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Abstract. A micromechanics-based elastic model is developed for two-phase functionally graded 

composites with locally pair-wise particle interactions. In the gradation direction, there exist two 

microstructurally distinct zones: particle-matrix zone and transition zone. In the particle-matrix 

zone, the homogenized elastic fields are obtained by integrating the pair-wise interactions from all 

other particles over the representative volume element. In the transition zone, a transition function is 

constructed to make the homogenized elastic fields continuous and differentiable in the gradation 

direction. The averaged elastic fields are solved for transverse shear loading and uniaxial loading in 

the gradation direction.  

Introduction 

In recent years functionally graded materials (FGMs) have attracted much attention from engineers 

and researchers due to their unique thermomechanical performance [1,2]. These materials are 

characterized for spatially varying microstructures created by non-uniform distributions of the 

reinforcement phase, as well as by interchanging the role of the reinforcement and matrix in a 

continuous manner. Within FGMs, the different microstructural phases have different functions, and 

the overall FGMs attain the multifunctional status from their property gradation, enabling various 

multifunctional tasks by virtue of spatially tailored microstructures.  

Several FGMs are manufactured by two phases of materials with different properties. Since the 

volume fraction of each phase gradually varies in the gradation direction, the effective properties of 

FGMs change in this direction. While FGMs have been designed and fabricated by diverse methods 

to achieve unique microstructures, very limited analytical investigations are available to tackle the 

spatial variation of microstructure [3]. Conventional composite models such as the Mori-Tanaka 

method [4] and the self-consistent method [5,6] are directly applied to estimate the effective elastic 

responses of FGMs [2]. Because they were originally developed for homogeneous mixtures with 

constant particle concentration, those models are not able to capture the material gradient nature of 

FGMs. Furthermore, no direct interactions between particles are taken into consideration [7]. 

Experimental observations [2,8] show that the typical microstructure of FGMs, illustrated in Fig. 

1(a) towards the gradation direction, contains a particle-matrix zone with discrete particles filled in 

continuous matrix, followed by a skeletal transition zone in which the particle and matrix phases 

cannot be well defined because the two phases are interpenetrated into each other as a 

connected network. The transition zone is further followed by another particle-matrix zone with 

interchanged phases of particle and matrix. Hirano et al. [8] applied the fuzzy logic approach to 

estimate the effective elastic behavior in the transition zone by using a transition function to 

combine the two solutions obtained from the particle-matrix zones. Reiter and Dvorak [9] also 

adopted the transition functions combined with the Mori-Tanaka model in the particle-matrix zone 

and self-consistent model in the skeletal transition zone.  
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Fig. 1: Schematic illustration of a two-phase FGM sample: (a) three zones in macroscopic scale X  

and (b) RVE in the microscopic scale x . 

 

The above-mentioned FGMs models did not include the local interactions between particles. 

Consequently, they could not take into account the graded particle distribution for FGMs. Some 

studies have suggested the need for higher order theory in the modeling of FGMs. For example, 

Zuiker and Dvorak [10] extended the Mori-Tanaka method to linearly varying fields and 

investigated the relations of the averaged stress versus strain relation and of the stress-gradient 

versus strain-gradient, which was shown to depend on the size of the representative volume element 

(RVE) [11]. Aboudi et al. [3] developed a higher-order numerical cell theory based on averaging of 

the various fields. Micromechanical finite element models have also been constructed [9,12].  

In this paper a micromechanical framework is proposed to investigate the effective elastic 

behavior of FGMs. Given a uniform loading on the top and bottom boundaries of FGMs, a 

microscopic representative volume element (RVE) is constructed to reflect the microstructure of the 

particle-matrix zone in FGMs (Fig. 1(b)), and averaged strains in particles are derived by integrating 

pair-wise interaction contributions of all particles. A transition function is adopted in the skeletal 

transition zone. Finally the effective stress and strain fields can be solved as differentiable functions 

in the gradation direction.   

Micromechanical Analysis of FGMs 

Let us consider a typical FGM microstructure (Fig. 1) containing two phases A and B with isotropic 

elastic stiffness A
C  and B

C , respectively. The global coordinate system of the FGM is denoted by 

( 1 2 3, ,X X X ) with 3X  being the continuous gradation direction. The overall grading thickness of the 

FGM is t . In a graded layer ( 1 2X X−  plane), micro-particles are uniformly distributed with a two-

dimensionally random setting so that the material layer is statistically homogeneous. While these 

micro-particles cannot be observed in the macroscopic scale, the volume fraction of phase A or B 

(for convenience, we use φ  to denote the volume fraction of phase A) is gradually changed in the 

gradation direction 3X . Microscopically, the particle and the matrix zones could be well defined 

when φ  is close to 0 or 1 [e.g., Zone I and Zone III in Fig. 1(b)]. However, a skeletal transition zone 

(Zone II) normally exists in middle area (e.g., 1 3 2d X d< < ) in which it is difficult to identify the 

particle or matrix phase. 

Apply a uniform stress tensor 0
σ  on the FGM 3X

 
boundary. Based on the equilibrium condition, 

the averaged stress in any 1 2X X−  layer is still 0
σ , so we can write:   

1X  
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( ) ( )0

3 3:X X=σ C ε - (1) 

where C  is the effective elasticity at that layer. The averaged strain and stress in the 1 2X X−  layer 

can be further written as  

( ) ( ) ( ) ( ) ( )3 3 3 3 31
A B

X X X X Xφ φ= + −  ε ε ε . (2) 

and 

( ) ( ) ( ) ( )0

3 3 3 3: 1 :
A BA B

X X X Xφ φ= + −  σ C ε C ε . (3) 

For any macroscopic material point 0X  [Fig. 1(a)] in the range of 3 10 X d≤ ≤  (Zone I), the 

corresponding microstructural RVE [Fig. 1(b)] contains a number of micro-particles of the phase A 

embedded in a continuous matrix of the phase B so that the overall volume fraction of particle phase 

A and the its gradient should be consistent with the macroscopic counterparts ( )0

3Xφ  and 

0
3 3

3/ |
X X

d dXφ
=

. The microscopic coordinate system ( 1 2 3,  ,  and x x x ) is constructed with the origin 

corresponding to 0X . All micro-particles are assumed to be specifically spherical with identical 

radius a ( )a t� for straightforward formulation. The whole RVE domain is denoted as D  and the 

th
i  micro-particle ( )1, 2,3, ,i = ∞L  domain is denoted as 

i
Ω  centered at 

ix . For the ease of 

formulation, a particle centered at the origin is assumed and denoted as 0Ω . 

By considering the pair-wise particle interactions from all other particles, the averaged strain in 

the central particle 0Ω  can be written in two parts: the elastic-mismatch interaction between the 

central particle and the matrix and the pair-wise interaction between the central particle and other 

particles [11]:  

( ) ( ) ( ) ( ) ( )1 1

0 31
: 0 ,

A B Bi i

i
x

∞− −

=
= − ⋅ ∆ + ∆ ⋅∑ε 0 I P C ε C L 0 x ε  (4) 

where A B∆ = −C C C , 0 0 0 0( ) [ (4 5 )( )] /[30 (1 )]
ijkl ij kl ik jl il jk

P v vδ δ δ δ δ δ µ= − − + − , ( )0
B

ε  is the 

averaged matrix strain in the layer with 3 0x = , ( )3

B i
xε  is the averaged matrix strain tensor in the 

3

i
x -th layer, and ( ), iL 0 x  describes the interaction of the particle centered at ix  on the averaged 

strain of the central particle. This pair-wise particle interaction tensor is explicitly derived in terms 

of the locations of particles and material constants of the particles and matrix [11]. 

Because all particles are statistically distributed in a random way, the probability of particle 

distribution can be introduced to statistically demonstrate the particle interaction effect. Therefore, 

the second-rank pair-wise interaction tensor ( )d 0  [i.e., the second term of the right hand side of 

Eq. (4)] can be further integrated over all possible particle positions as:  

( ) ( ) ( ) ( ) ( ) ( )1 1

3 31
, : | , :

B Bi i

i D
x P x d

∞ − −

=
∆ ⋅ = ∆ ⋅∑ ∫d 0 C L 0 x ε x 0 C L 0 x ε x� . (5) 

For the FGM considered, since the micro-particles in RVE are distributed in a continuously 

increasing manner in the gradation direction, the particle density function is proposed as  
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( )
( )

( ) ( )0 / 0

3 ,3 3 33

3
|

4

x
g x

P X e X x
a

δφ φ
π

− = + x 0  (6) 

where ( )g x  is the radial distribution function of particles proposed by Percus and Yevick [13] to 

estimate the particle non-uniformity effect in the radial direction. The expression enclosed by square 

brackets is constructed on the basis that the averaged volume fraction of particle in the RVE is 

( )0

3Xφ , the gradient of particle volume fraction is ( )0

,3 3Xφ , and in the far field the particle 

concentration must not be beyond the range of zero to the maximum particle concentration. Thus, an 

exponential function is introduced to attenuate the gradation term exponentially. The parameter δ , 

which controls the attenuating rate, will be determined under the condition that the maximum 

volume fraction of particles in the RVE should not be greater than the maximum volume fraction in 

particle-matrix zone. Since the particle interaction energy is quickly attenuated with the increment 

of the distance between particles, those particles in the neighboring domain of the central particle 

should contribute the majority part for the averaged strain of the central particle.  

Similarly to Ju and Chen [7], the Taylor expansion of ( )3

B
xε  is applied to analytically 

integrate Eq. (5). It is noted that the average strain ( )3

B
xε  varies along the grading direction. It is 

differentiable and bounded, and thus is approximated by the Taylor expansion. In the chosen RVE, 

the elastic interaction between the central particle and the particles far away from it is negligible; 

only the particles in the close neighborhood of the central particle may have noticeable interaction 

on the central particle. As a first order approximation, we truncate the Taylor expansion of ( )3

B
xε  

to linear term in terms of 3x  so that Eq. (5) can be analytically integrated and rewritten as 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 0 1

3 ,3 3 ,3
0 : 0 0 : 0

B B
X Xφ φ− −= ∆ ⋅ + ∆ ⋅d 0 C D ε C F ε  (7) 

where  

( )
( )

( )
( )/ 2

33 3

3 3
, ;  ,

4 4

δ

π π
−= =∫ ∫

x

D D

g x g x
d e x d

a a
D L 0 x x F L 0 x x . (8) 

Substituting Eq. (7) into Eq. (4) and recognizing that the origin of the local coordinates in the 

RVE corresponds to the global coordinate point 0X  of FGM, we can obtain the averaged particle 

strain tensor in terms of the arbitrary material point 3X  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1

3 0 3 3 3 3

1

,3 3 3 3,3

: :

                  :

A B B

B

X X X X X

X X X

φ

φ

− −

−

= − ⋅∆ + ∆ ⋅

+ ∆ ⋅

ε I P C ε C D ε

C F ε

. (9) 

With the combination of Eqs. (3) and (9), the averaged particle strain tensor ( )3

A
Xε  and the 

averaged matrix strain tensor ( )3

B
Xε  in the FGM gradation direction 3X  can be solved in terms 

of the far-field stress 0
σ . Since Eq. (9) is a set of ordinary differential equations, we also need the 

appropriate boundary conditions. In the particle-matrix zone with 3 10 X d≤ ≤ , the boundary at 

3 0X =  corresponds to the 100% matrix material (i.e., ( )0 0φ = ). The corresponding boundary 

conditions can be proposed as 
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( )
1 00 :

B B
−

=ε C σ . (10) 

Therefore, the averaged strain tensors in both phases can be numerically solved on the basis of 

standard backward Eulerian method. Similarly, in the other particle-matrix with the range of 

2 3d X t≤ ≤  (zone III), we can also calculate the averaged strain fields by the switch of matrix and 

particle phases.  

For the transition zone II ( 1 3 2d X d< < ), the particle and matrix phases cannot be well defined 

because the two phases are interpenetrated into each other as a connected network. As a 

consequence, the averaged elastic fields cannot explicitly be determined through the 

micromechanics framework. Similarly to Reiter and Dvorak [9], a phenomenological transition 

function is introduced as  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2

3 1 3 2

3

1 2 1 2

( ) 1- 2
X d X d

f X
d d d d

φ φ φ φ

φ φ φ φ

   − −
=    

− −   
 (11) 

so that the averaged strain of each phase (A or B) in the transition zone II can be approximated as a 

cubic Hermite function appropriately contributed by the averaged strain of the same phase (A or B) 

from two particle-matrix zones (zones I and III). Namely,  

( ) ( ) ( ) ( ) ( )
or or or

3 3 3 3 31
A B A B A B

zone II zone I zone III
X f X X f X X

− − −
= + −  ε ε ε  (12) 

The overall averaged strain tensor at each layer in the transition zone can be further obtained 

from Eq. (2). It is noted that the proposed transition function makes the effective FGM elastic fields 

to be bounded, continuous, and differentiable.  

Numerical Simulations and Discussion 

When a uniformly distributed stress is applied on the top and bottom boundaries of the FGM, the 

proposed model can solve the averaged elastic fields as a function of 3X . Since two-phase FGMs 

are fabricated to gradually change material phases from one end to the other, the effective strain 

fields strongly depend on the individual performance of constituent phases. In the following 

simulation, the material selected is the C/SiC system (Reiter et al. [12]) with the silicon carbide as 

phase A ( 320 , 0.3
A A

E GPa v= = ) and the carbon as phase B ( 28 , 0.3
B B

E GPa v= = ). The volume 

fraction distribution function of silicon carbide is assumed as 3 3( ) /φ =X X t  with the thickness of 

the FGM 1=t . The transition zone is taken from 1( ) 48%dφ =  to 2( ) 52%dφ =  to be consistent 

with FEM simulation [12].  

First we study the elastic fields of the FGM under a uniform shear 13 1.0σ = MPa  on the top and 

bottom boundary. Fig. 2 illustrates the overall averaged strain and compares the proposed model 

with the self-consistent method and finite element method (FEM) both performed by Reiter et al. 

[12]. It is shown that averaged shear stress on the carbon phase estimated by the current model is 

much closer to the numerical FEM results than the one estimated by the self-consistent method. 

When volume fraction is 0 or 1, three models provide the identical prediction.  

When the FGM is subjected to a uniform compression 33 1.0σ = MPa , we can also solve the 

averaged strain distribution as illustrated in Fig. 3. In the loading direction, the strain is negative; 

whereas it is positive in the direction vertical to the loading. From these two figures we can see a 

continuous and differentiable jump in the transition zone. It can be predicted that a larger transition 
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zone made during FGM fabrication is desirable to prevent the significant jump of effective elasticity 

when the elastic contrast ratio is big. 
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Fig. 2: Comparisons of overall averaged 

strains due to a uniform shear loading. 
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Fig. 3: Overall averaged strains in three 

directions due to uniaxial compression. 

Due to a uniformly distributed stress applied on the FGM top and bottom boundaries, from the 

equilibrium condition the averaged stress can be easily obtained as the applied stress. Once we solve 

the averaged strain distribution in the gradation direction, we can further solve the elasticity 

distribution [11].  

Conclusions 

A micromechanical model is developed to solve the averaged elastic field distribution due to 

uniform elastic loading on top and bottom boundaries. A RVE is constructed to simulate the graded 

microstructure and direct pair-wise particle interactions are taken into account. From the averaged 

strain, we can further solve the elasticity distribution.  
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