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Abstract

A bilinear cohesive zone model (CZM) is employed in conjunction with a viscoelastic bulk (background) material to
investigate fracture behavior of asphalt concrete. An attractive feature of the bilinear CZM is a potential reduction of arti-
ficial compliance inherent in the intrinsic CZM. In this study, finite material strength and cohesive fracture energy, which
are cohesive parameters, are obtained from laboratory experiments. Finite element implementation of the CZM is accom-
plished by means of a user-subroutine which is employed in a commercial finite element code (e.g., UEL in ABAQUS). The
cohesive parameters are calibrated by simulation of mode I disk-shaped compact tension results. The ability to simulate
mixed-mode fracture is demonstrated. The single-edge notched beam test is simulated where cohesive elements are inserted
over an area to allow cracks to propagate in any general direction. The predicted mixed-mode crack trajectory is found to
be in close agreement with experimental results. Furthermore, various aspects of CZMs and fracture behavior in asphalt
concrete are discussed including: compliance, convergence, and energy balance.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Cohesive zone modeling has gained considerable attention over the past decade, as it represents a powerful
yet efficient technique for computational fracture studies. The early conceptual works related to the cohesive
zone model (CZM) date back to the early 60s and were carried out by Barenblatt [1,2], who proposed the
CZM to study perfectly brittle materials and Dugdale [3], who adopted a fracture process zone concept to
investigate ductile materials exhibiting plasticity. During the 90s, leaps were made as a result of the pioneering
works by Needleman and his co-workers [4,5], and Camacho and Ortiz [6]. Xu and Needleman [5] proposed a
potential-based cohesive zone model in which cohesive elements are inserted into a finite element mesh in
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advance, which follow an exponential cohesive law. In such a scheme, as displacement between cohesive ele-
ments increases, the traction initially increases, reaches a maximum, and then decays monotonically. On the
contrary, Camacho and Ortiz [6] presented a stress-based extrinsic cohesive law where a new surface is adap-
tively created by duplicating nodes which were previously bonded. Recently, the CZM by Xu and Needleman
[5] has been widely used over the model by Camacho and Ortiz [6], because it is relatively easier to implement
into the finite element method (FEM). However, the model by Xu and Needleman induces artificial compli-
ance due to the elasticity of the intrinsic cohesive law. To alleviate such problems, Geubelle and Baylor [7] and
Espinosa and Zavattieri [8] adopted bilinear cohesive zone models to reduce the compliance by providing an
adjustable initial slope in the cohesive law.

A relatively fewer number of modeling studies have been carried out which address fracture in viscoelastic
materials. Early works in this area include the important contributions of Knauss [9] and Schapery [10], who
developed theories for macroscopic cracks in viscoelastic media. More recently, a number of different attempts
have been made to consider rate effects in a material separation model. Knauss and Losi [11] combined a vis-
coelastic constitutive model with a damage function. Rahulkumar et al. [12] and Allen and Searcy [13] adopted
a hereditary integral approach, which is the identical with the formulation for the bulk material, in conjunc-
tion with a traction-separation function. Bazant and Li [14] formulated a rate-dependent cohesive crack
model. Xu et al. [15] has also proposed a rate-dependent CZM, having both rate-independent and rate-depen-
dent material parameters which are determined from experiments and numerical analysis.

For the study of fracture in asphalt concrete, most efforts to obtain a better understanding of cracking
mechanisms in this particulate viscoelastic material have taken an experimental approach [16–19]. Recently,
Soares et al. [20] applied a cohesive zone model to investigate mode I crack propagation in the Superpave Indi-
rect Tension Test (IDT) using the cohesive law proposed by Tvergaard [21]. Paulino et al. [22] and Song et al.
[23] simulated mode I and mixed-mode crack propagation of laboratory fracture tests, e.g., the single-edge
notched beam (SE(B)) test, using a potential based cohesive zone model [5] and investigated various aspects
of fracture behavior in conjunction with experiments. Song et al. [24] adopted a bilinear cohesive zone model
to effectively reduce the artificial compliance inherent in the intrinsic cohesive law and modeled mixed-mode
crack propagation in asphalt concrete. However, the literature is currently devoid of numerical simulations of
fracture in asphalt concrete which consider rate effects. Thus, the scope of this study is as follows:

• To numerically quantify the effects of CZM compliance with respect to fracture in asphalt concrete.
• To present a bilinear CZM, which has been implemented as UEL in ABAQUS, to effectively reduce arti-

ficial compliance in asphalt concrete fracture simulations.
• To investigate the fracture behavior of asphalt concrete considering bulk (background) material

viscoelasticity.
• To simulate mixed-mode crack propagation in a SE(B) test in which cohesive elements with a regular pat-

tern are inserted over an area to allow cracks to grow in any general direction and to minimize influence of
mesh discretization on crack trajectory.

• To compare the mixed-mode crack trajectory obtained from CZM simulation with that of experimental
results.

• To study numerical convergence in mixed-mode CZM fracture simulation (including influence of finite ele-
ment discretization).

This paper is organized in the following manner. Section 2 describes the theoretical and numerical aspects of a
bilinear CZM, while Section 3 specifically investigates methods to reduce artificial compliance introduced by the
intrinsic cohesive zone models in the context of modeling fracture in asphalt concrete. Section 4 introduces basic for-
mulation for viscoelasticity and presents energy balance. Section 5 provides simulation examples of mode I and
mixed-mode fracture tests and discusses numerical convergence. Finally, summary and conclusions are presented.

2. Theoretical and numerical aspects of a bilinear CZM

In this section, a bilinear cohesive zone model [8] is presented. Then, a numerical implementation of the
cohesive law is provided in conjunction with a ABAQUS user element (UEL) subroutine [25].
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2.1. A bilinear cohesive zone model

Despite the many successful applications of the potential based exponential cohesive law reported in the
literature, the model inherently produces artificial compliance due to a pre-peak slope described in this cohe-
sive law. Recently, Espinosa and Zavattieri [8] formulated a bilinear model to reduce CZM compliance by pro-
viding an adjustable initial slope in the cohesive law. Fig. 1 shows the bilinear cohesive law in terms of
normalized opening tractions and normalized opening displacements for several different ratios of sliding dis-
placements. The pre-peak region represents the elastic part of the intrinsic cohesive law whereas the softening
portion after the peak load accounts for various forms of damage occurring in the fracture process zone.
Notice that the parameter kcr is non-dimensional displacement in which the traction is a maximum, and is
incorporated to reduce the elastic compliance by adjusting the pre-peak slope of the cohesive law. In other
words, as the value of kcr decreases, the pre-peak slope of the cohesive law increases and as a result, artificial
compliance is reduced.

Non-dimensional effective displacement and effective traction are defined as
Fig. 1
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respectively; in which subscript e represents effective; dn and ds denote a normal displacement opening and
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and for ke > kcr, the tractions are described by
ts ¼ rc
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where rc represents material strength. The effective formulation was first proposed by Camacho and Ortiz [6].
The tangent modulus (cohesive material Jacobian) matrix is obtained from differentiating tractions, i.e. ts

and tn, with respect to relative displacements, i.e. ds and dn. For ke < kcr, the tangent modulus matrix compo-
nents are given as
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The cohesive fracture energy is computed by equating the area under the displacement-traction curve (see
Fig. 1), namely,
Gc ¼
1

2
dcrc: ð10Þ
The traction vector and tangent modulus matrix are functions of displacements, cohesive parameters and
internal variables. The cohesive parameters and internal variables are constant at each increment. However,
the displacement, the traction and the tangent modulus matrix need to be updated at each increment. Detailed
numerical aspects of CZM implementation via the UEL capability in ABAQUS are presented in the next
section.

2.2. Finite element implementation

This section describes how the bilinear CZM presented in the previous section is incorporated into the
ABAQUS user element (UEL) [25]. In the UEL, the contribution of cohesive elements to the force vector
and the tangent stiffness matrix, which are functions of displacements, cohesive parameters and internal vari-
ables, should be defined. Because the force vector and the tangent stiffness matrix need to be defined globally,
while the cohesive law represents a local separation and traction relationship, transformation between global
and local coordinates is necessary. Consider the 4-noded cohesive element shown in Fig. 2. The parameter h
represents the angle between global and local coordinates. X and Y denote global coordinates, while s and n

indicate local coordinates. Nodes 1 and 2 are located on the bottom of the element whereas nodes 3 and 4 are
located on the top of the element. Each node has two degrees of freedom. The global displacement vector of
the nodes belonging to the cohesive element can be expressed as follows:
ug ¼ u1
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; ð11Þ
where superscripts indicate node numbers, subscripts X and Y denote global degrees of freedom, and subscript
g refers to the global coordinate system.
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Fig. 2. Schematic drawing of a 4-noded linear cohesive element. Variables ds and dn represent shear sliding and normal displacement
jump, respectively. Variables u2
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Y denote global displacements of node 2 along X and Y directions, respectively. The variable dð1;4ÞY

represents the opening displacement between nodes 1 and 4 along global Y direction, while h indicates the angle between global and local
coordinates. Notice that X and Y denote global coordinates, whereas s and n denote local coordinates.
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The global relative displacements, i.e. dX and shear sliding dY, between top and bottom nodes can be
obtained as
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where L is the operator matrix, and superscripts denote corresponding nodes of the cohesive element for which
cohesive separation will be enforced (see Fig. 2). The relative global displacement at Gauss points can be ob-
tained as follows:
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Note that dX and dY require transformation from global coordinates to a local coordinate system for the cohe-
sive element. Let matrix R define the orthogonal transformation from global reference frame (X,Y) to the ele-
ment specific, local coordinate system (s,n), where the direction n lies normal to the cohesive element. Finally,
the relative local displacement vector, ds and dn, is obtained as follows:
ds

dn

� �
¼ Bug ¼ RNLug: ð14Þ
The global nodal force vector and global tangent stiffness matrix for a 4-noded cohesive element can be
evaluated as:
f ¼
Z 1

�1

BTtJ 0dg; K ¼
Z 1

�1

BTCBJ 0dg; ð15Þ
where J0 denotes the Jacobian between reference and original coordinates. Notice that the traction (t) and the
tangent modulus matrix (C) are evaluated using Eq. (3) through Eq. (9).



Table 1
Various approaches for cohesive zone fracture modeling in asphalt concrete

Bulk (background) Cohesive (fracture) References

Case 1 No rate effects No rate effects [20,23]
Case 2 Rate effects No rate effects Present paper
Case 3 No rate effects Rate effects [26]
Case 4 Rate effects Rate effects [26]
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A library of cohesive elements is available in version 6.5 of ABAQUS [25], which include bilinear cohesive
elements. However, the present implementation has been done independently of ABAQUS library of cohesive
elements. One of the advantages of the present UEL implementation is the potential extension of the model to
consider rate dependency. This study of rate effects on fracture behavior is beyond the scope of this paper and
will be addressed in future work [26] (see Table 1).

3. CZM compliance issues

In this section, the effect of cohesive law compliance is explored in the context of its applicability for frac-
ture studies involving asphalt concrete. Furthermore, two cohesive zone models, i.e. a potential-based cohesive
zone model [5] and a bilinear model [8], are employed to investigate the influence of the model on the com-
pliance simulating a one-dimensional problem [27] and a two-dimensional SE(B) test. For simplicity, rate-
independent constitutive models for both the bulk and cohesive materials are used in this section.

Fig. 3 illustrates the simple one-dimensional problem with bulk and cohesive elements. F denotes the force,
h is the length of the bulk material, u is the stretch of the bulk material, dn is the displacement jump between
the cohesive surfaces, and A is the area of the block upon which F is applied. Imposing an equilibrium con-
dition between bulk and cohesive elements with unit area A [27], one obtains
Ee ¼ kdn; ð16Þ

where E is Young’s modulus, e is strain of the bulk material and k is a constant of proportionality between
displacement jump and the corresponding traction, i.e. stiffness. Combining e = u/h and Ee = r/etot = rh/
(u + dn) with Eq. (16), one obtains the effective modulus under mode I loading as follows:
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where rc and dc denote the maximum traction (finite material strength) and the corresponding displacement of
the cohesive law, respectively.

Fig. 4 shows the effective modulus of a one-dimensional specimen as a function of h, dc, and rc. From this
result, we observe that as the ratios rc/E and h/dc increase, the compliance owing to the elasticity of the cohe-
sive law is negligible indicating that the effective modulus (Ee) of the specimen approaches the properties of the
continuum (E). This is intuitive because as the ratio of rc/E and h/dc increases, the relative contribution of
n

F F

h
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u δ

Fig. 3. One-dimensional problem with bulk and cohesive elements.
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cohesive elements to global responses decreases, and as a result, the amount of artificially induced compliance
becomes small.

In order to correlate material properties of asphalt concrete and the compliance of the cohesive models, two
cohesive models [5,8] are employed. Identical material properties are used in the comparison of the two mod-
els, namely: E = 14.2 GPa, m = 0.35, rc = 3.56 MPa and Gc = 344 J m�2. These properties were measured
from samples of asphalt concrete tested as part of the design of a surface mixture for the rehabilitation of taxi-
way E at the Greater Peoria (Illinois) Regional Airport in 2001. The effective modulus of the exponential
model [5] and bilinear model [8] as a function of h and dc is plotted in Fig. 5. Significant compliance is induced
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properties.
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due to the low ratio of rc/E, e.g. rc/E = 0.000276, when the exponential model is adopted. A considerable
reduction of compliance results when the bilinear model is employed. Moreover, the effective modulus (Ee)
approaches the properties of continuum (E) as kcr decreases.

To investigate further the compliance of the cohesive laws [5,8] using asphalt concrete materials, a simula-
tion of a recently developed SE(B) test for asphalt concrete is performed. Fig. 6(a) illustrates a simply sup-
ported SE(B) with a length of 376 mm, a height of 100 mm and a thickness of 75 mm. The simulated
mechanical notch extends 19 mm from the bottom edge of the beam. External loading is imposed at the center
of the top edge of the model. Fig. 6(b) shows the finite element configuration for the whole geometry, which is
constructed using 28112 3-noded triangular plane strain elements. Fig. 6(c) illustrates mesh details for the
regions where cohesive elements are inserted. Three different cases are considered. In the first case, cohesive
elements are inserted only along the center of the specimen with 800 4-noded linear cohesive elements. In
the second case, cohesive elements are inserted over central region of the specimen between (�0.2,19.0)
and (0.2,99.2) with 13236 4-noded linear cohesive elements. Finally, in the third case cohesive elements are
inserted between (�9.2,19.0) and (9.2,99.2) with 32186 4-noded linear cohesive elements. Notice that the num-
ber of cohesive elements used in cases II and III is approximately 15 and 40 times, respectively, larger than that
of case I.

Force (P) versus crack mouth opening displacement (CMOD) curves using the exponential model and the
bilinear model for case I are plotted in Fig. 7(a). For comparison purposes, the P versus CMOD curve
Fig. 6. SE(B) test simulation: (a) geometry and boundary conditions; (b) mesh configuration for the whole geometry; and (c) mesh details
for the regions where cohesive elements are inserted.
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obtained when cohesive elements are not used is plotted, which establishes a baseline corresponding to zero
artificially-induced compliance. When the bilinear model is adopted, the compliance is reduced tremendously.
Moreover, the influence of kcr in the bilinear model is noteworthy. To examine the relationship between num-
ber of cohesive elements and compliance, P versus CMOD curves using the bilinear model for the three cases
are plotted in Fig. 7(b). It is clearly observed that as the number of cohesive elements increases, the compliance
likewise increases. This is intuitive because as the number of cohesive elements increases, the contribution of
the cohesive elements in terms of the compliance likewise increases. Thus, it is recommended to minimize the
number of cohesive elements, if possible, and to adopt cohesive zone models which can control a pre-peak
slope, e.g. a bilinear CZM, when modeling fracture in asphalt concrete.
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4. Viscoelasticity

In this section, a basic introduction to the viscoelastic constitutive laws used in this study is first provided.
Then, energy balance is presented in conjunction with the computational simulation.

4.1. Basic formulation

The constitutive law for isotropic viscoelasticity in the form of a hereditary integral formulation is
[25,28,29]
rðtÞ ¼
Z t

0

2Gðn� t0Þ _edt0 þ I

Z t

0

Kðn� t0Þ _/dt0; ð18Þ
where K and G are bulk and shear moduli, respectively, which are functions of the reduced time, n, which is
later described in this section. The superscripted dots denote differentiation with respect to time t 0, while / and
e are the mechanical volumetric and deviatoric strains, respectively, given as
/ ¼ ekk and eij ¼ eij � 1=3dij/; ð19Þ

in which dij denotes Kronecker delta. The bulk (K) and shear (G) moduli can be defined individually using
Prony series representation
KðnÞ ¼ K1 þ
Xnk

i¼1

Ki expð�n=sK
i Þ GðnÞ ¼ G1 þ

XnG

i¼1

Gi expð�n=sG
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where K1 and G1 are the long term bulk and shear moduli, respectively. In general, the material has a dif-
ferent relaxation time of sK

i and sG
i , and different moduli of Ki and Gi, and a variable number of Prony series

parameters ending in nK and nG. In this study, all relaxation is assumed to occur in the shear mode [30].
In order to obtain the relaxation modulus, two approaches are generally considered. The first is to conduct

a relaxation test, where constant strain is imposed and a generalized Maxwell model is used to describe the
resulting material response. The second is to conduct a creep test, where constant stress is imposed and a Voi-
ght–Kelvin model is used to describe creep compliance behavior, which is then used to obtain relaxation mod-
ulus using interconversion schemes [31,32]. In asphalt concrete, the second approach is preferable due to
several reasons, e.g. a constant stress creep test is easier to perform than the constant strain relaxation test [31].

The creep compliance function using a Voight–Kelvin model is given as
DðnÞ ¼ Dð0Þ þ
XN

i¼1

Dið1� e�n=siÞ þ n
gv
; ð21Þ
where n is reduced time, D(n) is creep compliance at the reduced time, and D(0), Di, si and gv are model con-
stants. The reduced time n is obtained from t/aT where t is a real time and aT is a temperature shift factor.
Model constants are obtained from creep tests conducted at multiple temperatures, and shift factors are eval-
uated from shifting compliance versus time curve at different temperatures in log scale to establish a smooth,
continuous curve. In this study, the creep compliance for the mixture was measured at �20, �10, and 0 �C
using the Superpave IDT test [33,34].
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Interconversion of the time dependent creep compliance function of Eq. (21) yields a relaxation modulus
given as
Fig. 9. DC(T) test simulation; (a) geometry and boundary conditions and (b) mesh configurations for the whole geometry.

Table 3
Temperature shift factors [35]

Temperatures (�C) log(1/aT)

�20 0
�10 1.34
0 2.70

Table 2
Prony series parameters for the master relaxation modulus using the generalized Maxwell model [35]

i Relaxation modulus parameters

Ei (GPa) si (s)

1 3.4 12
2 3.4 162
3 5.9 1852
4 6.8 17476
5 6.1 465460
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EðnÞ ¼
XNþ1

i¼1

Eie
�n=si ; ð22Þ
where E(n) is a relaxation modulus at the reduced time of n, and Ei and si are model constants for the master
relaxation modulus curve. Fig. 8 shows a generalized Maxwell model, which is a widely used constitutive
model to describe the linear viscoelastic behavior of asphalt concrete. Tables 2 and 3 contain the generalized
Maxwell model parameters and shift factors, respectively. Notice that bulk and cohesive material properties
employed in the remainder of simulations are based on a typical surface mixture used in central Illinois in
which the binder grade is PG 64-22 and a nominal maximum aggregate size (NMAS) of 9.5 mm is used [35].
. 10. DC(T) simulation: (a) energy balance with 1.0 mm/min. CMOD loading rate at �10 �C and (b) a load versus time curve.
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4.2. Energy balance

Wagoner et al. [36,37] proposed the disk-shaped compact tension test, or DC(T), for asphalt concrete.
Fig. 9(a) illustrates a DC(T) specimen which is 150 mm high, 145 mm long and 50 mm thick. The length
of the mechanical notch is 27.5 mm, leading to a/w = 0.25. Loading pins are inserted in the holes and pulled
apart with a closed-loop servohydraulic loading system to induce opening. Fig. 9(b) shows mesh discretiza-
tions for the whole geometry. The DC(T) test specimen is constructed using 2376 4-noded quadrilateral
plane strain elements for the bulk elements and 88 4-noded linear elements for the cohesive elements. The
cohesive elements are inserted along the middle of specimen to enable the simulation of pure mode-I crack
propagation. Cohesive elements of 1.0 mm size are employed, as these are found through parametric inves-
tigation to be small enough to capture nonlinear softening behavior occurring in the cohesive zone [23]. A
constant Poisson’s ratio is used: m = 0.35. The cohesive fracture energy obtained at �10 �C and 1 mm min�1.
CMOD loading rate is 324 J m�2 (Gc = 324 J m�2), and the material strength measured at �10 �C is
3.58 MPa (rc = 3.58 MPa) [35]. The instantaneous modulus and the modulus at 60 s and �10 �C are
25.6 GPa and 11.9 GPa, respectively.

Fig. 10(a) shows energy components for a DC(T) test simulation with a controlled CMOD rate of
1 mm min�1 loading rate and material parameters associated with �10 �C. The abscissa represents time
and the ordinate denotes components of total energy. The total dissipated fracture energy is computed as part
of the UEL and is given as, under mode-I condition,
Ef ¼
XZ Z

tnddndA; ð23Þ
where superscript f denotes fracture, A represents area, and dn and tn denote normal opening displacement and
the corresponding normal traction between a cohesive element, respectively. As illustrated in Fig. 10(a), dis-
sipated fracture energy increases as time increases, which is expected. However, recoverable strain energy and
dissipated creep energy show different behavior. As time increases, recoverable strain energy increases, reaches
peak point around 10 s and then decays as the crack extends through the specimen. This trend is almost iden-
tical with that of load versus time as illustrated in Fig. 10(b). On the other hand, the creep energy dissipation
increases gradually before 40 s and shows a steady-state trend after 40 s. The contribution of recoverable
strain energy, dissipated creep energy and dissipated fracture energy to the total work is 35%, 10% and
55%, respectively at 10 s, and 2%, 5% and 93%, respectively at 60 s.

5. Numerical results

Considering viscoelastic bulk materials, simulation of crack propagation in the mode I DC(T) and mixed-
mode SE(B) tests are carried out using the bilinear cohesive zone model. In the DC(T) test, the cohesive
parameters are calibrated by matching numerical results with experimental results. In the mixed-mode
SE(B) simulation, cohesive elements with a regular pattern are inserted over an area to allow cracks to grow
in any direction and to minimize the influence of mesh discretization on crack trajectory. The crack trajectory
obtained from the aforementioned mixed-mode simulation is then compared with that of experimental results.
Moreover, discussion on numerical convergence with several different finite element discretizations is
presented.

5.1. Calibration of cohesive parameters in the DC(T)

In the nonlinear cohesive constitutive model, the cohesive fracture energy and the material strength are the
main parameters used in this study. While these parameters obtained from experiments reflect viscoelastic het-
erogeneous material, in the current modeling viscoelastic effects are considered in bulk elements only and the
bulk and cohesive elements are assumed to be homogeneous. Furthermore, a cohesive fracture energy
obtained from equating to an area of a force versus CMOD curve may overestimate the local work of
separation, because CMOD is a combination of both the bulk and fracture responses [38]. As a result, model
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Fig. 11. Comparison of P versus CMOD curves between numerical and experimental results [37].
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calibration is necessary. In this work, cohesive parameters are calibrated by fitting present numerical results to
experimental results in order to account for the differences between experiments and numerical simulations.

Fig. 11 compares the present numerical results with experimental results. The abscissa indicates CMOD
(mm) and the ordinate indicates the load P(KN). Three specimens are tested at �10 C and 1 mm/min. CMOD
loading rate. Detailed procedures for the DC(T) test are described by Wagoner et al. [36]. The predicted P

versus CMOD curve matches favorably with that of experimental results. Relatively small calibration shifts
of cohesive parameters, i.e. 0.7Gc = 0.7 · 324 J m�2 and 0.95rc = 0.95 · 3.58 MPa, are required to bring sim-
ulated results into reasonable comparison with measured results. For the remainder of simulations, the cali-
brated cohesive parameters are adopted.

5.2. Mixed-mode crack propagation in the SE(B)

Unlike the previous example (mode I) where a crack path is predefined, in the simulation of mixed-mode
fracture in the SE(B) test cohesive elements are inserted over an area to allow cracks to propagate in any direc-
tion. Fig. 12(a) shows the geometry, boundary condition, and shaded region where cohesive elements have
been inserted. The length, height and thickness of the SE(B) specimen are 376 mm, 100 mm and 75 mm,
respectively. The notch tip is located at 65 mm left and 19 mm above the center of the bottom edge of the
beam. External loading is imposed at the center of the top edge of the model for the mid-span loading con-
figuration of the SE(B) test. Figs. 12(b) and (c) illustrate finite element discretization for the entire model along
with mesh details in the shaded region where cohesive elements are inserted. The shaded region between
(123,19) and (150, 95) is constructed in a regular pattern with 3-noded triangular elements having an aspect
ratio of 1:1.9 (x:y). The SE(B) structure is constructed using 5398 3-noded triangular elements for bulk mate-
rial and 3066 4-noded linear elements for cohesive interfaces. A viscoelastic analysis is performed. We assume
the same cohesive fracture energy for mode-I and mode-II.

Fig. 13(a) illustrates the final deformed shapes and crack trajectories from the simulation. A magnification
factor of 30 is used to make crack trajectories visible. Fig. 13(b) shows a comparison of the crack trajectories
of experimental and numerical results. Green and blue lines indicate the crack trajectories of the experimental
results and a red line indicates the crack trajectory of the present numerical simulation, indicating favorable
agreement.



Fig. 12. Mixed-mode SE(B) test: (a) geometry and boundary conditions; (b) mesh configuration for the whole geometry; and (c) mesh
details of the shaded region of (123,19) and (150,95) where cohesive elements are inserted.
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5.3. Discussion on numerical convergence

It has been reported that one of the challenges in cohesive zone modeling is lack of numerical convergence
when an implicit displacement-based finite element scheme is used. This problem is rarely observed when cohe-
sive elements are inserted along a predefined line. Numerical non-convergence, however, is pronounced when
a number of cohesive elements are inserted over an area in the absence of known crack paths. In this section,
numerical convergence is presented and discussed in context of mesh discretization and nonlinear equation
solvers. For simplicity, viscoelastic effects are not considered in this portion of study.

Several researchers [39–41] have explored integration schemes and/or nonlinear equation solvers to enhance
convergence when using cohesive zone models. Regarding integration schemes, Roy and Dodds [39] reported
that the Newton–Cotes integration rule leads to oscillatory opening profiles and induces numerical divergence,
indicating that conventional Gauss Quadrature is superior to the Newton–Cotes. Han et al. [40] adopted a
Lobatto 3 · 3 numerical integration for interface elements to avoid numerical divergence for three-dimen-
sional problems. Regarding nonlinear equation solvers, several researchers adopted arc-length methods to
overcome non-convergence in conjunction with cohesive elements [40,41]. The arc-length method, initially
proposed by Riks [42] and modified by other researchers [43,44] succeeded in tracing the limit point and post
peak responses by a prescribed arc-length. However, the arc-length method still fails to converge at or near the



Fig. 13. Simulation of the mixed-mode SE(B) test: (a) deformed shape showing crack trajectory (scale factor is 30) and (b) comparison of
the crack trajectory between numerical and experimental results. Red line indicates the crack trajectory obtained from the present
numerical simulation, and green and blue lines denote the crack trajectories from the experiment. (For interpretation of the references to
colour in this figure legend, the reader is referred to the electronic version of this article.)
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limiting points. Rots and de Borst [41] pointed out that ‘‘this instability should be attributed to the global con-
straints equations including all the degree of freedom, which was contradictory to the fact that the failure zone
or fracture process zone is highly localized.’’

To address and clarify these numerical issues associated with the CZM, crack propagation analysis of the
mixed-mode SE(B) test is performed. The geometry, boundary conditions and cohesive parameters of SE(B)
test are identical with those of SE(B) test in Section 5.2 (see Fig. 12(a)). E = 14.2 GPa and m = 0.35 are used.
The three different mesh discretizations are adopted to study the influence of mesh discretization on the
numerical convergence (see Figs. 14(a), (d) and (g)). Furthermore, two nonlinear solvers, i.e. the Newton–
Raphson and Riks methods, are employed to explore their influence on the convergence. Notice that the
meshes of Figs. 14(a) and (d) are constructed in a regular pattern, while the mesh of Fig. 14(g) is tailored
to the crack trajectory predicted using a discrete fracture approach with the program I-FRANC2D [45].

Fig. 14 illustrates the final crack trajectory for different mesh discretizations using two nonlinear solvers
before the solutions experience divergence. The bottom-left point in each deformed shape corresponds to
the original crack tip and the top-right point corresponds to the location of external loading. Figs. 14 (a),
(d) and (g) illustrate mesh details for Figs. 14(b) and (c), (e) and (f), and (h) and (i), respectively. Several
important observations from this analysis include: (1) for the meshes constructed in a regular pattern, the Riks
method yields better performance than the Newton–Raphson method with a varying degree of success
depending on the mesh discretization; (2) for the mesh tailored to the crack trajectory predicted from
I-Franc2D, both nonlinear solvers perform very well demonstrating that the degree of convergence depends
upon the finite element discretizations. In other words, if the crack propagation angle and inclination of cohe-
sive interface element is similar with that of either analytical or experimental results, the numerical solution
converges relatively well; and (3) once crack branching occurs, numerical solutions are rarely converged. Peak
loads and final loads before solutions diverge for Figs. 14(b), (c), (e), (f), (h) and (i) are shown in Table 4.



Fig. 14. Influence of mesh layout on convergence of the numerical solution and the crack pattern. Final crack trajectory: (a), (d) and (g)
show mesh details for (b) and (c), (e) and (f), and (h) and (i), respectively. The Newton–Raphson is used for (b), (e) and (h), and the Riks
method is adopted for (c), (f) and (i). Notice that the bottom left point of each deformed figure corresponds to the original crack tip and
the top right point corresponds to the location of applied loading. Magnification factor 50 is used for (b), (c), (e) and (f), and the
magnification factor 10 is employed for (h) and (i) to make crack trajectory visible.

Table 4
Loads associated to Fig. 14

Mesh layout (a) (d) (g)

Final crack trajectory (b) (c) (e) (f) (h) (i)

Loads corresponding to final crack trajectory (KN) 4.91 4.10 2.88 1.09 0.22 0.28
Peak loads (KN) – 4.87 4.58 4.58 4.89 4.89
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Notice that for Fig. 14(b), the numerical solution starts to diverge before it reaches the post-peak portion of
the P versus CMOD curve.

6. Summary and conclusions

In this study, a bilinear cohesive zone model is used for fracture modeling in asphalt concrete laboratory
tests such as DC(T) and SE(B) considering viscoelastic effects in the bulk (background) material. In Section 1,
a comprehensive review of the literature is presented. In Section 2, detailed theoretical and numerical aspects
of the bilinear CZM are explained in conjunction with the ABAQUS user element subroutine (UEL) [25].
Detailed explanations regarding the computation of the force vector and the tangent stiffness matrix are pre-
sented. In Section 3, issues regarding compliance of the cohesive laws, i.e. the potential-based cohesive zone
model [5] and the bilinear model [8], are explored by simulating a simple one-dimensional problem [27] and a
two-dimensional SE(B) test in asphalt concrete. It is demonstrated that the bilinear cohesive zone model [8] is
more appropriate for asphalt concrete materials than the model by Xu and Needleman [5] in terms of a reduc-
tion of compliance. In Section 4, energy balance is presented in conjunction with the computational simula-
tion. In Section 5, simulation of the DC(T) fracture test is presented, in which the cohesive elements are
inserted along the middle of the specimen to permit mode I crack propagation. This simulation is used to cal-
ibrate the cohesive zone model parameters. In the mixed-mode SE(B) test simulation, cohesive elements are
inserted over an area to allow cracks to grow in any direction. Moreover, a regular finite element discretization
is used to lower the influence of mesh discretization on crack trajectory. A mixed-mode crack propagation
simulation is performed with good successes. However, it is observed that a numerical divergence is not avoid-
able for mixed-mode simulations, and highly depends upon the nature of the finite element discretization used.
The mixed-mode crack trajectory from the present simulation is found to match remarkably well with exper-
imental results.

The major contributions of this study can be summarized as follows:

• Artificial compliance introduced by intrinsic cohesive zone models is presented and discussed thoroughly by
simulating a simple one-dimensional problem and mixed-mode SE(B) test.

• Motivation for the use of a bilinear CZM is presented in the context of the prediction of fracture in asphalt
concrete.

• Time and temperature effects in bulk materials are taken into account to explore viscoelastic fracture
behavior of asphalt concrete.

• Mixed-mode SE(B) viscoelastic simulation, in which cohesive elements with a regular pattern are inserted
over an area in absence of known crack paths, is performed successfully and the predicted crack trajectory
is found to match well with that of experiments.

• A detailed discussion of numerical convergence in the context of mesh discretization and nonlinear equa-
tion solvers is presented.
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