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Abstract. The concept of functionally graded materials (FGMs) is closely related to the concept of 

topology optimization, which consists in a design method that seeks a continuum optimum material 

distribution in a design domain. Thus, in this work, topology optimization is applied to design FGM 

structures considering a minimum compliance criterion. The present approach applies the so-called 

“continuous topology optimization” formulation where a continuous change of material properties is 

considered inside the design domain by using the graded finite element concept. A new design is 

obtained where distribution of the graded material itself is considered in the design domain, and the 

material properties change in a certain direction according to a specified variation, leading to a 

structure with asymmetric stiffness properties. 

Introduction 

Functionally Graded Materials (FGMs) materials are materials that possess continuously graded 

properties with gradual change in microstructure [1,2]. The materials are made to take advantage of 

desirable features of its constituent phases. For instance, in a thermal protection system, FGMs take 

advantage of heat and corrosion resistance typical of ceramics, and mechanical strength and 

toughness typical of metals. 

Topology optimization is a powerful structural optimization method that combines a numerical 

solution method, usually the Finite Element Method (FEM), with an optimization algorithm to find 

an optimal material distribution inside a given domain [3]. It is well-known that the optimum 

topology optimization result consists in a structure with intermediate (or composite) material -- thus 

its concept is strongly related to the concept of FGM materials, which essentially considers a 

continuous transition of material properties. 

In traditional topology optimization formulations, the design variable is defined in a piecewise 

fashion in the discretized domain, which means that continuity of the material distribution is not 

realized between finite elements. However, considering the topology optimization results as an 

FGM-type material, a more natural way of representing the material distribution emerges by using 

the concept of the “graded finite elements,” which leads to a continuous representation of material 

properties [4] that are interpolated inside the finite element using the FE shape functions. In fact, 

recent works [5,6] have suggested that this continuum material distribution alleviates the 

checkerboard problem [7], an old problem in topology optimization. By means of the continuum 

model approach, the design of FGM structures can be fully achieved by applying topology 

optimization because a continuous change of material properties is considered inside the design 

domain. 

The design of FGM structures using topology optimization has been considered in previous 

works [8,9], which emphasized thermal and thermomechanical applications, including transient 

analysis, by defining the design variable in a piecewise fashion in the discretized domain. The 
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objective of the present work is to design FGM structures by using the concept of continuum 

topology optimization [6].  

By means of a continuum distribution of the design variable inside the finite element domain, a 

continuously graded material during the design problem is represented. A new structural design is 

obtained by considering the distribution of the FGM itself in the design domain, which leads to a 

structure with asymmetric stiffness properties. As objective function, the traditional formulation for 

a stiffness design problem is considered initially where the objective is to find the material 

distribution that minimizes the mean compliance. Examples are given to illustrate the method. 

Theoretical Formulation 

The objective of topology optimization is to determine holes and connectivities of the structure by 

adding and removing material in the extended domain which is a large fixed domain that must 

contain the whole structure to be determined [10]. A main question in topology optimization is how 

to change the material in a binary form (e.g. from zero to one). The use of a discrete approach would 

present difficulties in the numerical treatment of the problem due to multiple local minimum. Thus, 

a material model must be defined to allow the material to assume intermediate property values by 

defining a function of a continuous parameter (design variable) that determines a mixture of two 

materials throughout the domain. This provides enough relaxation for the design problem. In this 

work, the topology optimization implementation considers material models based on the so-called 

density methods or artificial power law approaches, which will be employed together with a filtering 

technique to control the mesh dependency 

Material Model. The traditional SIMP (Solid Isotropic Material with Penalization) material 

model [3] states that in each point of the domain, the material property is given by 0EE
pH ρ=  

where EH and E0 are the Young modulus of the homogenized material and basic material that will be 

distributed in the domain, respectively, ρ is a pseudo-density describing the amount of material in 

each point of the domain which can assume values between 0 and 1, and p is a penalization factor to 

recover the discrete nature of the design. For ρ equal to 0 the material is equal to void and for ρ 

equal to 1 the material is equal to solid material. 

Now, consider the objective of designing a structure in an FGM domain, that is, a domain where 

the properties change in a certain direction according to a specified law. In this case, the property E0 

considered above is not constant along the domain but it depends on the position x. Thus, the 

previous SIMP model can be recast in the following functional form, 

yxpH eEE βαρ += 0 ,                                                                                                                 (1) 

where α and β are coefficients that define the change of material property in the domain, and x and y 

are the position Cartesian coordinates. This is a common situation when dealing with FGMs, which 

is expected to result in non-symmetric designs. This novel material model is called FGM-SIMP. 

Material functions other than the exponential variation of Eq. (11) can also be considered as 

discussed by Silva et al. [11].  

Considering the discretized domain using graded finite elements [4], the concept of the 

continuum distribution of design variable based on the CAMD (continuous approximation of 

material distribution) method [6,12] is considered. In this method, the pseudo-density inside each 

finite element is given by 
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where ρI is the nodal design variable, NI is the finite element shape function and nd is the number of 

nodes in each element. Then, using Eq. (1), the material property (Young´s modulus) is calculated 

inside each finite element. This formulation allows a continuous distribution of material along the 

design domain, instead of the traditional piecewise material distribution typical of previous topology 

optimization formulations [3]. 

Design Problem Formulation. As objective function, the traditional formulation for stiffness 

design problem is considered where the objective is to find the material distribution that minimizes 

the mean compliance (Cmean) given by [3]. Considering the FEM formulation for the discretized 

domain, a general form of the topology optimization problem for stiffness design can be defined as 

 

Min Cmean=U
t
F    

ρI (for each node)       (3) 
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together with a filtering technique that allows us to control the mesh-dependency of the problem [3, 

13]. 

Sensitivity Calculation. The sensitivity calculation for the mean compliance design problem 

defined above is well-known in the literature. Here, the formulation is extended considering the 

concept of the continuous approximation of material distribution. 

Assuming that the external load is independent of design, the sensitivity of mean compliance 

objective function Cmean in relation to a design variable ρI is given by [10], 
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Considering the continuous material distribution we can write )(x
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can be easily calculated by considering the material model formulation described by 

Eq. (1). Therefore 
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By discretizing the domain into finite elements, the above integral will include all mI elements 

associated with I-th node [6], thus, 
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where e is the element number. 
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Numerical Results 

A flow chart of the optimization algorithm is shown in Fig. 1. The algorithm was implemented 

using C language. Four node bilinear elements considering plane stress formulation are used in the 

finite element formulation. 
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Fig. 1: Flow Chart of Optimization Procedure. 

 

The traditional stiffness design problem is considered, and the optimality criteria method is 

applied to solve the optimization problem because it is very efficient. This method is well-described 

in [3]. The filtering technique applied is also presented in detail in [13].  

The given example is related to the structural design in an FGM domain, that is, a domain where 

the properties change in a certain direction according to a specified variation. This design, called 

graded structural design, is obtained by distributing the FGM itself in the design domain. The idea is 

to obtain a structure with asymmetric stiffness properties. The distribution of the FGM is considered 

according to Eq. (2). The normalized Young`s modulus E0 is equal to 10. The design domain 

considered, with corresponding applied distributed load, is shown in Fig. 2(a). A finite element 

mesh of 50 X 50 elements was considered. A volume material constraint of 30% and a filter with 

radius equal to 1.5 were applied to all the examples. The volume material constraint is the amount 

of material allowed for the final structural topology. It is a percentage of the amount of material in 

the actual design domain (considered full of material). The filter radius essentially defines which 

finite elements in the neighborhood of a finite element will be taken into account for the filter 

calculation for this specific finite element [13]. Figure 2(b) shows the resulting topology using the 

SIMP method and considering no material gradation.  

Figs. 3(a) and 3(b) show the results obtained considering material variation in the x direction for 

both positive and negative values of α (see Eq. (1)). By comparing with the homogeneous result of 

Fig. 2(b) (where no material variation is considered), one notices that for a positive value of α, the 

method enlarges the thickness of the structure close to the supports where the material has a lower 

stiffness. For a negative value of α, the opposite trend is obtained, that is, the method tries to 

increase the material in the front part of the structure where the material has a lower stiffness. In 

both cases, the final topology is changed as a function of the material gradient. This feature 

indicates that the ability to control the material variation in the design process offers a convenient 

tool to change the resulting structural topology.  
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(a)      (b) 

 

 

Fig. 2: (a) Initial domain discretized with a 50 x 50 mesh; (b) Topology for comparison obtained 

considering SIMP model for homogeneous material (α=β=0) with 30% volume constraint and 

filtering (radius equal to 1.5). 

 

 

    

       (a)          (b) 

Fig. 3: (a) Topology obtained using the FGM-SIMP material model in the x direction with α 

α=0.06, and filter (radius equal to 1.5); (b) same, with α =-0.06. 
 

Conclusions 

This work shows that continuum topology optimization can be successfully applied to design FGM 

structures. The material distribution is based on graded finite elements [4] that allow change of 

material properties inside the design domain in a continuous manner (which is close related to the 

FGM concept). A new design is obtained where the distribution the FGM material itself is 

considered in the design domain leading to a structure with asymmetric stiffness properties. Thus, 

novel types of structures can be obtained by exploring the FGM idea. The length-scale of material 

gradation (e.g. 1/α) competes with the geometric length-scale of the design problem and leads to 

novel structural topologies. As a future work, the design of composite unit cells made of FGMs will 

be considered using the continuum topology optimization concept. 
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