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Abstract. A general methodology is constructed for the fundamental solution of a crack in the 

homogeneous half-plane interacting with a crack at the interface between the homogeneous elastic 

half-plane and the nonhomogeneous elastic coating in which the shear modulus varies exponentially 

with one coordinate. The problem is solved under plane strain or generalized plane stress condition 

using the Fourier integral transform method. The stress field in the homogeneous half plane is 

evaluated by the superposition of two states of stresses, one is associated with a local coordinate 

system in the infinite fractured plate, while the other in the infinite half plane defined in a structural 

coordinate system.  

 

Introduction 
 

Turbine systems and aerospace applications require the use of structural ceramics to protect the hot 

sections. The thermomechanical mismatch between metal and ceramics induces high residual 

stresses responsible for cracking and spallation. Functionally graded materials (FGM) are 

composites with predetermined, continuously varying mechanical properties that reduce the residual 

stresses in composites [1-3]. FGM can be described as two-phase particulate composites where the 

volume fractions of its constituents differ continuously in the thickness direction. A number of 

authors have investigated  cracks in nonhomogeneous materials  via the singular integral equation 

method [4-12]. 

A very interesting problem in layered structures such as ceramic-coated metal substrates,  is the 

interface crack problems [5-10]. In this work we consider the problem of a crack in the 

homogeneous half-plane interacting with a crack at the interface between the non-homogeneous 

coating and the homogeneous half-plane. A very important problem, that has not yet been 

addressed, is that thermal bariers always include some thickness of pure ceramic material [3].  

In the plane elasticity problem shown in Fig. 1, it is assumed that the cracked half-plane is 

homogeneous with elastic constants µ1 , κ1 , the coating is nonhomogeneous with elastic parameters 

( )µ2 y , ( )κ 2 y , and µ2  is approximated by 

 

 ( ) 212 0, hyey y <<= βµµ                                (1) 

 

where µi  is the shear modulus, κ νi i= −3 4  for plane strain and ( ) ( )κ ν νi i i= − +3 1  for generalized 

plane stress, νi  being the Poisson’s ratio ( )i =1 2,  and β  is a real constant that represents the 

coefficient of nonhomogeneity. In previous studies [6-8], it was shown that the influence of the 
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variation in Poisson’s ratio on stress intensity factors is rather insignificant and, therefore, κ  may 

be assumed to be constant through-out the medium.  

First, the stress and displacement fields are computed for the FGM. In the second step, the crack 

in the homogeneous half-plane is considered considering the superposition of the solution of the 

infinite half-plane with the crack with the solution of the infinite plane without the crack. 

Introducing the boundary conditions all the unknown are expressed in terms of the slopes of the 

crack displacement discontinuities along the cracks at the infinite half-plane and at the interface. 

Finally from the perturbation problem a system of four integral equations are derived. In this way 

we succeeded in expressing all the unknown coefficients in terms of the slopes of the crack 

displacement coefficients and in reducing the solution of the whole problem to the solution of a 

system of four singular integral equations.  

 

The problem of the Nonhomogeneous Coating 
 

By using standard Fourier transforms for the nonhomogeneous layer 2 (Fig. 1), we have 
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where ( ) ( )ξξ 41 AA ,...,  are unkbown functions, λ λ1 4,...,  are the roots of the characteristic equation, 

given by  [8,12] 
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Fig. 1: A crack in the homogeneous half-plane interacting with a crack at the interface. 
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Using the strain-displacement relations and the constitutive equations [8,13], the stress field is given 

finally by 
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where 
 

 ( ) ( ) ( ) ( ) 432131 ,,,;, =−=−−+= niDHDiG nnnnnn ξλξκξκλξ                                      (6) 
 

From our analysis, we have 4 unknowns ( )ξ1A , ( )ξ2A , ( )ξ3A   and ( )ξ4A . 

A Crack in the Homogeneous Half-Plane 

The stress and the displacement fields in the cracked homogeneous half-plane, considering the 

superposition principle, are given by 
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 ( ) ( )( ) ( )( ) yxjiyxyxyx ijijij ,,;,,, 2

1
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11 =+= σσσ  

 

where the superscript (1) refers to the field components  in an infinite plane with a crack and the 

superscript (2) to those in the half-plane without the crack. 

Taking into consideration the Fourier transform for the displacements ( )( )yxu ,2

1  and ( )( )yx,2

1υ  

along the x -coordinate, and the regularity condition, ( ) ( ) ,02

1

2

1 ==
−∞→−∞→

υ
yy
imuim ll  it is finally obtained 
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where 
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Using the strain-displacement relations, and the constitutive equations, [8,12], we obtain the stresses 

for the region, y <0  
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From our analysis 2 unknowns, ( )Q1 ξ  and ( )Q2 ξ , are yielded 

The displacement field in the cracked infinite plane, according to Fourier transform, is given by 
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taking into account that ( ) ( ) 01
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Using the strain-displacement relations [8,12], it is obtained for the region 01 <y  
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We introduce the slopes of the crack displacement discontinuity along the crack ( )21 bb , , 
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with the following properties 
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From the application of the inverse Fourier transform, it is finally obtained 
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with 
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Boundary Conditions along the Coating and along the Interface between the Coating and the 

Homogeneous Half-Plane 
 

From the boundary condition along 2hy =  (Fig. 1), 

 

( ) ,, 022 =hxyyσ    ( ) ∞<<∞−= xhxxy ;, 022σ                                                                  (19) 

 

and the relations (5), we have 
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and from the boundary conditions along 0=y , 

 

( ) ( ) ( ) ( ) ∞<<∞−== −+−+
xxxxx xyxyyyyy ;,,,,, 0000 1212 σσσσ                                         (21) 

 

1A  and 2A  are expressed in terms of 1Q , 2Q , 3f  and 2f  . We introduce 
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which are the slopes of the crack displacement discontinuities along the interface crack ( )aa,− , 

with the following properties 
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Application of the inverse Fourier transform to equations (22), and taking into considerations 

relations (2), (7), (8), (11) and (12), we get 
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where ( )ξnD  are given by (4), ( )ξnA  by (20) and (21) and 32U , 32V  by (12). 

From the solution of (24), we have ( )ξ1Q  and ( )ξ2Q  in terms of unknowns distribution of  

dislocations 1f , 2f , 3f  and 4f . 

Conclusions 

From our analysis, all the unknown coefficients are expressed in terms of the slopes of the crack 

displacement discontinuities, along the crack at the homogeneous half-plane and along the crack at 

the interface between the coating and the homogeneous half-plane. 

The proposed procedure needs neither the inverse of a coefficients matrix [8,9] which may be 

create big numerical problems nor the stiffness matrix procedure [10]. 

Taking into consideration the four boundary conditions come from the perturbation problem, 

namely 
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where 1p , 2p , 3p  and 4p  are the traction forces on the crack surfaces, ij2σ  ( )yxji ,, =  are given 

by (5) and ij1σ  ( )11 yxji ,, =  by (7) after an appropriate coordinate transformation, a system of four 

integral equation that solve the general problem is derived. 
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