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Abstract. This paper presents a Cohesive Zone Model (CZM) approach for investigating dy-
namic failure processes in homogeneous and Functionally Graded Materials (FGMs). The failure
criterion is incorporated in the CZM using both a finite cohesive strength and work to fracture
in the material description. A novel CZM for FGMs is explored and incorporated into a finite
element framework. The material gradation is approximated at the element level using a graded
element formulation. A numerical example is provided to demonstrate the efficacy of the CZM
approach, in which the influence of the material gradation on the crack branching pattern is
studied.

Introduction

Compared to the classical linear elastic fracture mechanics (LEFM) and some other existing
fracture models, Cohesive Zone Models (CZMs) provide advantages of allowing spontaneous
crack nucleation, crack branching and fragmentation, as well as crack propagation without an
external fracture criterion [1, 2].

CZMs incorporate a cohesive strength and finite work to fracture in the description of
material behavior, and allow simulation of near-tip behavior and crack propagation. The concept
of “cohesive failureÔ is illustrated in Figure 1, in which a cohesive zone, along the plane of
potential crack propagation, is present in front of the crack tip. Within the extent of the
cohesive zone, the material points which were identical when the material was intact, separate
to a distance ∆ due to influence of high stress state at the crack tip vicinity. The cohesive zone
surface sustains a distribution of tractions T which are function of the displacement jump across
the surface ∆, and the relationship between the traction T and separation ∆ is defined as the
constitutive law for the cohesive zone surface. For intrinsic CZM as employed in this study, the
traction T first increases with increasing interfacial separation ∆, reaches a maximum value
δ, then decreases and finally vanishes at a characteristic separation value δc, where complete
decohesion is assumed to occur.

The CZM approach has the promise of simulating fracture process where cracking occurs
spontaneously. The fracture path and speed become natural outcome of the simulation rather
than being specified ad hoc or a priori. In this paper, a novel cohesive zone model developed
for FGMs [3] is adopted to simulate dynamic crack growth in FGMs.
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Fig. 1: Schematic representation of cohesive zone model concept; (a) A plate containing crack;
At potential crack propagation path e.g., as circled in (b), cohesive element is inserted, as shown
in (c), which follows the specified cohesive zone model shown in (d) for normal traction; (e)
cohesive zone in Mode I case.

Numerical Scheme

This section briefly outlines the essential components of the numerical scheme, namely, the FEM
framework incorporating CZM, the dynamic updating scheme and the material gradation.

To incorporate a CZM into the numerical scheme for dynamic fracture, the cohesive ele-
ment is developed and positioned along the potential path or region of crack propagation, and
attached to the volumetric elements, which follows a cohesive traction-separation relationship
as shown in Figure 1. In contrast, the conventional finite element, which is now called “bulk
elementÔ, follows conventional stress-strain relationships (continuum description). The consti-
tutive law of cohesive elements is inherently embedded in the finite element model, so that the
presence of cohesive elements allows spontaneous crack propagation.

The FEM formulation incorporating cohesive elements is derived from the principle of virtual
work, and discretized using the explicit central difference time stepping scheme to update
displacements u, accelerations ü and velocities Úu as follows:

un+1 = un +∆t Úun +
1

2
∆tün (1)

ün+1 = M−1(F+Rint(n+1)) −Rcoh(n+1)
) (2)

Úun+1 = Úun +
∆t

2
(ün + ün+1) (3)

where ∆t denotes the time step, M is the lumped mass matrix, F is the external force vector,
Rint and Rcoh are the global internal and cohesive force vectors, which are obtained from
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the contribution of bulk and cohesive elements, respectively. Large deformation formulation is
employed [3].

To treat the material nonhomogeneity inherent in the problem, graded elements, which
incorporate the material property gradient at the element level, are introduced. In this inves-
tigation, the scheme proposed by Kim and Paulino [4] is adopted. The same shape functions
are used to interpolate the unknown displacements, the geometry, and the material parameters,
and thus the interpolations for material properties (E, ν, ρ) are given by E =

∑m
i=1 NiEi, ν =

∑m
i=1 Niνi, ρ =

∑m
i=1 Niρi, where Ni are the standard shape functions.

Cohesive Zone Model for FGMs

We propose a new FGM cohesive zone model [3], which is a combination of the models by
Xu and Needleman [1] and Jin et al. [5]. It avoids effective quantities and thus uses the ac-
tual quantities to describe the relationship between normal traction-separation and tangential
traction-separation.

Assume that the energy potential of each individual material phase takes the exponential
form [1]:

φi(∆) = φni + φni exp

(

−∆n

δni

){[

1− ri +
∆n

δni

]

(1− qi)

(ri − 1)
−
[

qi +
(ri − qi)

(ri − 1)

∆n

δni

]

exp(−∆2
t

δ2ti
)

}

(4)
in which superscripts i (i = 1, 2) denote the two individual material phases (e.g., metal and ce-
ramic respectively), and parameters ∆ = [∆n,∆t] denote the displacement jump across the
cohesive surface in normal and tangential directions. Other parameters in the expressions
that respectively refer to material phase i are explained hereby without subscript notation:
parameters φn and φt are the energies required for pure normal and tangential separation,
respectively; δn and δt are the critical opening displacement for normal and tangential sepa-
ration, which are related to the cohesive normal strength Tmax

n and tangential strength Tmax
t

as φn = eTmax
n δn, φt =

√

e/2Tmax
t δt, q = φt/φn, and r is defined as the value of ∆n/δn after

complete shear separation with Tn = 0.
The cohesive traction force vectors associated with material phases 1 and 2 in the 2-D case

comprise traction in normal and tangential directions as T1 = [Tn1, Tt1] ,T2 = [Tn2, Tt2] , and
can be derived directly from the energy potentials as T1 = −∂φ1/∂∆,T2 = −∂φ2/∂∆. The
resulting normal and shear traction components are illustrated in Figure 2 (a).

Let TFGM =
[

TFGM
n , TFGM

t

]

denote the traction force vector across the cohesive surfaces
of a two-phase FGM, which comprises normal and tangential traction force components. The
cohesive traction TFGM is approximated by the following volume fraction based formula

TFGM(x) =
V1(x)

V1(x) + β1[1− V1(x)]
T1 +

1− V1(x)

1− V1(x) + β2V1(x)
T2 (5)

where the parameter V1(x) denotes volume fraction of the material phase 1, while β1 and β2

are two cohesive gradation parameters that describe the transition of failure mechanisms from
pure material phase 1 to pure material phase 2, and should be calibrated with experimental
data. Figure 2 (b) compares the normal traction-separation laws for two material constituents.

Numerical Example

In this section, a test example is provided to illustrate the application of the cohesive model
introduced above to both homogeneous and FGM systems through investigation of dynamic
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Fig. 2: (a) Exponential cohesive zone model [1] in pure tension and pure shear; (b) cohesive zone
model in pure tension case, for two material phases with strength ratio Tmax

n2 /Tmax
n1 = 0.35, and

critical displacement ratio δn2/δn1 = 0.15, where δni denotes normal separation at peak normal
traction for material i.

crack branching phenomenon for a plane strain plate containing an initial central crack subjected
to tensile velocity loading.
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Fig. 3: Branching problem; (a) geometry and boundary conditions of a plate containing a central
crack subjected to velocity loading; (b) Mesh descretization of the dynamic branching problem
with half of the original geometry modelled due to symmetry along the y axis.

Problem Description. The computation is carried out for a center cracked rectangular
plate as shown in Figure 3 (a). Symmetric velocity loading v0 = 5m/s is applied along the upper
and lower surfaces. To explore the influence of material gradation on crack branching patterns,
three material gradation profiles are studied, as listed in Table 1: case 1: both the bulk and
cohesive properties are considered for homogeneous materials; case 2: hypothetical “FGMÔ,
with homogeneous bulk material and linearly graded cohesive properties along y direction.
case 3: FGM with both the bulk and cohesive properties linearly graded in y direction.

Due to symmetry of the geometry, material gradation and loading condition with respect to
y axis, only the right half of the geometry is modelled for the numerical simulation, along with
proper boundary condition to account for the symmetry at x = 0. The domain is discretized
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with 40 by 40 quads each divided into 4 T3 elements, as depicted in Figure 3 (b). Cohesive
elements are inserted inside a rectangular region right to the initial crack, as shown with the
thicker lines. The other material parameters for the CZM are: q = 1, r = 0, and β1 = β2 = 1.

Table 1: Three material gradation profiles for plate containing central crack.

y position E ν ρ GIc Tmax δc
(GPa) (kg/m3) (N/m) (MPa) (µm)

case 1: homog. −1/2W to 1/2W 3.24 0.35 1190 352.3 324 0.4
case 2: graded 1/2W 3.24 0.35 1190 528.4 486 0.4

Tmax −1/2W 3.24 0.35 1190 176.1 162 0.4
case 3: graded 1/2W 4.86 0.35 1190 528.4 486 0.4
E & Tmax −1/2W 1.62 0.35 1190 176.1 162 0.4

Results for Various Material Gradation Profiles. Case 1: homogeneous PMMA ma-
terial. Symmetric branch pattern is obtained (Figure 4 (a)). The crack begins to branch at
abranch = 1.05mm, and further branches occur when the cracks approach the edge. Although
crack branching can only take place either parallel to the coordinate axes or at ±45◦, the overall
branching angle is less than 45◦ from the x axis. In the example, the overall branching angle is
about 29◦, calculated by approximating the main branch as a straight line.

Case 2: Variation of cohesive strength. In this example, the cohesive strength Tmax is lower
at the bottom surface and higher at the top surface, which means weaker fracture resistance at
the lower region. Therefore, the crack branching is expected to be more significant at the lower
part of the plate, as shown in Figure 4(b). The initial crack branching location is roughly the
same as the homogeneous case (Figure 4(c)), yet it disappears in the final figure (Figure 4(b)).
As the lower region of the plate is weaker in resisting fracture, the crack branch towards the
lower region dominates, and shields the upward one from developing further.

Case 3: Graded bulk and cohesive properties. In this example, both bulk and cohesive prop-
erties vary linearly in y direction. On one hand, the weaker cohesive resistance favors the crack
branching into the y < 0 region. On the other hand, stress developed in the stiffer region (y > 0)
is higher than that at the compliant region, which may promote the crack branching into the
y > 0 region. These two mechanisms compete with each other in influencing crack branching
pattern. The final crack pattern is plotted in Figure 4 (d).

Conclusions

This paper presents a numerical scheme incorporating CZM to investigate dynamic fracture
behavior of homogeneous and FGMs under dynamic loading. Two basic types of elements
are employed in the present investigation: graded elements in the bulk material, and graded
intrinsic cohesive elements to model fracture. Xu and Needleman [1] model was extended to
treat FGMs, which eliminates the dependence upon effective quantities, and may provide certain
advantages when mixed-mode effect is prominent. As illustrated in the study, the cohesive
element approach is promising for modeling generalized fracture without predefined external
fracture criteria. Further numerical issues, including the artificial compliance introduced in the
system by incorporating cohesive elements, are studied and related results are reported in recent
publication by the authors [3].
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(a) homogeneous, t = 10.6µs (b) graded Tmax, t = 10µs

(c) graded Tmax, t = 8.25µs (d) graded E and Tmax, t = 10µs

Fig. 4: Crack branch pattern for various material gradation profiles; loading velocity at v0 =
5m/s; (a) final crack pattern at t = 10.6µs for homogeneous plate (case 1); (b) final crack
pattern at t = 10µs for graded plate (case 2); (c) attempted crack branching at t = 8.25µs for
graded plate (case 2); (d) final crack pattern at t = 10µs for graded plate (case 3).
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