
  

On Accurate Numerical Evaluation of Stress Intensity Factors and 
T-Stress in Functionally Graded Materials 

Jeong-Ho Kim1,a and Glaucio H. Paulino2,b 

1Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269, 
USA 

2Department of Civil and Environmental Engineering University of Illinois, Urbana, IL 61801, USA 
ajhkim@engr.uconn.edu, bpaulino@uiuc.edu 

Keywords: Functionally graded materials. Stress intensity factor. T-stress. Finite element method. 
Interaction integral method. Generalized isoparametric formulation. 

Abstract. This paper revisits the interaction integral method to evaluate both the mixed-mode stress 
intensity factors and the T-stress in functionally graded materials under mechanical loading. A non-
equilibrium formulation is developed in an equivalent domain integral form, which is naturally 
suitable to the finite element method. Graded material properties are integrated into the element 
stiffness matrix using the generalized isoparametric formulation. The type of material gradation 
considered includes continuum functions, such as an exponential function, but the present 
formulation can be readily extended to micromechanical models. This paper presents a fracture 
problem with an inclined center crack in a plate and assesses the accuracy of the present method 
compared with available semi-analytical solutions.  

Introduction 
Mixed-mode fracture of functionally graded materials (FGMs) has been investigated by evaluating 
mixed-mode stress intensity factors (SIFs) [1-3] and the T-stress [4]. Recently, the interaction 
integral method has been used to evaluate the mixed-mode SIFs [5-9] and the T-stress [9-10] in 
FGMs. This paper addresses the non-equilibrium formulation to evaluate mixed-mode SIFs and T-
stress in FGMs with special emphasis on the accuracy of the method.  

Auxiliary fields 
The interaction integral method uses auxiliary (secondary) fields, such as stresses, strains and 
displacements [11]. Here we use a non-equilibrium formulation which uses displacement and strain 
fields developed for homogeneous materials, and employ the non-equilibrium stress fields 

( ) aux aux= C xσ ε , where ( )C x  is the FGM stiffness tensor, auxσ  is the auxiliary stress, and auxε  is the 
auxiliary strain [9,10]. For the mixed-mode SIFs, we select the auxiliary displacement and strain 
fields as the Williams’s [12] crack-tip asymptotic fields with the crack-tip material properties (see 
Fig. 1(a)). For the T-stress, we choose fields such as those [13] due to a point force in the x1 
direction, applied to the tip of a semi-infinite crack in an infinite homogeneous body as shown in 
Fig. 1(b). 

 
  

Fig. 1: Auxiliary fields: (a) Williams’s 
solution [12] for the SIF; (b) Michell’s       

solution [13] for the T-stress. 
 
 
 
 

 
                (a)                                              (b) 
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The Interaction Integral Method 
The interaction integral (M-integral) is derived from the path-independent J-integral [14] for two 
admissible states of a cracked elastic FGM. The standard J-integral is given by [14] 

1 ,10
lim ( )  ,

ss
j ij i jJ W u n d

ΓΓ →
= − Γ∫ δ σ                                                                                                                     

(1)  
where W is the strain energy density, σij  denotes the stress, ui  denotes the displacements, and nj is 
the outward normal vector to the contour Γ, as shown in Fig. 2. 
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Fig. 2: Conversion of the contour integral into an equivalent domain integral (EDI). 

Using the divergence theorem and the weight function q (varying from unity on Γs  to zero on Γ0), 
one obtains the following EDI [15] 

,1 1 , ,1 1 ,( )  ( )  ij i j j ij i j jA A
J u W q dA u W q dA= − + −∫ ∫σ δ σ δ                                                                                         

(2) 
The J-integral of the superimposed fields (actual and auxiliary) is conveniently decomposed into  

,s auxJ J J M= + +                                                                                                                                      
(3) 
where the resulting form of the M-integral considering the non-equilibrium formulation is given by 

,1 ,1 1 , , ,1 ,1( )  ( )  = + − + −∫ ∫aux aux aux aux aux
ij i ij i ik ik j j ij j i ijkl kl ijA A

M u u q dA u C q dAσ σ σ ε δ σ ε ε                                                         

(4) 
and the underlined term is a non-equilibrium term that appears due to non-equilibrium of auxiliary 
stress fields, which must be considered to obtain converged solutions. The existence of the resulting 
M-integral in Eq. 4 as the limit 0r →  has been proved in the references [9,10]. For numerical 
computation by means of the FEM, the M-integral is evaluated first in the global coordinates 
(Mglobal) and then transformed to the local coordinates (Mlocal=M).  

Evaluation of the SIFs 
From the relationship between the superimposed J-integral and the mode I and mode II SIFs, one 
obtains the following relationship between the M-integral and the SIFs: 
    *2( ) / .aux aux

I I II II tipM K K K K E= +                                                                                                                   
(5) 
The local mode I and mode II SIFs are evaluated as follows: 
    

(1) *
 

(2) *

/ 2,  ( 1.0, 0.0),  

/ 2,  ( 0.0, 1.0).

aux aux
I tip I II

aux aux
II tip I II

K M E K K

K M E K K

= = =

= = =
                                                                                                   

(6)                            
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The relationships of Eq. 6 are essentially the same as those for homogeneous materials [11] except 
that, for FGMs, the material properties are evaluated at the crack-tip location [1,2]. 

Evaluation of the T-stress 
The T-stress (non-singular stress) can be extracted from the interaction integral taking the limit 

0r →  of the domain A shown in Fig. 2. By doing so, one obtains [9,10] 
    ( ){ }1 ,1 ,10

lim  .
ss

aux aux aux
ik ik j ij i ij i jM u u n d

ΓΓ →
= − + Γ∫ σ ε δ σ σ                                                                                          

(7) 
Substituting the actual stress fields into Eq. 7 and using  
    

0
lim  ,

ss

aux
ij jF n d

ΓΓ →
= Γ∫ σ                                                                                                                               

(8) 
one obtains * /tipT E M F=  [9,10].  

Inclined Center Crack in a Plate 

Fig. 3(a) shows an inclined center crack of length 2a located with geometric angle θ in an FGM 
plate under fixed-grip loading, Fig. 3(b) shows the complete mesh configuration, and Fig. 3(c) 
shows a mesh detail using 12 sectors (S12) and 4 rings (R4) of elements around crack tips. The 
mesh discretization consists of 1641 Q8 (eight-node quadrilateral), 94 T6 (regular six-node 
triangles), and 24 T6qp (singular quarter-point six-node triangles) elements, with a total of 1759 
elements and 5336 nodes.  
 

                    
                        (a)                                                      (b)                                                (c) 

Fig. 3: Plate with an inclined crack: (a) geometry and boundary conditions (BCs); (b) complete 
finite element mesh; (c) mesh detail using 12 sectors and 4 rings around the crack tips (θ= 30

o
). 

 
The applied load corresponds to ( ) 1

22 1,10 XX E e= βσ ε . The following data were used for the FEM 

analysis: a/W=0.1; L/W=1.0; θ=0
o
to 90

o
; plane stress; ( ) 1

1
XE X Ee= β ; 1.0E = ; βa=(0.0,0.5); ν=0.3. 

Table 1 compares FEM results for normalized SIFs obtained by the interaction integral with those 
obtained by Konda and Erdogan [16]. Notice that the two sets of results are in good agreement 
(maximum difference 2.1%, average difference 0.7%). Table 2 compares FEM results for T-stress 
with those obtained by Paulino and Dong [17]. Notice that the results are also in good agreement 
(maximum difference 1.8%, average difference 1.0% for the homogeneous case with βa =0.0; 
maximum difference 2.4%, average difference 1.2% for the FGM case with βa=0.5). For a 
homogeneous material, the FEM results for the T-stress for the right crack-tip are the same as those 
for the left crack-tip. As the dimensionless material nonhomogeneity parameter βa increases, the T-
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stress for the right crack-tip T(+a) increases within the range of 0
o
≤ θ< 90

o
, however, the T-stress 

for the left crack-tip T(-a) increases in the range of 0
o
≤ θ< 45

o
 and then decreases in the range of 

45
o
< θ < 90

o
. 

 
Table 1: Comparison of normalized SIFs obtained by the interaction integral with those obtained by 

Konda and Erdogan [16] ( 0K E a= ε π ). 
Method θ (deg) 0/IK K+  0/IIK K+  

0/IK K−  0/IIK K−  

Konda & 
Erdogan 

[16] 

0 
18 
36 
54 
72 
90 

1.424 
1.285 
0.925 
0.490 
0.146 
0.000 

0.000 
0.344 
0.548 
0.532 
0.314 
0.000 

0.674 
0.617 
0.460 
0.247 
0.059 
0.000 

0.000 
0.213 
0.365 
0.397 
0.269 
0.000 

Present 

0 
18 
36 
54 
72 
90 

1.423 
1.283 
0.922 
0.488 
0.145 
0.000 

0.000 
0.346 
0.551 
0.534 
0.314 
0.000 

0.665 
0.610 
0.455 
0.245 
0.057 
0.000 

0.000 
0.210 
0.362 
0.393 
0.267 
0.000 

 
Table 2: Comparison of the T-stress obtained by the interaction integral with those obtained by 

Paulino and Dong [17]. 
βa=0.0 βa=0.5 Method θ (deg) T(+a) T(-a) T(+a) T(-a) 

Paulino 
and Dong 

[17] 
 

0 
15 
30 
45 
60 
75 
90 

-0.9999 
-0.8660 
-0.5001 
0.0002 
0.4999 
0.8660 
1.0000 

-0.9999 
-0.8660 
-0.5001 
0.0000 
0.5000 
0.8660 
1.0000 

-0.8670 
-0.7483 
-0.4200 
0.0393 
0.5132 
0.8701 
1.0000 

-0.8766 
-0.7631 
-0.4444 
0.0109 
0.4905 
0.8585 
1.0000 

Present 

0 
15 
30 
45 
60 
75 
90 

-0.9828 
-0.8534 
-0.4974 
-0.0055 
0.4912 
0.8592 
0.9950 

-0.9828 
-0.8534 
-0.4974 
-0.0055 
0.4912 
0.8592 
0.9950 

-0.8963 
-0.7734 
-0.4334 
0.0361 
0.5133 
0.8685 
0.9945 

-0.8589 
-0.7478 
-0.4360 
0.0115 
0.4845 
0.8502 
0.9945 
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Conclusions 
This paper presents the interaction integral method for evaluating the mixed-mode SIFs and the T-
stress for arbitrarily oriented cracks in two-dimensional (2D) elastic FGMs. From the numerical 
example investigated, we observe that the interaction integral method is accurate in calculating the 
SIFs and the T-stress in FGMs. Moreover, the material nonhomogeneity βa shows significant 
influence on the fracture parameters (SIFs and T-stress) in FGMs.  
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