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Abstract. This paper presents a Galerkin boundary element method for solving crack
problems governed by potential theory in nonhomogeneous media. In the simple boundary
element method, the nonhomogeneous problem is reduced to a homogeneous problem using
variable transformation. Cracks in heat conduction problem in functionally graded materials
are investigated. The thermal conductivity varies parabolically in one or more coordinates. A
three dimensional boundary element implementation using the Galerkin approach is presented.
A numerical example demonstrates the efficiency of the method. The result of the test example
is in agreement with finite element simulation results.

Introduction

The boundary element method (BEM) is an efficient solution method because only boundary
discretization is necessary for numerical implementation [1]. For crack propagating problems,
remeshing the evolving geometry is much simpler with boundary element analysis than with
finite element analysis. Fracture geometries arise in important technological applications in
which the governing relation is based on potential theory. For instance, modeling of subsurface
flow must often contend with either fractures in the rock or soil systems having embedded thin
layers of different permeability.

In this paper, heat transfer problems in FGMs have been chosen for the numerical
implementation, although the techniques can be extended to other types of problems which are
governed by potential theory. Recently, a simple three dimensional (3D) BEM has been proposed
by Sutradhar and Paulino [2] where nonhomogeneous problems are transformed to known
homogeneous problems for a class of variations (quadratic, exponential and trigonometric)
of thermal conductivity. The material property can have a functional variation in either one,
two or three dimensions. They also extended the simple BEM to transient problems [3]. In
the present work, the simple BEM is further extended to crack problems by following the
approach by Paulino and Sutradhar [4]. Only parabolic material variation has been considered
in this paper although exponential and trigonometric material variations can be dealt with in
similar fashion [4]. This paper demonstrates that by simple change in the treatment of the
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boundary conditions of an existing homogeneous Laplace equation code, the solution for cracks
in nonhomogeneous media with a quadratic material variation can be obtained.

The remainder of this paper is organized as follows. The simple boundary element method
is presented in Section 2. Section 3 details the BEM formulation and the fracture algorithm.
The treatment of the boundary conditions is described in Section 4. Section 5 demonstrates, by
means of simple example calculations, that the methodology works and is efficient, and Section
6 contains some closing remarks.

The Simple Boundary Element Method

The governing differential equation for a potential function φ defined on a region Ω bounded
by a surface Σ, with an outward normal n, can be written as

∇ •(k(x, y, z)∇φ) = 0 (1)

where k(x, y, z) is a position dependent material function. Equation (1) is the field equation for
a wide range of problems in physics and engineering such as heat transfer, fluid flow motion, flow
in porous media, electrostatics and magnetostatics. The boundary conditions of the problem
can be of the following types:

φ = φ on Σ1 (Dirichlet type) and q = −k(x, y, z)
∂φ

∂n
= q on Σ2 (Neumann type) (2)

where Σ = Σ1 + Σ2 for a well-posed problem. The boundary value problem is a Neumann
problem if the flux is known on the whole boundary, and the problem is a Dirichlet problem if
the potential is known on the whole boundary. Mixed boundary conditions are also frequently
encountered: flux is prescribed over some portion of the boundary and potential is prescribed
over the complementary portion of the boundary.

By defining the variable

v(x, y, z) =
√

k(x, y, z)φ(x, y, z), (3)

Eq. (1) can be rewritten as
∇2v + k′(x, y, z)v = 0 (4)

where

k′ =
∇k •∇k

4k2
− ∇2k

2k
. (5)

If k′(x, y, z) = 0, then Eq. (4) becomes the standard Laplace equation, i.e. ∇2v = 0. If k varies
only with z, then one obtains

k(z) = k0(c1 + c2z)
2, (6)

where c1 and c2 are arbitrary constants, and k0 is simply a reference value for k. This variation
can be readily extended to more dimensions. For instance, the general expression for material
property variation in three dimensions are given below,

k(x, y, z) = k0(d1 + d2x+ d3y + d4z + d5xy + d6yz + d7zx+ d8xyz)
2. (7)

Here di(i = 1..8) are arbitrary constants. Thus for quadratic variation of the thermal
conductivity, by using the variable tranformation, the nonhomogeneous problem is transformed
into the standard Laplace problem. By appropriate treatment of the boundary condition due
to the variable transformation, a standard code for Laplace equation can be used to solve the
problem. As a result, the BEM implementation becomes very simple and avoids dealing with
hypersingular kernels associated with the FGM Green’s function [5].
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Formulation

Boundary Integral Equations

The numerical methods employed in the current work use Galerkin techniques for the
boundary integral equations (BIE) and the hypersingular boundary integral equations (HBIE).
The Galerkin boundary element method has emerged as a powerful numerical method in
computational mechanics in recent years. In Galerkin formulation standard continuous C0

elements can be used for evaluation of the hypersingular integrals unlike with the collocation
BEM where the smoothness requirement is higher such that Hermite or Overhauser elements
are required. The collocation BIE is defined as

B(P ) ≡ φ(P ) +

∫

Σ

(

∂

∂n
G(P,Q)

)

φ(Q)dQ−
∫

Σ

G(P,Q)
∂φ

∂n
(Q)dQ (8)

and thus for an exact solution B(P ) ≡ 0.
The HBIE for the Laplace equation ∇2φ = 0 is an expression for the surface flux

∂φ/∂n = ∇φ •n, usually written in the form

∂φ

∂N
(P ) +

∫

Σ

φ(Q)
∂2G

∂N∂n
(P,Q) dQ−

∫

Σ

∂G

∂N
(P,Q)

∂φ

∂n
(Q) dQ = 0 . (9)

Here n = n(Q), N = N(P ) denote the unit outward normal on the boundary surface Σ, and
P (source) and Q(field) are points on Σ. The fundamental solution G(P,Q) is usually taken as
the point source potential

G(P,Q) =
1

4πr
, (10)

where R = Q− P and r = ‖R‖ is the distance between P and Q. The hypersingular kernel is
therefore given by

∂2G

∂N∂n
(P,Q) =

1

4π

(

n •N

r3
− 3

(n •R)(N •R)

r5

)

. (11)

The limit to the boundary approach is considered where the limit is taken with the source point
P approaching the boundary from outside the domain, and as a consequence the ‘free term’
∂φ(P )/∂N from Eq. (9) is not present. Thus, Eq. (9) takes the form

F(P ) ≡
∫

Σ

φ(Q)
∂2G

∂N∂n
(P,Q) dQ−

∫

Σ

∂G

∂N
(P,Q)

∂φ

∂n
(Q) dQ = 0 (12)

with the free term automatically incorporated in the exterior limit evaluation of the integral in
this equation.

Following standard practice, the boundary potential and flux are approximated in terms of
values at element nodes Qj and shape functions ψj(Q), i.e.,

φ(Q) =
∑

j

φ(Qj)ψj(Q) and
∂φ

∂n
(Q) =

∑

j

∂φ

∂n
(Qj)ψj(Q). (13)

In a Galerkin approximation, these shape functions are employed as weighting functions for
enforcing the integral equations, and Eq. (9) takes the form

∫

Σ

ψk(P )F(P ) dP = 0 and

∫

Σ

ψk(P )B(P )dP = 0. (14)

As a result the Galerkin technique possesses the important local support property. This
technique is especially suitable to treat corners [6].
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Fracture algorithm

The Dual BEM approach is used for the crack formulation. The displacement discontinuity
approach is not suitable for treating cracks using the simple BEM approach [4]. Consider a
body of arbitrary shape B which contains a crack, as shown in Figure 1. The boundary Γ of

b( )

BIE

Γ

b( )

Γ

Γ

q=0

HBIE

HBIE

BIE

φb( )

q

qb( )

φ=φ

Γ

c

q=q

+=
bΓ

cΓ =
−+

c

+Γ
Γ=Γb+Γc

Γc Γ+

−
cn

−
BcΓ

+
cn φ

Fig. 1: Configuration of the fracture scheme using the dual BEM approach.

the body B is composed of non-crack boundary Γb and the crack surface Γc. The portion of
the boundary Γb with prescribed potential is denoted by Γb(φ), and the portion with prescribed
flux boundary is denoted by Γb(q). The crack surface Γc consists of two coincident surfaces
Γ+
c and Γ−

c , where Γ+
c and Γ−

c represent the upper and lower crack surfaces respectively. In
the dual BEM, the HBIE is used in one crack surface and the BIE is used in the other crack
surface. The outward normals to the crack surfaces, designated by n+

c and n−
c are oriented in

opposite directions and at any point on the crack n−
c = −n+

c . As a consequence, only one side
of the crack surface needs to be discretized. We write, in a 3 × 3 block matrix form, a dual
equation Galerkin approximation for a fracture geometry. Specifically, the first block row will
represent the outer, or non-crack, boundary equations, and the equation for a particular node,
as per the usual Galerkin procedure, is chosen according to the prescribed boundary data. In
accordance with the dual BEM approach, the second and third rows will denote, respectively,
the hypersingular and standard equations written on the crack surface. With these definitions,
the equations take the form





h11 h12 −h12

h21 h22 −h22

h31 h32 −h32









Ω1

Φ2

Φ3



 =





g11 g12 g12
g21 g22 g22
g31 g32 g32









ÝΩ1

Φn
2

Φn
3



 (15)

The vector of unknowns on the non-crack boundary can be a mixture of potential and flux,
and is therefore denoted by Ω1. The corresponding vector of prescribed boundary values is
indicated by ÝΩ1. On the fracture, Φ represents the vector of unknown potential values, Φn the
specified flux, and the subscripts {2, 3} label the two sides of the crack. The matrix H on the
left therefore multiplies the vector of unknowns, and the right hand side consists of known
quantities.
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Treatment of boundary conditions

In order to solve the boundary value problem based on the modified variable v, the boundary
conditions of the original problem have to be incorporated in the modified boundary value
problem. Thus for the modified problem, the Dirichlet and the Neumann boundary conditions
given by Eq. (2), change as follows:

v =
√
k φ on Σ1 and

∂v

∂n
=

1

2k

∂k

∂n
v − q√

k
on Σ2 (16)

Notice that the Dirichlet boundary condition of the original problem is affected by the factor√
k. Moreover, the Neumann boundary condition of the original problem changes to a mixed

boundary condition or Robin boundary condition. This later modification is the only major
change on the boundary value problem.

Numerical example

A test example is presented in order to verify the present formulation. A square crack with zero
surface flux is embedded inside a unit cube (L = 1) with prescribed constant temperature on
two sides. The problem of interest and corresponding BEM mesh is shown in Figure 2(a) and
Figure 2(b), respectively. The top surface of the cube at [z = 1] is maintained at a temperature
of T = 100 units while the temperature in the bottom at [z = 0] is zero. The remaining four
faces are insulated (zero normal flux).

(a) (b)

Fig. 2: (a) Geometry and boundary condition of the problem with a square crack inside a cube.
(b) The BEM mesh consists of 108 quadratic triangular elements on the boundary of the cube,
and 100 quadratic triangular elements on the crack surface

The quadratic variation of the thermal conductivity k(x, y, z) is defined as

k(x, y, z) = k(z) = 5(1 + βz)2, (17)

in which β is the nonhomogeneity parameter. Here the solution of the problem is verified using
the commercially available software ABAQUS [7] using the user-defined subroutine UMATHT
[2]. The FEM mesh consists of 1000 20-noded brick elements (quadratic). The temperature
profiles on the upper and lower crack surfaces along the center of the square crack for different
values of β are plotted and compared with the FEM solution in Figure 3. The results are in good
agreement including the case when the nonhomogeneity parameter is relatively high (β = 10).
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Fig. 3: Temperature profile of the upper and lower crack surface along the center of the crack

Conclusion

This paper presents a simple boundary element method to solve cracks problems governed
by potential theory in nonhomogeneous media. For quadratic material variation, by simple
modification of the boundary conditions, a standard code for Laplace equation for homogeneous
media is used to solve the crack problem. The dual boundary element method has been chosen
for the crack formulation. A numerical example is presented to verify the proposed formulation.
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