Simulation of Crack Propagation in Asphalt Concrete Using
an Intrinsic Cohesive Zone Model
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Abstract: This is a practical paper which consists of investigating fracture behavior in asphalt concrete using an intrinsic cohesive zone
model (CZM). The separation and traction response along the cohesive zone ahead of a crack tip is governed by an exponential cohesive
law specifically tailored to describe cracking in asphalt pavement materials by means of softening associated with the cohesive law.
Finite-element implementation of the CZM is accomplished by means of a user subroutine using the user element capability of the
ABAQUS software, which is verified by simulation of the double cantilever beam test and by comparison to closed-form solutions. The
cohesive parameters of finite material strength and cohesive fracture energy are calibrated in conjunction with the single-edge notched
beam [SE(B)] test. The CZM is then extended to simulate mixed-mode crack propagation in the SE(B) test. Cohesive elements are
inserted over an area to allow cracks to propagate in any direction. It is shown that the simulated crack trajectory compares favorably with

that of experimental results.
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Introduction

Cracking has occurred in nearly all types of asphalt overlays due
to mechanical and environmental loadings. Because cracking
causes water penetration, thereby weakening the foundation of the
pavement structure and contributing to increased roughness, a
number of studies have been conducted to obtain a better under-
standing of cracking mechanisms and to tackle the cracking prob-
lem in asphalt concrete. Majidzadeh et al. (1971) made an early
attempt to study crack propagation using fracture testing. Ab-
dulshafi and Majidzadh (1985) applied the J-integral concept to
fatigue and fracture of asphalt mixtures in conjunction with a
disk-shaped specimen. Kim and El Hussein (1995) used three-
point bending tests to explore fracture behavior of asphalt con-
crete and to evaluate fracture toughness of asphalt concrete at low
temperatures. Jacobs et al. (1996) employed Paris’ law to analyze
cracking in asphalt concrete and to obtain more insight into the
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crack propagation and resistance of asphalt mixes. Bhurke et al.
(1997) developed a test protocol to calculate fracture toughness of
asphalt concrete at low temperatures. Castell et al. (2000) inves-
tigated fatigue crack growth in a laboratory beam specimen and
layered pavements using the code Franc2D/L. Several other re-
searchers (Owusu-Antwi et al. 1998; Shen and Kirkner 1999;
Sangpetngam et al. 2004) have applied fracture mechanics prin-
ciples in the study of cracking in asphalt concrete laboratory
specimens and pavements. However, most studies of fracture of
asphalt concrete have been limited either to experimental investi-
gation or to the analysis of stationary cracks. In this work, a
powerful numerical scheme using the cohesive zone model
(CZM) concept is introduced to investigate the fracture behavior
of asphalt concrete and to simulate crack initiation and propaga-
tion of both mode I and mixed-mode cracks.

Cohesive zone models have been used to simulate fracture of
both homogeneous and nonhomogeneous materials. Barenblatt
(1959, 1962) proposed an early cohesive model to study brittle
fracture, and Dugdale (1960) adopted a process zone concept to
investigate materials exhibiting plasticity. Xu and Needleman
(1994) presented an intrinsic potential-based model where cohe-
sive elements are inserted along either lines or regions in advance,
and they implemented this model by means of the finite-element
method. Despite great success in simulating crack propagation,
this type of cohesive model introduces artificial compliance due
to the initial prepeak slope of the intrinsic cohesive law. To alle-
viate such problems, Espinosa and Zavattieri (2003) used a bilin-
ear model to reduce the compliance by adjusting the initial slope
of the cohesive law. An alternative cohesive law was proposed by
Camacho and Ortiz (1996). They presented a stress-based extrin-
sic cohesive law where a new surface is adaptively created by
duplicating nodes that were previously bonded. Subsequent inves-
tigations were carried out to apply the cohesive fracture modeling
in several areas, such as concrete (Mosalam and Paulino 1997;
Ruiz et al. 2001), dynamic crack growth (Siegmund and Needle-
man 1997; Ruiz et al. 2001), viscoelasticity (Rahulkumar et al.
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2000), nonhomogeneous materials, and plasticity (Paulino et al.
2003; Jin et al. 2003).

For pavements, Soares et al. (2003) applied a cohesive zone
model in order to investigate crack propagation of the Superpave
indirect tension test (IDT) using the cohesive law proposed by
Tvergaard (1990). Paulino et al. (2004) proposed an intrinsic co-
hesive model for asphalt concrete, which is based on the energy
potential approach of Xu and Needleman (1994). They deter-
mined material strength and cohesive fracture energy with the
IDT and single-edge notch beam [SE(B)] test, respectively. Crack
propagation in the IDT was simulated with the cohesive param-
eters calibrated from the SE(B) test using a user-defined subrou-
tine (UEL) in ABAQUS. Recently, Song et al. (2005) explored a
bilinear CZM to reduce a compliance. However, most crack
propagation simulations conducted thus far using the CZM
(Soares et al. 2003; Paulino et al. 2004) have been limited to IDT
test and pure mode I problems. Therefore, the present study ad-
dresses the following important aspects of cohesive zone model-
ing of asphalt concrete: (1) calibration of cohesive parameters,
selection of cohesive element sizes, and sensitivity of the results
to cohesive parameters; (2) simulation of mixed-mode crack
propagation in conjunction with the SE(B) test, in which cohesive
elements are inserted over an area to allow cracks to propagate in
any direction; (3) comparison of the complete crack trajectory of
the present numerical simulation using the Riks method (Crisfield
1980) and the user element (UEL) of ABAQUS (ABAQUS 2002)
with that of experimental results.

The remainder of this paper is organized as follows. The sec-
ond section describes the concept of the cohesive zone model
(CZM) and its derivation. The third section illustrates procedures
to determine material and cohesive properties. Section 4 provides
verification of the CZM that was developed and implemented as a
user element (UEL) within ABAQUS. Sections 5 and 6 discuss
computational results of crack propagation in pure mode I and
mixed-mode SE(B) tests. Section 7 presents the summary and
conclusions of the study.

Cohesive Zone Model

The CZM concept is provided herein, and its formulation using
the principle of virtual work is presented. The force vector and
tangent matrix, which are variables to be defined in the UEL, are
formulated. Finally, the potential-based effective CZM is intro-
duced.

CZM Concept

The cohesive zone model provides a computationally efficient
way to simulate damage occurring in a process zone located
ahead of a crack tip (see Fig. 1). This approach, which involves
nonlinear constitutive laws described by the displacement jump
and the corresponding traction along the interfaces, provides a
phenomenological model to simulate fracture behavior such as
crack nucleation, initiation, and propagation.

Fig. 1 illustrates the CZM concept in the opening mode (pure
mode I) where T, and 3§, denote normal traction and normal dis-
placement jump, respectively. The material crack tip indicates a
point where traction is zero and the cohesive zone tip is a point
where the traction reaches a maximum. The cohesive zone is
defined as the region between the material crack tip and the co-
hesive zone tip where complicated fracture behaviors, including
inelasticity, occur. The cohesive surfaces are joined together by a
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ZoneTip
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(a) Potential Crack Path (b)

Fig. 1. Schematic representation of: (a) cohesive zone concept; (b)
displacement jump (3,) and corresponding traction (z,) along a
cohesive surface

cohesive traction, which depends upon the displacement jump
across crack faces. As the displacement jump increases due to an
increase in external force or compliance in a structure, the traction
first increases, then reaches a maximum, and finally decays mono-
tonically to zero. The separation-material response depends on the
material strength, critical displacement, and cohesive fracture en-
ergy, which represent the cohesive parameters.

CZM Formulation

The principle of virtual work considering the cohesive element
contribution is given as

f0:D*dV—fT-8*dS—fT-u*dS=0 (1)
v s s

where o=Cauchy stress tensor; D" =virtual strain tensor; o:D"
indicates (r,-jD;; T=traction on the boundary; & =virtual dis-
placement jump across the cohesive surface; u”=virtual displace-
ment in the bulk (background) material; and S and V=current
(deformed) surface and volume, respectively.

An implicit displacement-based finite-element scheme requires
evaluation of several terms, such as a force vector and a tangent
matrix based on different numerical schemes. Evaluation of the
tangent matrix and the force vector is necessary for the iteration
of the Newton-Raphson method and the Riks method, and an
additional term, which is an incremental load vector, needs to be
defined for the iteration of the Riks method (ABAQUS 2002). The
force vector and the tangent matrix of the cohesive elements are
obtained from the second term of Eq. (1) and the first variation of
the second term in Eq. (1), respectively. Notice that the incremen-
tal load vector of the cohesive elements to be defined for the Riks
method is zero for the CZM, because a cohesive force is an in-
ternal force and, as a result, is independent of the Riks load pa-
rameter.

The virtual cohesive element work is given as

W= J (T8, +T,8,)dS ()
S

where subscript “coh” indicates cohesive; and 7, and
T,=normal and shear tractions, respectively. Moreover, 5; and Sj
are virtual normal and shear displacement, respectively, and can
be expressed in terms of the shape functions and virtual nodal
displacement jump along the normal and shear direction given by

3,=N3,, 8 =N§, 3)
where N=shape functions relating quantities at nodal points to

those at Gauss points; and g; and g:=virtual normal and shear
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displacement jump at the nodal points, respectively.
Substituting Eq. (3) into Eq. (2), one obtains

Weon = f (T,NS, + T,NS,)dS (4)
s

Thus, the contribution of the force vector due to cohesive ele-
ments can be obtained as follows:

Fcoh = f (TnN + TYN)dS (5)
N

Notice that Egs. (4) and (5) are formulated based on the updated
Lagragian formulation.

The first variation of the virtual work, dW,,,, is obtained from
differentiation of Eq. (4) with respect to the displacement jump
and is given as

dW, ., = f (dT,NS, + dT\N§)dS (6)
S

Notice that T=function of displacement such that d7, and dT;
cannot be zero.

The relationship between traction and displacement jump is
given by the cohesive material Jacobian [C], which is obtained as

ar, | _ .| &, ;
i, =[C] 0, (7)

where [C] is given by

aT, 135, T35, }

Cl=
€] [an/a&n IT /8,

Thus, the tangent matrix is given by the usual expression
[K]= J [BI'[CI(BdS (®)
s

where [B]=matrix of shape function relating quantities at nodal
points to those at Gauss points.

Potential-Based Effective Model

An exponential form for the free energy potential proposed by Xu
and Needleman (1994) between the displacement jump and the
corresponding traction provides a computationally convenient de-
scription of the decohesion process represented by the shape of
the constitutive model, the material strength, and the cohesive
fracture energy.

The cohesive law for the interface elements (Ortiz and Pan-
dolfi 1999; Roy and Dodds 2001) can be summarized as follows:
s b 9,

5,

P
t=—0(5,.5,,q)n+—(,,5,
(8,,9,,q)n 0&( qQ)

A, ©)

s
where the subscripts n and s=normal and tangential directions;
t=traction; ¢=free energy potential; d,=normal displacement
jump; d,=shear sliding; n=unit normal of the interface elements;
and q=vector of internal variables.

The effective displacement and corresponding effective trac-
tion for two-dimensional (2D) analysis become:

d=\a2+B%% 1=V +BR (10)

The parameter (3, which is defined as the ratio between the maxi-
mum normal traction and the shear traction, is introduced to ex-
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Fig. 2. Schematic representation of loading and unloading in terms
of displacement-jump and traction

press the formulation with single effective displacement by as-
signing different weights for displacements and tractions along
the normal and shear directions. In this simulation, B = \E (Cama-
cho and Ortiz 1996).

The exponential form for the free energy potential is given (Xu
and Needleman 1994) by

113 ool )
b=ecd,|1- 1+5c exp _8(. (11)

where e=exp(1); o.=material tensile strength; and 3.=critical
displacement. As illustrated in Fig. 2, the relationship between the
traction and displacement jump, upon loading, follows the form:

o ) <8>
t= % =90 exp| - < (12)

c c

and for unloading and reloading, the traction can be obtained with
the following expression:
1
t= (i) (13)
04

where subscript A indicates a point where unloading starts to
occur in the cohesive law (see Fig. 2). The unloading path follows
toward the origin of the cohesive law. The cohesive fracture en-
ergy is defined by

G.= f tdd = ea 3, (14)
0

Determination of Bulk and Cohesive Properties

The complex (dynamic) modulus is often used to characterize the
time-temperature modulus of asphalt concrete and is used as a
material property for the design of asphalt pavement layers
(NCHRP 1-37a). In fact, the complex modulus test procedures are
currently under review to replace an older version, the ASTM
D3497 Test Standard. The essence of the test is to apply a sinu-
soidal compressive loading on the specimen and to measure the
strain response. The complex modulus is simply the amplitude of
the stress wave divided by the amplitude of the strain wave. In
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Fig. 3. Experimental setting of: (a) IDT test; (b) SE(B) test

order to capture the time-temperature dependency, the complex
modulus is measured over a range of frequencies (25, 10, 53, 1,
0.5, and 0.1 Hz) and temperatures (—10 to 60°C). In this simula-
tion, the Young’s modulus is taken as 14.2 GPa based upon com-
plex modulus testing of the mixture at 10°C and 1 Hz.

Two experimental fracture properties of material strength and
cohesive fracture energy are evaluated as material inputs into the
CZM. The tensile strength of the asphalt concrete is currently
determined at —10°C. The first-failure tensile strength determined
from the IDT test is defined as the material strength. The proce-
dure for determining the first-failure tensile strength is outlined in
the AASHTO TP-9 specification (AASHTO 1996). A material
strength of 3.56 MPa was experimentally determined from the
IDT test. Fig. 3(a) illustrates the IDT test setting.

The cohesive fracture energy of the asphalt concrete is the
other fracture property required as an input into the CZM. The
single-edge notched beam [SE(B)] test was used for determining
the cohesive fracture energy. The crack-mouth opening displace-
ment (CMOD) was increased at a linear rate to produce a stable
postpeak fracture. The CMOD rate was determined by trial and
error to produce a peak load at approximately 5 s into the test.
Five seconds was selected as the time to peak load based on the
AASHTO (1996) TP-9 procedure for determining the tensile
strength. The cohesive fracture energy was determined by calcu-
lating the area under the load-CMOD curve and normalizing by
the cross-sectional area of the beam. At —10°C, a value of
344 J/m? was obtained. A detailed procedure for specimen prepa-
ration and test controls of the SE(B) test is outlined by Wagoner
et al. (2005). Fig. 3(b) shows the SE(B) test apparatus. Notice that
both cohesive parameters, evaluated at —10°C, are employed in
this study to investigate cracking mechanism occurring under
freezing temperatures. For this temperature range, volumetric-
cohesive viscoelastic effects are not directly considered.

Cohesive Elements

Fig. 4. Schematic drawing of double cantilever beam (DCB) test in
which H=thickness; 2A=crack mouth opening displacement;
L=total length; and a=distance from crack mouth to assumed crack
tip location

Verification of CZM

In order to verify the numerical implementation of the aforemen-
tioned CZM (i.e., the potential-based exponential model) into the
UEL of ABAQUS, a double cantilever beam (DCB) is adopted,
because the DCB is well accepted by the fracture community and
an analytical solution exists. Using linear elastic beam theory, the
analytical solution for crack length in terms of the Young’s modu-
lus (E), the end displacement (A), the beam height (H), and the
cohesive fracture energy (G,) is obtained (Anderson 1995) as

* [BEHA?
a=\——— (15)
4G,

Fig. 4 illustrates a schematic of the DCB geometry. To avoid
shear effects in the beam, a relatively slender DCB of length
L=200 mm and width H=10 mm is adopted. External displace-
ment is applied to the node located at x=0 and y=0 upward and
downward. Cohesive elements are inserted along the middle of
the specimen. Two-dimensional plane strain elements and linear
four-node cohesive elements are employed for the bulk material
and cohesive material, respectively. To obtain material and cohe-
sive parameters, a 9.5 mm nominal maximum-sized aggregate
surface mixture is selected, which is used at the Greater Peoria
Regional Airport. The Young’s modulus is taken as 14.2 GPa,
based upon the aforementioned modulus tests. A Poisson’s ratio
value of 0.35 is assumed, based upon previous experience with
similar materials. The cohesive fracture energy and material
strength for this mixture are 344 J/m? and 3.56 MPa, respec-
tively. For the exponential model, 0.18, is defined as the crack tip
location.

Fig. 5 illustrates a comparison between the numerical and ana-
lytical solutions. The abscissa indicates normalized crack length,
a/L, and the ordinate indicates the normalized crack opening dis-
placement, 8/8.. The numerical results show excellent agreement
with the analytical solution. Notice that, even for both the initial
stage and final stage of crack propagation, which are influenced
by boundary conditions, both numerical and analytical results
agree reasonably well.

Mode | Single-Edge Notched Beam [SE(B)] Test

In this section, utilizing the mode I SE(B) test, various important
aspects of CZM are presented. First, sensitivity analysis to cohe-
sive parameters of the material strength and cohesive fracture
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Fig. 5. Comparison between numerical and analytical solutions for
DCB specimen

energy is performed. Second, cohesive parameters of material
strength and cohesive fracture energy are calibrated by comparing
the numerical result with experimental results of the SE(B) test.
Finally, justification of the cohesive element size is provided.
Three different cohesive element sizes are chosen, and numerical
results for each cohesive element size are compared to make sure
that the element sizes chosen in the simulation are small enough
to capture the nonlinear behavior occurring along the cohesive
zone (Klein et al. 2001).

Sensitivity Analysis with Respect to Fracture Energy
and Material Strength

Using the condition of small-scale yielding, Tvergaard and
Hutchinson (1992) demonstrated that, in general, the influence of
the shape of the traction separation law on the numerical re-
sponses is relatively weak as compared to other cohesive param-
eters, e.g., material strength (o.) and cohesive fracture energy
(G,). Thus, in this section, the sensitivity analysis to cohesive
parameters of material strength and fracture energy is carried out
to explore the influence of cohesive parameters, i.e., o,
=3.56 MPa and G,=344 J/m? (Wagoner et al. 2005).

Fig. 6(a) illustrates a simply supported SE(B) with a length of
376 mm, height of 100 mm, and thickness of 75 mm. A mechani-
cal notch is simulated, which extends 19 mm upward from the
bottom edge of the beam. Displacement boundary conditions are
imposed at the center of the top edge of the model. Figs. 6(b and
¢) show a finite-element configuration for the whole geometry and
the center region of the specimen where the cohesive elements are
inserted, respectively. Two-dimensional, four-noded cohesive ele-
ments are inserted along the center of the specimen. The bulk
material is modeled as elastic, homogeneous, isotropic, and rate
independent. These assumptions will be verified in a subsequent
study. Given the low test temperature and short test duration, it is
assumed that the bulk material can be adequately simulated with
elastic materials. In this analysis, E=14.2 GPa and v=0.35. The
Newton-Raphson method and plane strain conditions are adopted.

Fig. 7(a) illustrates the sensitivity of the P versus CMOD
curve to different fracture energies. Three different fracture ener-
gies, i.e., 1.2G,, G., and 0.8G,., are employed with a constant
value of critical strength. As the fracture energy is increased, the

8 :
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a=19|
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Units: N, mm
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o
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Fig. 6. Geometry and mesh for analysis of SE(B) test: (a) geometry
and boundary condition; (b) mesh configuration for whole geometry;
and (c) mesh detail along middle of specimen (cohesive elements are
inserted along middle line of specimen)

area of the P versus CMOD curve is increased and the maximum
load is increased as well. This result is intuitive because, as the
intrinsic fracture energy used in the CZM is increased, more glo-
bal fracture energy is released, which is indicated by an increased
area under the P versus CMOD curve. The softening trend, how-
ever, seems insensitive to the magnitude of fracture energy. Fig.
7(b) shows the sensitivity of the P versus CMOD curve to differ-
ent critical strengths, 1.20,, 0., and 0.8c,. As the critical strength
is increased, the maximum load is increased, while the area of the
curve remains almost constant.

Calibration of Cohesive Parameters

In the nonlinear cohesive constitutive model, cohesive fracture
energy and material strength are two important parameters. These
parameters are measured directly from the experiments and reflect
the actual viscoelastic heterogeneous material. However, quasi-
static homogeneous materials are assumed in the numerical mod-
eling. Thus, the parameters of the CZM model are calibrated by
fitting the present numerical results into experimental results in
order to take into account these differences between the actual
and numerical models.

A first-order calibration of material strength and cohesive frac-
ture energy was accomplished by matching the present numerical
results with experimental SE(B) test results (see Fig. 8). Rela-
tively small calibration shifts of the cohesive parameters, i.e.,
0.7G.=0.7X 344 J/m? and 1.1o,=1.1X3.56 MPa, are required
to bring the simulated results into reasonable comparison with the
measured results. Notice that, for the rest of simulation, the cali-
brated cohesive parameters are employed.

Selection of Intrinsic Cohesive Element Size

When the concept of the cohesive zone model is combined with
the discrete finite-element method, a numerical issue as to the
sensitivity of the size of the cohesive element to the numerical
solution arises. This is due to the fact that the cohesive zone is
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Fig. 7. Sensitivity of P versus CMOD curve to: (a) different fracture
energy; (b) different material strength (0.=3.56 MPa and
G.=344 J/m?)

represented by a highly nonlinear relation between the traction
and displacement jump such that enough cohesive elements need
to be inserted along the cohesive zone in order to capture the
nonlinear softening curve of CZM properly. Camacho and Ortiz
(1994) showed that, as the cohesive element size increases, con-
siderable accuracy is lost under dynamic loading. Furthermore,
they reported that some of the fragmentation and branching is
suppressed when the coarse mesh is adopted. Recently, Klein et
al. (2001) explored the influence of cohesive element sizes in
conjunction with the double cantilever beam and illustrated that
coarse meshes yield accelerated crack growth, i.e., a larger dis-
crepancy between the numerical and analytical solutions. Ruiz et
al. (2001) studied mesh size sensitivity to computational results,
e.g., reaction versus time curve, simulating SE(B) tests with and
without prenotch under dynamic loading. They observed that, for
the cracked SE(B), the reaction histories and energy consumption
are almost identical for different cohesive element sizes, while for
the uncracked SE(B), the cohesive energy consumption is larger
for the finer mesh and, as time increases, the discrepancy of the
reaction increases for different cohesive element sizes. A general

7 T T T T

Numerical Results
Experimental Results (Wagoner et al. 2005)

P(KN)

0 0.2 0.4 0.6 0.8 1
CMOD (mm)

Fig. 8. Comparison between experimental result and numerical result
with calibrated parameters

rule in choosing the element size is that there should be at least
three elements or so along the fracture process zone. For some
specific brittle materials, the fracture process zone can be esti-
mated theoretically (Rice 1968) as

wm E G,
l. [

cT g 2 2
81 -vioy,.

(16)

where G,.=cohesive fracture energy; and o,,.=measure of mate-
rial strength in an average sense. However, this estimation is not
valid for materials such as asphalt concrete, which is quasi-brittle
and viscoelastic, because Eq. (16) is evaluated based on the as-
sumption that energy is absorbed in a very thin cohesive zone
without any consideration of viscoelastic effects. Thus, from a
numerical point of view, although viscoelastic effects are not di-
rectly considered, it is crucial to make sure that the cohesive
element size chosen is not sensitive to artifacts of the numerical
solution.

Three different cohesive element sizes, i.e., 0.1, 0.2, and
1.0 mm, are employed. To illustrate that the cohesive element size
chosen in this study is objective (i.e., somehow independent of a
particular numerical solution), a local quantity, e.g., 8,5, and glo-
bal quantities, i.e., CMOD and total dissipated energy due to frac-
ture, are evaluated and compared. The 3,5, which is measured
from a gauge length of 25 mm spanning the original crack tip, is
introduced for operational definition of the crack tip opening dis-
placement (CTOD) with the following advantages: It is a local
quantity near the crack tip, and it can be applied to any cracked
specimen due to direct and easy measurement of CTOD. The
proposed 8,5 measurement is inspired by the work by Schwalbe
and Cornec (1991) and Schwalbe (1995), who proposed the in-
sightful 85 concept. Notice that the original concept of 85 was
developed and has been applied for fine-grain-sized materials like
steel (Castrodeza et al. 2004). However, due to the coarse micro-
structure of asphalt concrete (e.g., aggregate sizes ranging from
4.75 to 19 mm in this study), a 8-type evaluation on the order of
25 mm is more appropriate, leading, for instance, to the 8,5 defi-
nition. A numerical investigation of 8,5 will be provided in the
next example [a schematic is provided in Fig. 9(a)]. Theoretical
verification and experimental validation for the proposed 8,5 will
be addressed in subsequent investigations.
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Fig. 9. Comparison of: (a) P versus CMOD and 3,5; (b) CMOD
versus total dissipated fracture energy for different cohesive element
sizes: [;=0.1 mm, [,=0.2 mm, and /3=1.0 mm (/; introduces a
length-scale in the problem)

The geometry, boundary conditions, material properties, and
nonlinear numerical scheme used here are the same as those used
in the section that discussed the calibration of cohesive param-
eters. Thus, notice that calibrated cohesive parameters are em-
ployed. Fig. 9(a) illustrates P (applied force) versus displacement
curves in which both CMOD and 8,5 are plotted together. Fig.
9(b) shows the consumption of the cohesive fracture energy as the
crack propagates. The abscissa indicates the CMOD and the or-
dinate indicates the total dissipated fracture energy. Due to accu-
mulation of the cohesive fracture energy, this shows an increasing
trend of the total dissipated fracture energy with an increase of the
CMOD. Both the global and local responses as a function of
different cohesive element sizes are nearly identical, demonstrat-
ing that the cohesive elements chosen in this particular investiga-
tion are small enough to be insensitive to numerical artifacts.

Mixed-Mode SE(B)

Using the calibrated cohesive parameters and the cohesive ele-
ment size 1.0 mm, a simulation of mixed-mode crack propagation

S (150,95)
Tl (123,19)
- X a=19 | '<t_75
.y 26, 97 I 65 I 162 | 261<
Units: N. mm

Fig. 10. Mixed-mode SE(B) test: (a) geometry and boundary
condition; (b) mesh configuration for whole geometry; and (c) mesh
detail where cohesive elements are inserted (dotted line indicates an
area where cohesive elements are inserted)

in the SE(B) test is carried out. The cohesive elements are in-
serted over an area to allow cracks to propagate in any direction.
Fig. 10(a) shows the geometry, boundary condition, and region
enclosed by the dashed lines. The length, height, and thickness
are 376, 100, and 75 mm, respectively. The crack tip is located at
65 mm to the left of and 19 mm above the center of the bottom
edge. The displacement boundary condition is applied at the cen-
ter of the top edge of the model. The cohesive elements are in-
serted over the area enclosed by the dashed lines. Fig. 10(b) il-
lustrates finite-element discretization for the whole geometry and
Fig. 10(c) shows finite-element mesh details of the region where
the cohesive elements are inserted. The SE(B) structure is con-
structed by 5,810 three-noded triangular elements for bulk mate-
rials and by 1,010 four-noded linear elements for cohesive mate-
rials. Notice that, in order to avoid the numerical problem of
nonconvergence, the mesh of Fig. 10(c) is tailored to the crack
trajectory predicted by I-Franc2D (Kim 2003) and the Riks
method (Crisfield 1980) is employed for this simulation.

Fig. 11(a) shows the final deformed shapes, which can be ob-
tained with convergent solutions using the Riks method. A mag-
nification factor of 10 is used to make the crack trajectory visible.
We observed that, when the Newton-Raphson method is adopted,
the cracks begin to grow, but eventually the solution diverges
when a crack tip reaches around 40% of the height of the SE(B)
specimen. The main reason for the nonconvergence in the CZM is
that, during the quasi-static calculation, we often reach a point
where the incremental solution jumps back and forth between two
near equilibrium states (Tijssens et al. 2000). However, in this
study, this numerical problem is not observed when the Riks
method is employed, indicating its superior performance as com-
pared to the Newton-Raphson method. Fig. 11(b) illustrates a
comparison of the crack trajectory between the experimental and
numerical results obtained using the Riks method. Green and blue
lines indicate the crack trajectory of the front and back side of the
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Fig. 11. Simulation of mixed-mode SE(B) test: (a) deformed shape
showing crack trajectory (scale factor is three); (b) comparison of
crack trajectory between numerical and experimental results [red line
indicates crack trajectory obtained from 2D CZM; blue line and green
lines denote crack trajectory from experiment (front and back faces,
respectively)|

specimen based on the experimental results, respectively. The red
line indicates the numerical result, which is in good agreement
with the experimental results.

Summary and Conclusions

A potential-based cohesive zone model was developed and imple-
mented using an ABAQUS user-specified element (UEL) and was
subsequently employed to simulate crack propagation observed in
asphalt concrete laboratory fracture tests conduced with an SE(B)
apparatus. An exponential form for the free energy potential was
used for the constitutive model in the cohesive elements. To
verify the CZM implementation into the UEL of ABAQUS, the
slender double cantilever beam is chosen and analyzed. The nu-
merical results from this simulation matched the analytical solu-
tion remarkably well even for small crack extensions, which in-
cluded boundary effects. Using the cohesive parameters obtained
from the experiment, i.e., the material strength from the IDT test
and the fracture energy from the SE(B), a simulation of the SE(B)
fracture test was performed to calibrate cohesive parameters.
Overall, the trend, peak load, and corresponding CMOD of the
present numerical results with the calibrated cohesive parameters
matched well with experimental results. Numerical solutions were
found to be insensitive to the three cohesive element sizes inves-
tigated, e.g., 0.1, 0.2, and 1.0 mm. As the intrinsic CZM fracture
energy increased, the peak load and the area under the P-CMOD
curve increased as expected. Likewise, increasing the critical
strength used in the intrinsic model resulted in an increase in the
peak load of the simulated SE(B) experiment.

Mixed-mode crack propagation simulation of the SE(B) test
was performed using the calibrated cohesive parameters. In this
analysis, the cohesive elements were inserted over an area to
allow crack propagation along an arbitrary direction. To avoid the
numerical problem of nonconvergence, the Riks method was em-
ployed. The crack trajectory predicted by the numerical simula-
tion was found to compare favorably to experimental results.

Acknowledgments

We are grateful for the support from the Koch Materials Company
and the National Science Foundation (NSF) through the GOALI
project CMS 0219566 (Program Manager, P. N. Balaguru). Any
opinions expressed herein are those of the writers and do not
necessarily reflect the views of the sponsors.

References

AASHTO. (1996). “Standard test method for determining the creep com-
pliance and strength of hot mix asphalt (HMA) using the indirect
tensile test device.” AASHTO TP9-96, Washington, D.C.

ABAQUS user’s manual, version 6.3. (2002). Hibitt, Karlsson, and Soren-
son, Pawtucket, R.I.

Abdulshafi, A. A., and Majidzadeh, K. (1985). “J-integral and cyclic
plasticity approach to fatigue and fracture of asphalt mixes.” Trans-
portation Research Record. 1034, Transportation Research Board,
Washington, D.C.

Anderson, T. L. (1995). Fracture mechanics: Fundamentals and applica-
tions, CRC, Boca Raton, Fla.

Barenblatt, G. 1. (1959). “The formation of equilibrium cracks during
brittle fracture: General ideas and hypothesis, axially symmetric
cracks.” Appl. Math. Mech., 23, 622—-636.

Barenblatt, G. I. (1962). “Mathematical theory of equilibrium cracks in
brittle fracture.” Adv. Appl. Math., 7, 55-129.

Bhurke, A. S., Shih, E. E., and Drzal, L. T. (1997). “Fracture morphology
and fracture toughness measurement of polymer-modified asphalt
concrete.” Transportation Research Record. 1590, Transportation Re-
search Board, Washington, D.C., 23-33.

Camacho, G. T., and Ortiz, M. (1996). “Computational modeling of im-
pact damage in brittle materials.” Int. J. Solids Struct., 33, 2899—
2938.

Castell, M. A., Ingraffea, A. R., and Irwin, L. H. (2000). “Fatigue crack
growth in pavements.” J. Transp. Eng., 126(4), 283-290.

Castrodeza, E. M., Ipina, J. E. P, and Bastian, F. L. (2004). “Fracture
toughness evaluation of unidirectional fibre metal laminates using tra-
ditional CTOD (8) and Schwalbe (8s) methodologies.” Eng. Fract.
Mech., 71, 1107-1118.

Crisfield, M. A. (1980). “A fast incremental/iterative solution procedure
that handles ‘snap-through’.” Comput. Struct., 13, 55-62.

Dugdale, D. (1960). “Yielding of steel sheets containing slits.” J. Mech.
Phys. Solids, 8, 100-104.

Espinosa, H. D., and Zavattieri, P. D. (2003). “A grain level model for the
study of failure initiation and evolution in polycrystalline brittle ma-
terials. Part I: Theory and numerical implementation.” Mech. Mater.,
35, 333-364.

Jacobs, M. M., Hopman, P. C., and Molenaar, A. A. A. (1996). “Appli-
cation of fracture mechanics in principles to analyze cracking in as-
phalt concrete.” Proc., Association of Asphalt Paving Technologists,
Association of Asphalt Paving Technologists, White Bear Lake,
Minn., 65, 1-39.

Jin, Z.-H., Paulino, G. H., and Dodds, R. H., Jr. (2003). “Cohesive frac-
ture modeling of elastic-plastic crack growth in functionally graded
materials.” Eng. Fract. Mech., 70, 1885-1912.

Kim, J.-H. (2003). “Mixed-mode crack propagation in functionally
graded materials.” Ph.D. thesis, Dept. of Civil and Environmental
Engineering, Univ. of Illinois at Urbana-Champaign, Urbana, Ill.

Kim, K. W., and El Hussein, H. M. (1995). “Effect of differential thermal
contraction on fracture properties of asphalt materials at low tempera-
ture.” Proc., Association of Asphalt Paving Technologists, Association
of Asphalt Paving Technologists, White Bear Lake, Minn., 64, 474—
499.

Klein, P. A., Foulk, J. W., Chen, E. P., Wimmer, S. A., and Gao, H.
(2001). “Physics-based modeling of brittle fracture: Cohesive formu-

1222 / JOURNAL OF ENGINEERING MECHANICS © ASCE / NOVEMBER 2006

Downloaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



lations and the applications of meshfree methods.” SAND 2001-8009,
Sandia National Laboratories, Albuquerque, N.M.

Majidzadeh, K., Kauffmann, E. M., and Ramsamooj, D. V. (1971). “Ap-
plication of fracture mechanics in the analysis of pavement fatigue.”
Proc., Association of Asphalt Paving Technologists, Association of
Asphalt Paving Technologists, White Bear Lake, Minn., 40, 227-246.

Mosalam, K. M., and Paulino, G. H. (1997). “Evolutionary characteristics
length method for smeared cracking finite element models.” Finite
Elem. Anal. Design, 27, 99—-108.

Ortiz, M., and Pandolfi, A. (1999). “Finite deformation irreversible cohe-
sive elements for the three dimensional crack propagation analysis.”
Int. J. Numer. Methods Eng., 44, 1267-1282.

Owusu-Antwi, E. B., Khazanovich, L., and Titus-Glover, L. (1998). “A
mechanistic-based model for predicting reflective cracking in AC
overlaid pavements.” Proc., Annual Meeting, Transportation Research
Board, Washington, D.C.

Paulino, G. H., Jin, Z. H., and Dodds, R. H., Jr. (2003). “Failure of
functionally graded materials.” Comprehensive structural integrity,
Vol. 2, B. Karihaloo and W. G. Knauss, eds., Elsevier, New York,
607-644.

Paulino, G. H., Song, S. H., and Buttlar, W. G. (2004). “Cohesive zone
modeling of fracture in asphalt concrete.” Proc., 5th RILEM Int. Conf.
on Cracking in Pavements: Mitigation, Risk Assessment and Preven-
tion, C. Petite, I. Al-Qadi, and A. Millien, eds., RILEM, Cachan
Cedex, France, 63-70.

Rahulkumar, P., Jagota, A., Bennison, S. J., and Saigal, S. (2000). “Co-
hesive element modeling of viscoelastic fracture: Application to peel
testing of polymers.” Int. J. Solids Struct., 37, 1873-1897.

Rice, J. R. (1968). “Mathematical analysis in the mechanics of fracture.”
Fracture: An advanced treatise, H. Liebowitz, ed., Academic, New
York, 191-311.

Roy, Y. A., and Dodds, R. H., Jr. (2001). “Simulation of ductile crack
growth in thin aluminum panels using 3-D surface cohesive ele-
ments.” Int. J. Fract., 110, 21-45.

Ruiz, G., Pandolfi, A., and Ortiz, M. (2001). “Three-dimensional cohe-
sive modeling of dynamic mixed-mode fracture.” Int. J. Numer. Meth-
ods Eng., 52, 97-120.

Sangpetngam, B., Birgisson, B., and Roque, R. (2004). “A multi-layer
boundary element method for the evaluation of top-down cracking in
hot mix asphalt pavements.” Proc., Annual Meeting (CD-ROM),
Transportation Research Board, Washington, D.C.

Schwalbe, K.-H. (1995). “Introduction of 85 as an operational definition
of the CTOD and its practical use.” Fracture mechanics, Vol. 26,
ASTM, West Conshohocken, Pa., 763-778.

Schwalbe, K.-H., and Cornec, A. (1991). “The engineering treatment
model (ETM) and its practical application.” Fatigue Fract. Eng.
Mater. Struct., 14(4), 405-412.

Shen, W., and Kirkner, D. J. (1999). “Distributed thermal cracking of AC
pavement with frictional constraint.” J. Eng. Mech., 125(5), 554-560.

Siegmund, T., and Needleman, A. (1997). “A numerical simulation of fast
crack growth in brittle solids.” J. Mech. Phys. Solids, 42, 1397-1434.

Soares, J. B., Colares de Freitas, F. A., and Allen, D. H. (2003). “Crack
modeling of asphaltic mixtures considering heterogeneity of the ma-
terial.” Proc., Annual Meeting, Transportation Research Board, Wash-
ington, D.C.

Song, S. H., Paulino, G. H., and Buttlar, W. G. (2005). “Simulation of
mode I and mixed-mode crack propagation in asphalt concrete using a
bilinear cohesive zone model.” Proc., Annual Meeting (CD-ROM),
Transportation Research Board, Washington, D.C.

Tijssens, M. G. A., Sluys, B. L. J., and Giessen, E. V. D. (2000). “Nu-
merical simulation of quasi-brittle fracture using damaging cohesive
surfaces.” Eur. J. Mech. A/Solids, 19, 761-779.

Tvergaard, V. (1990). “Effect of fiber debonding in a whisker-reinforced
metal.” Mater. Sci. Eng., 125, 203-213.

Tvergaard, V., and Hutchinson, J. W. (1992). “The relation between crack
growth resistance and fracture process parameters in elastic-plastic
solids.” J. Mech. Phys. Solids, 40(6), 1377-1397.

Wagoner, M.P., Buttlar, W. G., and Paulino, G. H. (2005). “Development
of a single-edge notched beam test for asphalt concrete mixtures.” J.
Test. Eval., 33(6), 452-460.

Xu, X.-P., and Needleman, A. (1994). “Numerical simulations of fast
crack growth in brittle solids.” J. Mech. Phys. Solids, 42(9), 1397—
1434.

JOURNAL OF ENGINEERING MECHANICS © ASCE / NOVEMBER 2006 / 1223

Downloaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



