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Abstract. This paper presents numerical simulation of mixed-mode crack propagation in 

functionally graded materials by means of a remeshing algorithm in conjunction with the finite 

element method. Each step of crack growth simulation consists of the calculation of the mixed-

mode stress intensity factors by means of a non-equilibrium formulation of the interaction integral 

method, determination of the crack growth direction based on a specific fracture criterion, and local 

automatic remeshing along the crack path. A specific fracture criterion is tailored for FGMs based 

on the assumption of local homogenization of asymptotic crack-tip fields in FGMs. The present 

approach uses a user-defined crack increment at the beginning of the simulation. Crack trajectories 

obtained by the present numerical simulation are compared with available experimental results. 

Introduction 

Functionally graded materials (FGMs) are multifunctional composites involving spatially varying 

volume fractions of constituent materials, thus providing a graded microstructure and 

macroproperties [1,2,3]. These materials have been introduced to take advantage of ideal behavior 

of material constituents. For instance, partially stabilized zirconia (PSZ) shows high resistance to 

heat and corrosion, and CrNi alloy has high mechanical strength and toughness (see Fig. 1) [4]. 

FGMs have been used in many engineering applications [1,2,3] including graded cathodes in solid 

oxide fuel cells (SOFCs) [5]. Due to multifunctional capabilities, FGMs have been investigated for 

various damage and failure mechanisms under mechanical or thermal loads, and static, dynamic or 

fatigue loads, etc [2,3].  

 
Fig. 1: Micrograph illustrating graded transition region between CrNi alloy and partially stabilized 

zirconia (PSZ) [4]. 

Crack Growth Simulation 

Crack growth simulation is performed by means of the I-FRANC2D (Illinois-FRANC2D) code [6], 

which is based on FRANC2D (FRacture Analysis Code 2D) [7]. The I-FRANC2D is capable of 

evaluating mixed-mode stress intensity factors (SIFs) for FGMs which are used to determine crack 

initiation angles (θ0). Finite element-based crack growth simulation involves a series of steps. Fig. 2 

illustrates crack propagation procedure at each step [6,7]. 
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Fig. 2: Automatic crack propagation procedure used in the I-FRANC2D code. 

 

At each crack propagation cycle, crack initiation condition must be assessed for determining 

whether the crack will grow or not. Fig. 3 shows a fracture locus involving mode I and II SIFs and 

fracture toughness KIc. If the crack driving force is big enough for the crack-tip fields to reach the 

fracture envelope, then the crack does grow. 
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Fig. 3: Fracture locus involving mode I and II SIFs and fracture toughness. 

The Interaction Integral Method 

The interaction integral (M-integral) method is an accurate scheme to evaluate SIFs in FGMs [8,9]. 

Here we adopt a non-equilibrium formulation [6,10], which uses displacement and strain fields 

developed for homogeneous materials, and employ the non-equilibrium stress fields ( ) aux aux= C xσ εσ εσ εσ ε , 

where ( )C x  is the FGM stiffness tensor, auxσσσσ  is the auxiliary stress, and auxεεεε  is the auxiliary strain. 

The interaction integral is derived from the path-independent J-integral [11] for two admissible 

states (actual and auxiliary) of a cracked elastic FGM body. The so-called M-integral, based on the 

non-equilibrium formulation, is obtained as [6,10] 

 

,1 ,1 1 , , ,1 ,1( )  ( )  = + − + −∫ ∫
aux aux aux aux aux

ij i ij i ik ik j j ij j i ijkl kl ij
A A

M u u q dA u C q dAσ σ σ ε δ σ ε ε ,                                             (1) 

where 
i

u , 
ij

ε  and 
ij

σ are the actual displacement, strain and stress fields, respectively; q is a weight 

function which varies from 1 on the inner contour to 0 on the outer contour; and the underlined term 

is a non-equilibrium term, which appears due to non-equilibrium of the auxiliary stress fields. The 

relationship between M-integral and SIFs (KI,KII) is given by  

 

  *2( ) /aux aux

I I II II tipM K K K K E= + ,                                                                                                            (2) 

 

where * =tip tipE E for plane stress and * 2/(1 )= −tip tipE E ν  for plane strain. The mode I and mode II SIFs are 

evaluated as follows: 
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The above SIF relationships of Eq. 3 are the same as those for homogeneous materials [12] except 

that, for FGMs, the material properties are evaluated at the crack-tip location [13]. 

A Fracture Criterion for FGMs 

The singularity and angular functions of asymptotic crack-tip fields for FGMs are the same as for 

homogeneous materials [13]. Thus local homogenization arguments may allow the use of fracture 

criteria originally developed for homogeneous materials. Here we adopt the maximum energy 

release rate criterion proposed by Hussain et al. [14]. The energy release rate is given by [14]     

   
2 /

2 2 2 2

* 2

4 1 1 /
( ) (1 3cos ) 8sin cos (9 5cos ) .

3 cos 1 /

−     = + + + −     + +   
I I II II

tip

G K K K K
E

θ π
π θ

θ θ θ θ θ
θ π θ

                                       (4) 

 

Then the crack initiation angle 
0θ is obtained from [14] 

 
2 2

0( ) / 0,   ( ) / 0    ∂ ∂ = ∂ ∂ < ⇒ =G Gθ θ θ θ θ θ .                                                                                            (5) 

 

The crack initiation condition is given by 

 

0( ) ( )cG Gθ = x ,                                                                                                                                     (6) 

 

where ( )cG x is the critical energy release rate function. Ideally, the function ( )cG x  should be obtained 

from experiments. 

Crack Growth in an Epoxy/Glass FGM Beam 

Rousseau and Tippur [15] investigated crack growth behavior of a crack normal to the material 

gradient in an epoxy/glass (50 vol%) FGM beam subjected to four-point bending. Fig. 4 shows 

specimen geometry and boundary conditions (BCs) of the FGM beam with a crack located at 

ξ=0.37. Table 1 shows the numerical values of material properties at interior points in the graded 

region. Material properties in the intermediate regions vary linearly.  
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Fig. 4: Geometry and BCs of the epoxy/glass FGM beam 

Materials Science Forum Vols. 492-493 411

http://www.scientific.net/feedback/30886
http://www.scientific.net/feedback/30886


Table 1: Material properties (Young's modulus (E), Poisson's ratio (ν) and fracture toughness (KIc)) 

at interior points in the graded region (defined by the parameter ξ). 

 

ξ E(MPa) ν KIc (MPam
1/2

) 

0.00 

0.17 

0.33 

0.58 

0.83 

1.00 

3000 

3300 

5300 

7300 

8300 

8600 

0.35 

0.34 

0.33 

0.31 

0.30 

0.29 

1.2 

2.1 

2.7 

2.7 

2.6 

2.6 

 

The following data are used for the FEM analyses: plane stress, a/W=0.25, t=6, P=Pcr(a+n∆a, 

X), where n refers to the number of crack propagation increments, ∆a denotes a crack increment, 

and X=(X1,X2) denotes crack locations. Fig. 5(a) compares experimental results for crack trajectory 

with those of numerical simulation (∆a=1mm). There is good agreement between two results. 

Moreover, experimental and numerical results for the crack initiation angle at the initial step are in 

good agreement, i.e. θexp=7
o
 and θnum=6.98

o
, respectively. Figs. 5(b) and 5(c) show finite element 

discretizations at the initial and final steps, respectively, of crack propagation considering ∆a=1mm.  

 

                  
                                (a)                                      (b)                                        (c) 

Fig. 5: Experimental and numerical results: (a) Comparison of crack trajectory in the region 

0 W 16.5mm≤ ≤ ; finite element discretizations at the (b) initial (step 0) and (c) final step (step 16) of 

crack propagation. 

 

Here we calculated the critical load at each step based on the maximum energy release rate and 

applied the calculated critical load to the corresponding step of crack propagation. Table 2 shows 

numerical results at the initial step for the critical load Pcr, SIFs (KI,KII), phase angle ψ=tan
-

1
(KII/KI), and the crack initiation angle θo. Because KII <0, the crack initiation angle θo is counter-

clockwise with respect to the crack line (see Fig. 5(a)).  

Table 2: Numerical results for the critical load Pcr, Mode I and II SIFs, phase angle ψ=tan
-1

(KII/KI), 

and the crack initiation angle θo at the initial step. 

 

 

 

Conclusions 

This paper presents automatic simulation of crack propagation in FGMs by means of a remeshing 

scheme in conjunction with the finite element method. Based on local homogenization, we use the 

maximum energy release rate criterion. Crack trajectories obtained by this fracture criterion agree 

well with available experimental results for FGMs. The computational scheme developed here 

serves as a guideline for fracture experiments on FGM specimens (e.g. initiation toughness and R-

curve behavior).  

Pcr (N) KI  (MPam
1/2

) KII  (MPam
1/2

) ψ  θo 
253.5 2.122 -0.129 -3.484 6.98

o
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