual element that is not part of the
model, but is internally stored only to anchor locked entities. If
the entity is explicitly unlocked, the corresponding anchor in the
virtual element is released, and the element is removed from the
data structure if there is no other entity anchored to it. The anchor
in a virtual element is automatically released if any other element
adjacent to the locked entity is inserted in the model.

It is important to note that this is not a formal instrument to
represent dangling edges and facets or isolated vertex, but a
mechanism to preserve the boundary of an element during a mesh
modification. It is also important to observe that, for the particular
example illustrated in Fig. 4, the implementation of a specific
edge collapse operator for simplicial meshes would completely

Fig. 7 Two distinguished edges of a 2D mesh sharing the
same bounding nodes may result in different configurations:
„a… a manifold-configuration and „b… a nonmanifold con-
figuration
eliminate the problem, because the adjacent element would never

ring DECEMBER 2005, Vol. 5 / 353

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Downl
be removed; only its incidence would be updated. As mentioned
above, the purpose of not using such specialized operator is to
illustrate how to manage the lifetime of implicit entities in the
general case.

5.4 Implicit Entity Management. Our goal is to allow the
client application to reference implicit entities in the same way as
it does with explicit ones. Therefore, the client can use any refer-
ence to an implicit entity as long as it exists. Accordingly, it is
considered an invalid operation to access an entity that has already
been deleted from the model �as it is invalid to access a deleted
explicit entity�. The challenge lies in the fact that an implicit en-
tity, although yet alive, can have its representation changed due to
a mesh modification. For instance, if the anchoring element of a
facet, an edge, or a vertex is removed from the model, the an-
chored entity has its representation changed: it is then anchored to
another incident element. However, the data structure has to en-
sure that the old representation also remains valid as long as the
entity exists, because the client application can be holding a ref-
erence to the entity using this old representation.

In order to accomplish such a task, we propose a strategy that
keeps track of all representation changes. Whenever an entity rep-
resentation is changed, the data structure stores a mapping from
the old to the new representation. Moreover, all data associated to
the old representation are transferred to the new one. If the client
accesses the data structure using the old representation, this rep-
resentation is internally mapped to the corresponding new one,
which is then used to effectively access the data. The mapping is
implemented with the use of a hash table, the mapping table. This
strategy imposes a performance penalty that corresponds to ac-
cessing the mapping table whenever an implicit entity is passed as
a parameter to an operation. However, as in this table both keys
and values are implicit entities, which are identified by single
words �as previously described�, the mapping access can be done
very efficiently. The data structure maintains the mapping as long
as the corresponding entity exists. If the entity is deleted �for
instance, by deleting all incident elements�, the mapping has no
longer to be maintained. In order to be able to remove the map-
ping, we also store a reverse mapping table, which maps the new
representation to the old one.

As an example, consider a cross section of an edge in a 3D
model, as illustrated in Fig. 8. The edge has four incident elements
�E1 ,E2 ,E3 ,E4�, thus having four corresponding associated edge-
uses �e1 ,e2 ,e3 ,e4�, as shown in Fig. 8�a��. Without loss of gener-
ality, consider that E1 is anchoring the edge �Fig. 8�b��; therefore,
the edge is represented by e1 �the anchoring use�. If the element
E1 is then deleted from the model, the data structure detects that it
is anchoring the edge and selects another adjacent element to be
the new anchor. Let us assume that element E4 is chosen. An entry
is then created in both the mapping table �e1→e4� and the reverse
mapping table �e4→e1�, as shown in Fig. 8�c��. Now, consider
that element E2 is removed, and then element E4 is removed.
When the element E2 is removed, no mapping relating to the edge
is needed because the element is not its anchor �Fig. 8�d��. How-
ever, when element E4 is removed, the data structure selects ele-
ment E3 as the new anchor and adds another entry in both tables,
i.e., mapping �e4→e3� and reverse mapping �e3→e4� tables, as
shown in Fig. 8�e��. By using this configuration, the client is al-
lowed to access the model through references to both e1 and/or
e4—the data structure maps both to the new representation e3. The
representation e4 is directly mapped to e3, but e1 is first mapped to
e4 and subsequently mapped to e3. In order to avoid this sequen-
tial mapping, we have used path compression in a way similar to
the strategy used to compress the path in a union-and-find data
structure: once e1 is mapped to e3, we update the mapping storing
�e1→e3� in the place of �e1→e4�. Thus, the mapping operation
presents an amortized time complexity of constant order for prac-
tical situations �41�. Finally, if the client removes element E3, no

element incident to the edge will remain. If the edge is not locked,

354 / Vol. 5, DECEMBER 2005

oaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASME
it is deleted from the data structure as well, removing all its en-
tries in both tables. This removal operation is accomplished by
traversing the reverse mapping table.

5.5 Remarks on Implicit Entity Management. By using the
above strategy, the client application can refer to an implicit entity
as long as it exists. In fact, as described so far, the data structure
maintains the corresponding entries in the mapping tables during
the entire lifetime of the entity, even if the client application is not
holding a reference to the entity. As a consequence, if the mesh is
continuously modified, the data structure can inflate. Consider, for
instance, the hypothetical situation in which the client continu-
ously removes and re-inserts an element incident to an edge �as
illustrated in Fig. 8�b�� in a cyclic order. The edge would never be
deleted, and the mapping would be continuously updated, thus
becoming very large. Although such a modification pattern should
apparently not appear in a real application, continuous modifica-
tion of large meshes can give rise to the same problem. We then
have added a function that allows the client to explicitly request
the data structure to release all mappings. After calling such a
function, no old reference can be used to access the data structure.
This kind of compression is also useful for saving the data struc-
ture in disk.

In order to implicitly avoid inflating the mapping tables, we can
implement a strategy to automatically collect the garbage: the

Fig. 8 An example of how implicit entities are managed, based
on an edge shared by four different elements of a 3D model: „a…
3D schematic view of a cutting plane „� plane… crossing an
edge shared by hexahedral elements; „b… the resulting cross-
section of the edge and its 4 incident elements, with element E1
being the anchor of the edge „E denotes the anchor sign…; „c…
element E1 is removed, thus adding new entries in the mapping
and reverse mapping tables; „d… element E2 is removed, and no
mapping related to the edge is needed because it is not the
anchor; „e… element E4 is removed, adding new entries to the
tables
mapping entries related to an entity are maintained if and only if

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Downl
the client application holds a reference to the corresponding en-
tity; otherwise, there is no reason to keep the related mappings.
The simplest garbage collection strategy consists of using a refer-
ence counter. Each time an entity is constructed, assigned, or
copied, we increase its reference counter; each time the entity is
destructed or overwritten, we decrement its counter. If the counter
reaches zero, it means there is no remaining reference to the en-
tity, and the entity mapping can be removed from the data struc-
ture. This strategy is easily implemented with C��, using opera-
tor overload �42�. However, the reference counter strategy has a
major drawback: it is not capable of dealing with cyclic �recur-
sive� references �43�. In the context of its use in the data structure,
the strategy would fail �i.e., would not remove all unreferenced
entities� if the attribute attached to an entity A had a reference to
entity B; and, conversely, the attribute of B had a reference to A.
The client should be aware of that. Moreover, the reference
counter strategy imposes a performance penalty on retrieving en-
tities from the data structure. As the entities are not explicitly
represented, the reference counter has to be implemented using a
hash table. Then, whenever we need to update the counter, we
have to access the hash. In Sec. 6, we show a few performance
comparisons between using and not using reference counter.

5.6 Explicit Entity Management. The proposed data struc-
ture stores explicit entities �nodes and elements� using arrays and
these entities are represented by their position in such arrays �en-
tity IDs�. Whenever a node or an element is removed, its ID can
be reused to store another entity. In the case of a node, if the client
requires it to be removed, the corresponding ID can be immedi-
ately reused to store another node. In contrast, after the client
requires an element to be removed, in general the corresponding
ID is not immediately available to be reused. The data structure
has to ensure the uniqueness of all implicit entities that are stored
in the mapping tables. Therefore, an element ID will only be
available for reuse when it is no longer referenced by any implicit
entities that are still alive. In the example illustrated in Fig. 8, for
instance, just after removing element E1, its ID cannot be reused
because one of its associated uses �e1� is stored in the mapping
tables �Fig. 8�c��. In fact, its ID will only be available for reuse
after removing element E3 �considering, of course, that the ele-
ment E1 is not anchoring any other entity�.

Another important issue is related to the order in which the
available IDs are reused. The simplest strategy would use a stack
to store all available IDs, implementing a last in, first out strategy.
A more appropriate approach would use a priority queue �a heap�
that would return the smallest available ID. The use of a heap
tends to pack the entities in the first positions of the array, thus
improving performance, since only that portion of the array needs
to be accessed for traversing the model. This same strategy is used
to process birth and death of particles in large scale physical simu-
lations �44�.

6 Computational Experiments
We have set up a few computational experiments in order to test

the correctness, effectiveness, and efficiency of the data structure
for supporting dynamic remeshing. For reference, the tests were
done using the gcc 3.2 compiler with a Linux kernel 2.4 operating
system, running on an Intel Pentium 4 CPU 2.53 GHz machine.

Along with the elapsed time spent to perform the corresponding
operations, we have annotated the minimal amount of memory
needed to store the whole data structure, which includes the
memory used to store the explicit entities �nodes and elements,
including virtual and referenced elements�, the mapping tables,
the locking table, the reference counter table, and the attribute
tables. In practice, the amount of used memory is larger than the
minimal reported because the data structure stores all information
in dynamic arrays, which usually are not totally full. For a com-
parison of the required storage space of the proposed data struc-

ture against other reduced mesh representations, see Ref. �8�.

Journal of Computing and Information Science in Enginee

oaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASME
6.1 Construction From Scratch. The first computational ex-
periment demonstrates that the element insertion operator uses the
topological information stored in the data structure, thus having
local effect. Therefore, the computational time needed to perform
an element insertion is of constant order, despite the size of the
model. In order to test such local behavior we used the operator to
construct a finite element model from scratch, inserting each ele-
ment at a time. We first insert all nodes in the data structure and
then insert each element given its incidence. The element adja-
cency is inferred based on the bounding nodes of each element
facet: for each new inserted facet, we search for an existing one
with the same set of nodes among the facets adjacent to a given
node. Thus, this particular operator presumes the absence of dif-
ferent facets sharing the same set of bounding nodes; although, as
previously discussed, the data structure itself is capable of han-
dling such configuration.

We have run this test on models with different numbers of
elements, for both linear and quadratic meshes. The models rep-
resent a 3D regular grid decomposed into six linear or quadratic
tetrahedral elements per voxel. Table 1 shows the average elapsed
time spent for constructing the whole model from scratch �includ-
ing the time spent to read the data from the disk�, together with
the amount of memory needed to store the model. As shown in
Fig. 9, the average elapsed time needed to perform all operations
is linearly proportional to the number of elements inserted, for
both linear and quadratic models. This result demonstrates that the
insertion of elements is based on local topological procedures,
thus its performance is independent from the size of the model.

Table 1 Average elapsed times „in seconds… for constructing
the model from scratch, inserting each element at a time

Fig. 9 Plot of time „seconds… vs number of elements for model
construction from scratch. The data were extracted from Table
1. The data points associated to the 64Ã64Ã64 models are

outside the plotting window.

ring DECEMBER 2005, Vol. 5 / 355

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Downl
6.2 Mesh Refinement and Optimization. The main motiva-
tion for developing the new dynamic reduced data structure is to
provide support for adaptive analysis. As a simple example, we
have tested the new data structure for supporting the implementa-
tion of mesh refinement on a 2D model using triangular elements.
For this test, the mesh topology was generated using a 4-k mesh,
which presents variable resolution capability that is crucial for
adaptive computation �45�. Figure 9 shows that, on a square do-
main, the mesh is composed uniquely by right isosceles triangles
with valences �or degrees� varying from 4 to 8, thus the name 4–8
mesh. Figure 10 illustrates the refinement process using such
mesh topology. First, it shows the coarse 4-element mesh covering
the entire domain �Fig. 10�a��. The bottom edge is split once �Fig.
10�b�� and then split a second time �Fig. 10�c��. In order to pre-
serve the mesh composed by uniquely right isosceles triangles, the
right edge is also split, thus ensuring a smooth transition along the
variable resolution of the mesh.

We have used such mesh topology to test the data structure for
supporting dynamic mesh refinement. The example under consid-
eration consists of a quarter-plate with a central hole �Fig. 11�.
The goal is to implement an automatic refinement process based

Fig. 10 A 4-k variable resolution mesh covering a square do-
main: „a… original 4-element mesh topology; „b… model topology
after splitting the bottom edge once; „c… model topology after
splitting the bottom edge a second time

Fig. 11 A simple example illustrating the support for mesh re-
finement along the circular edge. From left to right, and top to
bottom: geometric model; initial mesh configuration; and four
different meshes achieved by iteratively splitting the boundary
edges and by applying a filter to accommodate the internal

nodes.

356 / Vol. 5, DECEMBER 2005

oaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASME
on mesh classification. To accomplish that task, we set up an
initial coarse mesh model. The boundary edges are classified
against the geometry, allowing selective automated refinement of
the mesh along the circular boundary. The refined configurations
are achieved by iteratively splitting the boundary edges. The split
edge operator is built on top of element removal and insertion
operations: first, the two elements adjacent to the edge are re-
moved, then the new node is inserted and, finally, the four new
elements are inserted. The new inserted nodes are mapped to the
boundary geometry based on the edge classification. The mesh is
then submitted to an optimization procedure using a weighted
Laplacian filter, displacing the internal nodes in order to improve
the geometrical quality of the mesh, as described by Alliez et al.
�40�. Figure 11 illustrates a few stages of the refinement process,
demonstrating handling of classification attributes associated to
implicit entities.

6.3 Model Destruction and Reconstruction. Important se-
lected features of the data structure include:

• An extension to handle transient nonmanifold configurations
that are originated by dynamic remeshing

• A novel locking mechanism that allows lifetime extension
of implicit entities, whose attributes are preserved during
mesh modification procedures

• Two different strategies to determine how long the implicit
entities are maintained in the mapping tables. In the first
strategy, all old representations are maintained during the
whole entity lifetime, regardless of whether the client keeps
reference to them or not. In the second strategy, the data
structure automatically collects unreferenced entities, which
can be implemented by adding a reference counter to each
accessed entity. Although the reference counter strategy
minimizes the use of memory space required by the map-
ping tables, it adds a considerable performance penalty for
retrieving the implicit entities because the counters have to
be stored in hash tables.

In order to test the above features, we consider a set of experi-
ments on two different finite element models, which represent
realistic and practical engineering examples. The first is a model
used for fracture mechanics investigations of surface cracks in
advanced materials �e.g., functionally graded composition� under
thermomechanical loading �46�. It is represented by a quadratic
hexahedral mesh with degenerated �collapsed� elements surround-
ing the crack front. In order to ensure topological consistency, the
degenerated elements were implemented by a different type of
element �the pentahedral element�. The second represents a linear
hexahedral mesh of the Titan IV solid rocket motor used for in-
vestigating the deformation experienced by the rocket propellant
in the vicinity of the joints, using a geometric nonlinear dynamic
analysis �47�. The mesh models are illustrated in Fig. 12.

For performance comparison between “using” and “not using”
reference counter to manage entity lifetime, we measured the av-
erage time needed to enumerate all the entities in the models. As
can be seen in Table 2, without using the reference counter strat-
egy, the time needed to traverse the implicit elements is similar to
the time needed to traverse the elements. The reference counter
strategy demands more processing time to traverse implicit enti-
ties, since the counters have to be updated each time an entity is
retrieved from the data structure.

In order to compare the performance while editing the model,
and also to demonstrate the data structure ability to handle com-
plex nonmanifold configuration, we set up the following experi-
ment: given each model, we remove half of its elements, one
element at a time, in a random order. Figure 13 illustrates the
configuration of the models after removing half of their elements.
Then, we reconstruct the model, reinserting each element at a
time, again in a random order, thus recovering the initial configu-

ration. To test the locking mechanism, we attach an attribute to

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Downl
each boundary facet of the models �represented either by the yel-
low color, or light gray in the B&W version, in Figs. 12 and 13�,
and then run the experiment with two different scenarios. In the
first scenario, the boundary facets are not locked. As a result, the
attributes attached to the removed facets are lost and the recon-
structed model results in several boundary facets without at-
tributes �Fig. 14�. In the second scenario, all boundary facets are
locked before removing the elements. As a consequence, the data
structure is able to reconstruct the model preserving all the origi-
nal boundary facets, recovering the models of Fig. 12 with their
original attributes. For comparison, the experiments are consid-
ered “using” and “not using” the reference counter strategy in
both scenarios. Table 3 shows the average elapsed time for remov-
ing and reinserting the elements.

As can be noted, the reference counter strategy brings benefits
while removing the elements, because it maintains the mapping
tables with minimum sizes, thus improving the hashing opera-
tions. During the reconstruction, the reference counter does not
provide any advantage because there is no need to update the
mapping tables while inserting elements. The locking mechanism
introduces a negligible performance penalty, thus being quite ap-

Fig. 12 Models used on the numerical tests: top, surface
crack model with quadratic hexahedral and pentahedral mesh;
bottom, Titan IV solid model with linear hexahedral mesh

Table 2 Average elapsed times „in seconds… for enumerating
all topological entities of the models. The times reported are
the average of a number of consecutive simulations.
Journal of Computing and Information Science in Enginee

oaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASME
propriate for preserving implicit-entity attributes.
Table 4 reports the memory needed for storing the whole Titan

IV model when different features of the data structure are in use.
The table shows the memory in three different configurations of
the experiment: before removing the elements �the original model
with its boundary attributes�, after removing half of the elements,
and after reinserting the elements. Without the use of the reference
counter strategy, the mapping tables inflate and demand more
memory space for element storage because all element IDs refer-
enced in the mapping tables cannot be reused. With the reference
counter strategy, the memory needed for supporting the operations
does not increase and, at the end, the reconstructed model uses the

Fig. 13 Model configurations after removing half of the ele-
ments in random order: top, surface crack model; bottom, Titan
IV solid model

Fig. 14 Model configurations after reconstructing the model
without recovering the original boundary attributes: top, sur-

face crack model; bottom, Titan IV solid model

ring DECEMBER 2005, Vol. 5 / 357

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Downl
same amount of memory as the original model. The memory
needed to lock the boundary facets is quite small, again demon-
strating the validity of the locking mechanism.

As a final remark, the experiments have demonstrated advan-
tages and disadvantages of using the reference counter strategy.
On one hand, the strategy introduces a significant performance
penalty for traversing the implicit entities; on the other hand, it
reduces the amount of memory for modifying the mesh, thus im-
proving performance. To eliminate the disadvantages, while pre-
serving the advantages, the client application can explicitly con-
trol the reference counters. Each time the application needs to
keep a reference to an entity for future use, it should explicitly add
the entity counter �e.g., by calling a function�; whenever the ref-
erence is no longer in use, it should explicitly subtract the entity
counter. In this fashion, no performance penalty is imposed for
traversing the model and unreferenced entities is not maintained
in the mapping tables.

7 Conclusion
We have introduced a new strategy for handling implicit entities

in reduced mesh representations. From the client application point
of view, implicit entities are handled in an efficient and transpar-
ent way. If the mesh undergoes modifications, the underlying data
structure ensures that all data associated to implicit entities, which
are not directly modified, are preserved. The proposed strategy is
based on a few key concepts that have greatly simplified the
implementation:

• Facet, edge, and vertex are nonoriented entities: there is no

Table 3 Average elapsed times „in seconds… for destructing
and reconstructing the models, by removing and reinserting
half of the elements in random order

Table 4 Amount of memory „in Mbytes… needed to store the
Titan IV model in different configurations when using different
features of the data structure
358 / Vol. 5, DECEMBER 2005

oaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASME
need to handle orientation changes, thus reducing the prob-
lem of ensuring model consistency. Facet-use, edge-use, and
vertex-use, which represent the use of facet, edge, and ver-
tex by an element, respectively, are oriented entities, but
their lifetimes are strictly associated to the elements that use
them.

• Implicit entities are defined by concrete types: by using con-
crete types, we can avoid the need for dynamic allocation
while manipulating implicit entities, which are treated as
ordinary values, similarly to any other built-in type of a
programming language.

• Entities are identified by a 4-byte word: besides being a
compact representation, the use of a 4-byte word allows
efficient hashing evaluations. This improves performance,
while treating both explicit and implicit entities in the same
and uniform way.

To support dynamic remeshing, we have extended our original
data structure �8� to handle transient nonmanifold configurations.
As a consequence, despite the model configuration, topological
operations are performed in time proportional to the number of
local entities involved.

The consistency of the data structure is ensured by mapping
tables that keep track of all changes in the representation of im-
plicit entities when the model undergoes modifications. The map-
ping related to an indirectly modified implicit entity is kept during
its lifetime, thus allowing the client to use old references to access
the data structure. We have investigated the use of reference
counters in order to decide whether an entity mapping needs to be
maintained. Although the reference counter strategy imposes a
considerable performance penalty while retrieving information
from the data structure �e.g., for entity enumeration�, its use is
quite appropriate while editing the model, avoiding the data struc-
ture to inflate. An explicit control, by the client application, of the
referenced entities seems to be a good alternative to avoid the
performance penalty for accessing the data structure, while avoid-
ing unreferenced entities to be maintained in the mapping tables.

We have also proposed an efficient locking mechanism that
allows the client application to preserve the boundary of elements
during mesh modification. As a result, attributes attached to im-
plicit entities can be preserved even if all anchoring elements are
removed from the model.

The robustness of the proposed data structure has been demon-
strated by two practical engineering examples. The data structure
is able to handle complex �nonmanifold� configurations, as dem-
onstrated by the examples in which half of the elements are re-
moved, and then reinserted, in random order. The efficiency and
effectiveness of the proposed locking mechanism have been illus-
trated by restoring the original model with all its attributes. To our
knowledge, such framework provided by reduced mesh represen-
tation has not been presented in the literature.

Finally, in the implementation of the proposed data structure,
we have addressed a set of important issues that can be adapted
for the implementation of other reduced mesh representations.
They are indicated below:

• Use of a 4-byte word to identify all entities, despite being
explicitly or implicitly represented �similar to the MOAB
system �7��

• Use of hash tables to store all data related to implicit enti-
ties, and to store attributes attached to explicitly represented
entities

• Use of a heap in order to reuse available IDs, thus achieving
a compact array-based representation �as mentioned in Ref.
�44��

• Use of concrete types to represent implicit entities, thus
avoiding dynamic allocation and facilitating the manage-
ment of entity uniqueness and lifetime

• Use of reference counter to manage references to implicit

entities

Transactions of the ASME

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Downl
Acknowledgments
G.H.P. gratefully acknowledges the support from NASA-Ames,

Engineering for Complex Systems Program, and the NASA-Ames
Chief Engineer, Dr. Tina Panontin, through Grant No. NAG
2-1424. He also acknowledges additional support from the Na-
tional Science Foundation �NSF� under Grant No. CMS-0115954
�Mechanics & Materials Program�. R.E. is financially supported
by the Brazilian agency CAPES �Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior�. W.C. and R.E. would like to
thank the support for conducting this research provided by the
Tecgraf laboratory at PUC-Rio, which is mainly funded by the
Brazilian oil company, Petrobras. The authors thank Dr. M. C.
Walters for providing the fracture mechanics model and Dr. Ali
Namazifard from the Center for Simulation of Advanced Rockets
�CSAR� for the Titan IV model �of Sec. 6�. The authors also thank
the valuable contributions given by the anonymous reviewers.

References
�1� Wawrzynek, P. A., and Ingraffea, A. R., 1987, “Interactive Finite Element

Analysis of Fracture Processes: An Integrated Approach,” Theor. Appl. Fract.
Mech., 8, pp. 137–150.

�2� Martha, L. F., Wawrzynek, P. A., and Ingraffea, A. R., 1993, “Arbitrary Crack
Representation using Solid Modeling,” Eng. Comput., 9, pp. 63–82.

�3� Beall, M. W., and Shephard, M. S,. 1997, “A General Topology-Based Mesh
Data Structure,” Int. J. Numer. Methods Eng., 40, pp. 1573–1596.

�4� Garimella, R. V., 2002, “Mesh Data Structure Selection for Mesh Generation
and FEA Applications,” Int. J. Numer. Methods Eng., 55, pp. 451–478.

�5� Remacle, J.-F., Karamete, B. K., and Shephard, M. S., 2000, “Algorithm Ori-
ented Mesh Database,” Proceedings of 9th International Meshing Roundtable,
Sandia National Laboratories, pp. 349–359.

�6� Remacle, J.-F., and Shephard, M. S., 2003, “An Algorithm Oriented Mesh
Database,” Int. J. Numer. Methods Eng., 58, pp. 349–374.

�7� Tautges, T., Ernst, C., Merkley, K., Meyers, R., and Stimpson, C., 2004,
“MOAB, A Mesh-Oriented Database,” Sandia National Laboratories Report
SAND2004-1592, Sandia National Laboratories, Albuquerque, New Mexico
�http://cubit.sandia.gov/MOAB�.

�8� Celes, W., Paulino, G. H., and Espinha, R., 2005, “A Compact Adjacency-
Based Topological Data Structure for Finite Element Mesh Representation,”
International Journal for Numerical Methods in Engineering �in press�.

�9� Löhner, R., 1988, “Some Useful Data Structures for the Generation of Un-
structured Grids,” Commun. Appl. Numer. Methods, 4, pp. 123–135.

�10� Owen, S. J., and Shephard, M. S., 2003, “Editorial: Special Issue on Trends in
Unstructured Mesh Generation,” Int. J. Numer. Methods Eng., 58, pp. 159–
160.

�11� Paulino, G. H., Menezes, I. F. M., Neto J. B. C., and Martha, L. F. R. C., 1999,
“A Methodology for Self-Adaptive Finite Element Analysis—Towards an In-
tegrated Computational Environment,” Comput. Mech., 23�5-6�, pp. 361–388.

�12� Carey, G. F., Sharma, M., and Wang, K. C., 1988, “A Class of Data Structures
for 2-D and 3-D Adaptive Mesh Refinement,” Int. J. Numer. Methods Eng.,
26, pp. 2607–2622.

�13� Hawken, D. M., Townsend, P., and Webster, M. F., 1992, “The Use of Dy-
namic Data Structures in Finite Element Applications,” Int. J. Numer. Methods
Eng., 33�9�, pp. 1795–1811.

�14� Pandolfi, A., and Ortiz, M., 1998, “Solid Modeling Aspects of Three-
Dimensional Fragmentation,” Eng. Comput., 14, pp. 287–308.

�15� Pandolfi, A., and Ortiz, M., 2002, “An Efficient Adaptive Procedure for Three-
Dimensional Fragmentation Simulations,” Eng. Comput., 18, pp. 148–159.

�16� Frey, P. J., 2000, “About Surface Remeshing,” in Proceedings of the 9th In-
ternational Meshing Roundtable, pp. 123–136.

�17� Vorsatz, J., Rössl, C., and Seidel, H.-P., 2003, “Dynamic Remeshing and Ap-
plications,” J. Comput. Inf. Sci. Eng., 3, pp. 338–344.

�18� Glimm, J., 2001, “The Terascale Simulation Tools and Technology �TSTT�
Center,” http://www.tstt-scidac.org, Executive Summary, 2001.

�19� Baumgart, B., 1972, “Winged-Edge Polyhedron Representation,” Technical
Report CS-320 Stanford Artificial Intelligent Laboratory, Stanford University.

�20� Mäntylä, M., 1988, An Introduction to Solid Modeling, Computer Science
Press, Rockville, MD.

�21� Weiler, K., 1986, “Topological Structures for Geometric Modeling,” Ph.D.

thesis, Rensselaer Polytechnic Institute, New York.

Journal of Computing and Information Science in Enginee

oaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASME
�22� Chen, J., and Akleman, E., 2000, “Topologically Robust Mesh Modeling: Con-
cepts, Data Structures, and Operations,” Int. J. Shape Model., 5�2�, pp.149–
177.

�23� Weiler, K., 1988, “The Radial Edge Structure: A Topological Representation
for Non-Manifold Geometric Boundary Modeling,” Geometric Modeling for
CAD Applications, J. L. Encarnação, H. W. McLaughlin, ed., Elsevier Science
Publishers, Amsterdam, pp. 3–36.

�24� Lee, S. H., and Lee, K., 2001, “Partial Entity Structure: A Compact Non-
Manifold Boundary Representation Based on Partial Topological Entities,”
Proceedings of the sixth ACM Symposium on Solid Modeling and Applications,
pp. 159–170.

�25� Lee, S. H., and Lee, K., 2001, “Partial Entity Structure: A Compact Boundary
Representation for Non-Manifold Geometric Modeling,” J. Comput. Inf. Sci.
Eng., 1�4�, pp. 356–365.

�26� Campagna, S., Kobbelt, L., and Seidel, H.-P., 1999, “Directed Edges—A Scal-
able Representation for Triangle Meshes,” Journal of Graphics Tools, 4�3�, pp.
1–12.

�27� Rossignac, J., 1999, “Edgebreaker: Connectivity Compression for Triangle
Meshes,” IEEE Trans. Vis. Comput. Graph., 5�1�, pp. 47–61.

�28� Cignoni, P., De Floriani, L., Magillo, P., Puppo, E., and Scopigno, R., 2003,
“Selective Refinement Queries for Volume Visualization of Unstructured Tet-
rahedral Meshes,” IEEE Trans. Vis. Comput. Graph., 10�1�, 29–45.

�29� De Floriani, L., and Hui, A., 2003, “A Scalable Data Structure for Three-
Dimensional Non-Manifold Objects,” Eurographics Symposium on Geometry
Processing, pp. 72–82.

�30� Cignoni, P., Montani, C., Puppo, E., and Scopigno, R., 1997, “Multiresolution
Representation and Visualization of Volume Data,” IEEE Trans. Vis. Comput.
Graph., 3�4�, pp. 352–369.

�31� Kobbelt, L., Bareuther, T., and Seidel, H.-P., 2000, “Multiresolution Shape
Deformations for Meshes with Dynamic Vertex Connectivity,” Proceedings of
Eurographics ‘00, pp. 249–260.

�32� De Floriani, L., Magillo, P., Puppo, E., and Sobrero, D., 2002, “A Multi-
Resolution Topological Representation for Non-Manifold Meshes,” Proceed-
ings of Solid Modeling’02, pp. 17–21.

�33� Silva, F. G. M., and Gomes, A. J. P., 2003, “Adjacency And Incidence
Framework—A Data Structure for Efficient and Fast Management of Multi-
resolution Meshes,” Proceedings of the 1st International Conference on Com-
puter Graphics and Interactive Techniques, Melbourne, Australia, pp. 159–
166.

�34� Wang, H., and Li, J., 2000, “OctMesh—Interactive Mesh Browsing over the
Internet,” International Conference on Information Technology: Coding and
Computing (ITCC’00), pp. 104–108.

�35� Rossignac, J., 2001, “3D Compression Made Simple: Edgebreaker with
Zip&Wrap on a Corner-Table,” IEEE International Conference on Shape Mod-
eling and Applications, pp. 278–283.

�36� Sutradhar, A., and Paulino, G. H., 2004, “A Simple Boundary Element Method
for Problems of Potential in Non-Homogeneous Media,” Int. J. Numer. Meth-
ods Eng., 60�13�, pp. 2203–2230.

�37� Tautges, T. J., 2004, “MOAB-SD: Integrated Structured and Unstructured
Mesh Representation,” Eng. Comput., 20, pp. 286–293.

�38� Stroustrup, B., 1997, The C�� Programming Language, Addison-Wesley,
Reading, MA.

�39� Luebke, D., Reddy, M., Cohen, J. D., Varshney, A., Watson, B., and Huebner,
R., 2003, Level of Detail for 3D Graphics, Morgan Kaufmann Publisher,
Elsevier Science, San Francisco, CA.

�40� Alliez, P., Meyer, M., and Desbrun, M., 2002, “Interactive Geometry Remesh-
ing,” ACM Trans. Graphics, 21�3�, pp. 347–354.

�41� Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., 2001, Introduc-
tion to Algorithms, 2nd ed., The MIT Press, Cambridge, MA.

�42� Bulka, D., and Mayhew, D., 2000, Efficient C��—Performance Program-
ming Techniques, Addison-Wesley, Reading, MA.

�43� Knuth, D. E., 1997, The Art of Computer Programming, 3rd Edition, Addison-
Wesley; Reading, MA, Vol. 1.

�44� Latta, L., 2004, “Building a Million Particle System,” Game Developers Con-
ference, March 22–24, San Jose, California.

�45� Velho, L., and Gomes, J., 2000, “Variable Resolution 4-K Meshes: Concepts
and Applications,” Comput. Graph. Forum, 19�4�, pp. 195–214.

�46� Walters, M. C., Paulino, G. H., and Dodds, R. H., 2004, “Stress Intensity
Factors for Surface Cracks in Functionally Graded Materials Under Mode-I
Thermomechanical Loading,” Int. J. Solids Struct., 41�3-4�, pp. 1081–1118.

�47� Namazifard, A., and Parsons, I. D., 2004, “A Distributed Memory Parallel
Implementation of The Multigrid Method for Solving Three-Dimensional Im-
plicit Solid Mechanics Problems,” Int. J. Numer. Methods Eng., 61, pp. 1173–

1208.

ring DECEMBER 2005, Vol. 5 / 359

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


