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Abstract

This paper describes the development and application of a novel modified boundary layer (MBL) model for graded
nonhomogeneous materials, e.g. functionally graded materials (FGMs). The proposed model is based on a middle-crack
tension, M(T), specimen with traction boundary conditions applied to the top and lateral edges of the model. Finite ele-
ment analyses are performed using WARP3D, a fracture mechanics research finite element code, which incorporates ele-
ments with graded elastic and plastic properties. Elastic crack-tip fields obtained from the proposed MBL model show
excellent agreement with those obtained from full models of the cracked component for homogeneous and graded nonho-
mogeneous materials. The K–T dominance of FGMs is investigated by comparing the actual stress fields with the asymp-
totic stress fields (the Williams� solution). The examples investigated in the present study consider a crack parallel to the
material gradient. Results of the present study provide insight into the K–T dominance of FGMs and also show the range
of applicability of the proposed MBL model. The MBL model is applied to analyze the elastic–plastic crack-tip response of
a Ti/TiB FGM SE(T) specimen. The numerical results demonstrate that the proposed MBL model captures the effect of
T-stress on plastic zone size and shape, constraint effects, etc. for such configurations.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The modified boundary layer (MBL) formulation has been adopted by many researchers to analyze the
elastic–plastic crack-tip fields in homogeneous materials [1–4]. The ‘‘standard’’ MBL model consists of a
disk-shaped mesh that represents a single-ended crack in an infinite body. The model is loaded by remote
boundary conditions applied as tractions or equivalent displacements given by the first two terms (K and
T) of the Williams� [5] solution. This model simulates the crack-tip conditions in an arbitrary geometry,
provided that the plasticity remains well contained within the body, i.e. small-scale yielding (SSY) conditions
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prevail. The MBL model has been employed to investigate the effect of T-stress on the elastic–plastic crack-tip
fields [1,2], to characterize constraint effects [3], to study ductile crack growth [4], and to many other fracture
mechanics problems that consider homogeneous material properties.

Despite its potential usefulness, the ‘‘standard’’ MBL formulation for graded nonhomogeneous materials,
e.g. functionally graded materials (FGMs), has not yet been developed. For graded nonhomogeneous mate-
rials, a new degree of freedom, i.e. the intrinsic length scale of the material, must be reflected in the MBL
formulation. The material length scale invalidates the use of the ‘‘standard’’ MBL formulation, i.e. the
disk-shaped model most often adopted for homogeneous materials. In this sense, a new boundary layer for-
mulation applicable for graded nonhomogeneous materials is needed. Such boundary layer formulation is
especially needed to simplify the elastic–plastic analysis of, for example, a three dimensional (3-D) surface
crack in FGMs. K and T values along the 3-D surface crack front can be obtained from the elastic analysis.
Theses values, along with the material gradient function, serve as inputs to the MBL model, which performs
the simple 2-D elastic–plastic crack-tip analysis. Such approach is only possible with the development a new
MBL model for FGMs—this represents the main scope of the present paper.

Many researchers have investigated the crack-tip stress fields in graded nonhomogeneous materials [6]. Del-
ale and Erdogan [7] solved crack problems for nonhomogeneous materials assuming an exponential spatial
variation of the elastic modulus. Eischen [8] adopted the eigenfunction technique to determine the leading
terms of the asymptotic stress field in FGMs. Eischen observed that the asymptotic stress field near the
crack-tip in a FGM is identical to that in a homogeneous material, i.e. the first two terms of the Williams�
solution. However, as the distance from the crack-tip increases, the higher-order terms become increasingly
affected by the material gradient and the simple K–T dominance vanishes for FGMs. Studies have been per-
formed to investigate the K–T dominance of graded nonhomogeneous materials. Gu and Asaro [9] studied
crack deflection in FGMs where the crack plane is perpendicular to the material gradient direction. They
showed that the size of the K–T dominant region decreases as the severity of the material nonhomogeneity
increases. Marur and Tippur [10] also investigated the K–T dominance in FGMs. They argued that the homo-
geneous, asymptotic solution is not valid for FGMs and suggested that higher–order terms of the series must
be considered to obtain good agreement between the analytical and numerical results. Recently, Anlas et al.
[11] explored the extent and shape of the K–T dominant region in FGMs. They identified the relationship
between the two different forms of asymptotic stress fields (i.e. the Williams [5] form and the modified Erdogan
[12] form) and investigated the extent of validity of these fields.

In this study, we propose a new MBL framework for graded nonhomogeneous materials. The proposed
model is based on a middle-crack tension, M(T), specimen with traction boundary conditions applied to
the top and lateral edges of the model. The crack plane lies parallel to the direction of the material gradation.
We employ this model to analyze the elastic crack-tip fields of homogeneous and graded nonhomogeneous
materials and compare the results with those obtained from the full-field calculations. Also, we investigate
the K–T dominance of graded nonhomogeneous materials to determine the range of applicability of the pro-
posed MBL model. Finally, we apply the proposed MBL model to predict the elastic–plastic crack-tip fields of
a Ti/TiB FGM SE(T) specimen.

The remainder of the paper is organized as follows. Section 2 presents the concept of the new MBL model
for graded nonhomogeneous materials and verifies the new MBL model. Section 3 describes the size effect of
the MBL model via elastic crack-tip analysis and also describes the K–T dominance of graded nonhomogene-
ous materials. Section 4 presents an application of the MBL model to elastic–plastic crack-tip analysis of a
Ti/TiB FGM SE(T) specimen. Finally, Section 5 provides some concluding remarks.
2. Modified boundary layer model for FGMs

For the MBL formulation of homogeneous materials, tractions or equivalent displacements (in general, dis-
placements are preferred) are applied to the outer boundary of the disk-shaped finite element (FE) model
based on the first two terms of the Williams� solution. For mode I, the solution is given by [5]
rijðr; hÞ ¼
KIffiffiffiffiffiffiffi
2pr

p f I
ijðhÞ þ T d1id1j; as r ! 0; ð1Þ
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where rij denotes the stress tensor, KI is the mode I stress intensity factor (SIF), T is the nonsingular stress
parallel to the crack, and the angular function f I

ijðhÞ can be found in several references, e.g. [13,14]. In a
plane-strain FE model, the equivalent boundary conditions can be applied in terms of displacements given as
Fig. 1.
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where l is the shear modulus, j is the bulk modulus, and m is the Poisson�s ratio of the material.
For graded nonhomogeneous materials, the intrinsic length scale of the material must be introduced to the

MBL framework. Simple application of the displacement boundary conditions, i.e. Eq. (2), on a nonhomo-
geneous model will not generate the corresponding K–T stress field—the displacement boundary conditions
are functions of material properties but these have a gradient within the model. Thus, for graded nonhomo-
geneous materials, this new ‘‘degree of freedom’’ invalidates the use of the existing boundary layer framework
most often used for homogeneous materials. A MBL model for graded nonhomogeneous materials must have
the correct tractions or displacements to yield the desired K–T stress field. One approach applies tractions, Eq.
(1), on the boundary of the disk-shaped model since the stress field is independent of the material properties.
However, determination of the appropriate size of the disk-shaped model becomes a problem. The disk-
shaped model must remain within the K–T dominant region, which depends on the material gradient, crack
geometry, and loading conditions. Such problem involves two length scales, i.e. the fracture mechanics length
scale and the intrinsic material length scale. These two length scales must be consistent within the model. In
this sense, a MBL model for graded nonhomogeneous materials requires the convenience of applying tractions
to the boundary and the consistency of the two length scales.

In this work, we select the middle-crack tension, M(T), specimen as the reference configuration for the new
MBL model. Fig. 1 shows the geometry of this MBL model. The linear-elastic material is graded parallel to
the crack plane and material properties are symmetric with respect to the centerline of the model. The sym-
metric loading conditions and material properties enable the use of a quarter model. Considering the quarter
model (shaded region in Fig. 1), tractions are easily applied to the top edge of the model and also to the lateral
edge of the model. Now, the key task becomes the determination of the corresponding traction boundary con-
ditions that generate the desired K–T field near the crack-tip. Fig. 2 shows the procedure to obtain the traction
Traction
boundary

conditions

x

y

a

w

2h

t

E 2

E 1

z

Schematics of the proposed modified boundary layer model. Material properties are graded in the x-direction and symmetric with
to the centerline of the model. The traction boundary conditions are applied to the top and lateral edges of the model.
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Fig. 2. Procedure to obtain the traction boundary conditions for the proposed modified boundary layer model. Unit traction applied to
(a) the top edge and (b) the lateral edge of the model. Eqs. (3)–(5) yield the traction boundary conditions required to generate KI and T at
the crack-tip.
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boundary conditions. First, a unit traction runit
top is applied to the top edge of the model, Fig. 2(a). This unit

traction produces Kunit
I;top and T unit

top at the crack-tip. As a second step, a unit traction runit
lateral is applied to lateral

edge of the model, Fig. 2(b). Similarly, this unit traction produces Kunit
I;lateral and T unit

lateral at the crack-tip. For

homogeneous materials, Kunit
I;lateral ¼ 0 since the stress parallel to the crack plane does not contribute to the mode

I SIF. However, for graded nonhomogeneous materials, stress parallel to the crack plane contributes to the
mode I SIF (through secondary bending as discussed in the following subsection). The SIF and T-stress values
are proportional to the applied tractions. Let KI and T denote the desired values of mode I SIF and the T-
stress. Then these two values can be expressed by
KI ¼ fKunit
I;top þ gKunit

I;lateral; ð3Þ
T ¼ f T unit

top þ gT unit
lateral; ð4Þ
where
f ¼ rtop

runit
top

; g ¼ rlateral

runit
lateral

; ð5Þ
where rtop and rlateral are the traction boundary conditions needed to obtain KI and T. By using Eqs. (3)–(5),
the traction boundary conditions for the MBL model can be easily determined for any desired KI and T,
Fig. 2(c). Two example problems (homogeneous and graded nonhomogeneous material) verify the proposed
MBL model in the following subsection.

2.1. Verification of the proposed modified boundary layer model

Fig. 1 shows the geometries of the proposed MBL model, i.e. the M(T) specimen. For the following two
examples, the crack half-length, a; plate half-width, w; plate half-height, h; and plate thickness, t, are fixed
such that a/w = 0.1, h/w = 2 and t/w = 0.01. Fig. 3 shows the 3-D FE mesh used in the present study.
Symmetry conditions permit modelling of only one quarter of the specimen. The mesh consists of triquadratic
(20-noded brick) elements with reduced (2 · 2 · 2) integration and has one-layer of elements through the
thickness. All the nodes in the model are constrained in the thickness direction to obtain plane-strain condi-
tions. Elements with quarter-point nodes and collapsed faces are used to model the crack-tip. The FE model
has 37683 nodes and 5250 elements.



Fig. 3. Typical finite element mesh used in the present study: (a) overall view; (b) close-up view of the circular domain (67 rings) at the
crack-tip.
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The present study considers two sets of material properties, i.e. homogeneous and graded nonhomogeneous
materials. For the homogeneous material, the Young�s modulus E(= E1 = E2) is 1 (consistent units) and the
Poisson�s ratio m is 0.3. For the graded nonhomogeneous material, m is a constant (=0.3) and E is an exponen-
tial function:
EðxÞ ¼ E1e
kx; ð6Þ
where k is the material nonhomogeneity parameter and 1/k denotes the length scale of the material. In this
example, E1 and E2 are 1 and 5 (consistent units), respectively. This corresponds to a material nonhomogene-
ity parameter k = 0.313.

Conventional finite elements with constant material properties in each element, i.e. homogeneous element,
have been used to analyze the behavior of graded materials with relatively fine meshes [15]. Recently, Kim
and Paulino [16] presented a generalized isoparametric formulation (GIF) to calculate the elastic properties
within an element. Jin et al. [17] further evaluated the plastic properties within an element using this approach.
Such graded elements include the gradation effect at the element level and thus can substantially improve the
solution quality based on the same mesh density, especially for higher-order graded elements [16]. Within
graded elements, the calculation of stiffness, stress and other quantities requires the value of properties at inte-
gration points. With nodal values of material properties defined at each nodes, interpolation using element
shape functions determines property values at integration points. The current study employs the nodal-value
approach rather than the direct property sampling at the Gauss points [18].

Tractions applied to the top and lateral edges of the model are uniform for homogeneous materials. How-
ever, for graded nonhomogeneous materials, the uniform traction applied to the top edge of the model may
not be equivalent to the far-field tension—due to the material gradient in the x-direction. Kim and Paulino [16]
give the exact traction solution equivalent to the far-field tension for exponentially graded nonhomogeneous
materials. If the height of the model (h) is sufficiently long, the uniform traction solution and the exact traction
solution will generate the same result far away from the boundary (e.g. Saint Venant principle). In this study,
for accuracy, the traction applied to the top edge of the model is determined from the solution given by Kim
and Paulino [16].

2.1.1. Finite element analysis (FEA)

The numerical solutions are generated using WARP3D [19], a research code for nonlinear fracture mechan-
ics. WARPD3D employs an incremental-iterative, implicit formulation for analysis of fracture models
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subjected to quasi-static and dynamic loading. Besides the conventional solid elements for homogeneous mate-
rials, this code also incorporates solid elements with graded elastic and plastic properties. Moreover,
WARP3D incorporates the interaction integral technique to calculate SIFs and T-stresses in 3-D homoge-
neous [20–23] and functionally graded materials [24,25] (see Appendix A). The interaction integral method
post-processes actual displacement, stress and strain fields of an equilibrium state for a boundary-value prob-
lem. Another selected equilibrium state supplies auxiliary fields that involve sought quantities such as stress
intensity factors or T-stresses. A linear combination of actual fields with auxiliary fields described by Williams�
solution [5], constitutes a third, superimposed, equilibrium state. The computation of J for this superimposed
state leads to a conservation integral, composed of interacting actual and auxiliary terms, that permits direct
calculation of stress intensity factors [20]. Alternative auxiliary fields enable the direct calculation of T-stresses
[26].

In the present study, KI and T-stress are calculated from the MBL model. These values are used to obtain
the crack-tip stress field based on the Williams� solution (up to the second term). Also the crack-tip stress fields
are directly obtained from the nodal stress values and these fields are compared with the Williams� solution.

2.1.2. Results: Homogeneous material

First, a unit traction ðrunit
top ¼ 1Þ is applied to the top edge of the model. This produces Kunit

I;top ¼ 1:25 and
T unit

top ¼ �1 (consistent units). The biaxiality ratio relates the T-stress to the stress intensity factor by
b ¼ T
ffiffiffiffiffiffi
pa

p

KI

. ð7Þ
It is a well known fact that b = �1 for a homogeneous M(T) specimen with a/w = 0.1 [14]. This signifies that
the ratio of the remote traction applied to the specimen to the T-stress at the crack-tip is �1. Numerical results
from the present study confirm that the T-stress is equal to a negative value of the unit traction. We now apply
a unit traction ðrunit

lateral ¼ 1Þ to the lateral edge of the model. This produces Kunit
I;lateral ¼ 0 and T unit

lateral ¼ 1. This
result is obvious since the stress parallel to the crack plane is the T-stress and does not contribute to the mode
I SIF.

Eqs. (3)–(5) determine the traction boundary conditions (rtop and rlateral) required to obtain the desired K–
T stress field. For example, if the desired values are KI = 5 and T = 0, the traction boundary conditions are
rtop = 4 and rlateral = 4. Fig. 4(a) shows the normalized crack-tip stress field obtained from the MBL model
with the traction boundary conditions simultaneously applied to the top (rtop = 4) and the lateral (rlateral = 4)

edges of the model. The normalized stress values ðrij

ffiffiffiffiffiffiffi
2pr

p
=KIÞ are plotted against the angle (h/p) around the

crack-tip. The normalized distance from the crack-tip (r/a) is 0.014. Fig. 4(a) also shows the stress field given
by the Williams� solution, where KI = 5 and T = 0. Two results show excellent agreement which demonstrate
the applicability of the proposed MBL model to homogeneous materials.

2.1.3. Results: Nonhomogeneous material

The exact traction equivalent to the far-field unit traction (given by Kim and Paulino [16]) is applied to the
top edge of the model. This produces Kunit

I;top ¼ 0:549 and T unit
top ¼ �0:477. Since there is no material gradient in

the y-direction, uniform unit traction, runit
lateral ¼ 1, is applied to the lateral edge of the model. This produces

Kunit
I;lateral ¼ 0:292 and T unit

lateral ¼ 0:835. Note the effect of runit
lateral to the mode I SIF. Also the T-stress is not equal

to the applied unit traction as in the homogeneous case. This phenomenon is due to the material gradient and
can be easily explained by observing the deformed shape and the stress distribution of the MBL model. Fig. 5
shows the stress distribution within the deformed FE model, where a unit traction is applied to the lateral
edge. Fig. 5(a) shows the stress distribution in the y-direction (ryy). The top part of the model shows boundary
effects (considering prescribed tractions at the top edge). However, this boundary effect does not affect the
stress distribution at the symmetry plane (y = 0). Due to the secondary bending effect caused by the material
gradient, the cracked region of the model suffers mode I loading. The deformed shape of the model shows the
opening of the crack-face. Fig. 5(b) shows the stress distribution in the x-direction (rxx). Here again, the top
part of the model shows boundary effects, which can be neglected. Also the stress above the crack is slightly
lower than the applied traction (unit traction). Fig. 5 demonstrates that behaviors of graded nonhomogeneous



Fig. 5. Deformed shape and stress distribution of graded nonhomogeneous (E2/E1 = 5) FE model with unit traction applied to the lateral
edge: stress distribution in (a) y-direction ryy; (b) x-direction rxx.

Fig. 4. Comparison of normalized stress values around the crack-tip obtained from Williams� solution, Eq. (1), and proposed modified
boundary layer (MBL) model: (a) homogeneous; (b) nonhomogeneous.

D.-J. Shim et al. / Engineering Fracture Mechanics 73 (2006) 593–615 599
materials are very much different from those of homogeneous materials. In this example, the Young�s modulus
of the material increases exponentially in the x-direction; from 1 to 5. If the Young�s modulus of the material
decreases in the x-direction; from 5 to 1, the secondary bending effect shown in Fig. 5(a) is in the opposite
direction. This causes crack-closure and thus Kunit

I;lateral is a negative value, which signifies that the traction
applied to the lateral edge reduces the total KI.
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Nevertheless, the traction boundary conditions (rtop and rlateral) can still be determined from Eqs. (3)–(5).
For example, if the desired values are KI = 5 and T = 0, the traction boundary conditions are rtop = 7 and
rlateral = 4. Fig. 4(b) shows the normalized crack-tip stress field obtained from the MBL model, where rtop = 7
and rlateral = 4. The normalized distance from the crack-tip (r/a) is 0.014. Fig. 4(b) also shows the stress field
given by the Williams� solution, where KI = 5 and T = 0. Two results show excellent agreement which verifies
the applicability of the proposed MBL model to graded nonhomogeneous materials. Fig. 4(b) also confirms
the fact that the asymptotic stress field very close to the crack-tip in a graded nonhomogeneous material is
exactly same as the singular term of the Williams� solution [7,8].

2.2. Remarks on the proposed modified boundary layer model

Two example problems described in the previous subsection show that the proposed MBL formulation is
applicable to homogeneous and nonhomogeneous (exponentially graded) materials. Since the traction bound-
ary conditions compensate for the material gradient, this formulation can be employed to any type of material
gradient (e.g. constant, linear, exponential) in the x-direction—different material gradient yields different trac-
tion boundary conditions for the same desired KI and T. Furthermore, the crack geometry of the proposed
MBL model does not have to be fixed to a/w = 0.1.

The ‘‘standard’’ MBL formulation, i.e. the disk-shaped model most often used for homogeneous materials,
does not involve an explicit crack or ligament length. A dimensional scale is introduced by the radius at which
displacements are applied. However, the MBL model proposed in the present work is based on a M(T) spec-
imen, which is a boundary-valued model. Therefore, the MBL model has its own K–T dominant region. This
introduces a size effect, i.e. the size of the K–T dominant region of the MBL model depends on the size of the
model itself. Another issue related to this problem is the extent of applicability of the K–T stress field for
graded nonhomogeneous materials. Since the MBL model can only provide the K–T stress field, dominance
of this field must be investigated for different cracked geometries and material gradients. These aspects are
investigated in the following section.

3. Elastic crack-tip analysis and K–T dominance of FGMs

In this section, we investigate two problems. First, we investigate the size effect of the proposed MBL
model. This work attempts to determine the appropriate size of the model which can fully describe the K–
T stress field of a full cracked structure (or specimen). Then, we investigate the dominance of the K–T field
in elastic, graded nonhomogeneous materials. This is achieved by comparing the actual crack-tip stress field
with the K–T stress field. This study provides insight into the effect of material gradient and crack geometry to
the K–T dominance of FGMs.

3.1. Size effect of the proposed modified boundary layer model

In the present study, single-edged tension, SE(T), specimen is considered as the full cracked structure.
SE(T) specimen with a short crack is a good representation of a 3-D surface crack in a plate under mode I
loading. Since our ultimate objective is to apply the MBL model to 3-D surface crack problems, SE(T) spec-
imen serves as an appropriate example. Fig. 6 shows the geometry of the SE(T) specimen considered in the
present study. Symmetry conditions permit modelling of only half of the specimen. For the following exam-
ples, the crack length, a = 2; plate width, w = 20; plate half-height, h = 60; and plate thickness, t = 0.2
(consistent units), which yield a/w = 0.1, h/w = 3, t/w = 0.01.

The three-dimensional FE mesh for the SE(T) specimen is similar to the mesh employed for the proposed
MBL model. The mesh consists of triquadratic (20-noded brick) elements with reduced (2 · 2 · 2) integration
and has one-layer of elements through the thickness. All the nodes in the model are constrained in the thick-
ness direction to obtain plane-strain conditions. Elements with quarter-point nodes and collapsed faces are
used for modelling the crack-tip. The FE model has 37683 nodes and 5250 elements. Homogeneous and
nonhomogeneous material properties are considered. For homogeneous material, the Young�s modulus is a
unit value, i.e. E1 = E2 = 1 (consistent units). For nonhomogeneous material, the Young�s modulus varies
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Fig. 6. SE(T) specimen with material properties graded in the x-direction.
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exponentially according to E(x) = E1e
kx. In this example, E1 = 5 and E2 = 1 which corresponds to k = �0.08.

Poisson�s ratio is a constant, m = 0.3, for both cases. The tensile stress, rt, is applied to the top edge of the
model. The tensile stress is a uniform value for the homogeneous material. For the exponentially graded non-
homogeneous material, the tensile stress follows the solution given by Kim and Paulino [16]. WARP3D is used
to perform the linear-elastic FE analysis. Elastic crack-tip stress field is obtained from the nodal stress values.
Interaction integral technique implemented in WARP3D calculates the KI and T-stress. These values are used
to calculate the K–T stress field (Williams� solution) using Eq. (1). These values also serve as the desired KI and
T, Eq. (3), for the proposed MBL model.

As mentioned in the previous section, the proposed MBL model is a boundary-value model and thus has a
K–T dominant region, which changes in size with the model size. In order to fully describe the K–T stress field
of the full cracked structure, the K–T dominant region of the MBL model must be larger than that of the full
cracked structure, i.e. the SE(T) specimen. In the present study, two different sized MBL models are employed
to investigate the size effect of the proposed MBL model. The first model, ‘‘model A’’, has a crack length equal
to the SE(T) specimen and the second model, ‘‘model B’’, has a crack length eight times the SE(T) crack
length. For both models a/w = 0.44. Homogeneous and graded nonhomogeneous materials are considered.
Since the stress in the y-direction, ryy, is the dominant stress, the following results only compare ryy.

3.1.1. Homogeneous material

Fig. 7 shows the plot of normalized opening stress, ryy/rt, at the symmetry plane (h = 0) versus the normal-
ized distance from the crack-tip, r/aSE(T). The opening stress is normalized by the tensile stress applied to the
SE(T) specimen and the distance from the crack-tip is normalized by the crack length of the SE(T) specimen.
Fig. 7 shows the actual stress field obtained from the FE analysis of the SE(T) specimen, stress field based on
the Williams� asymptotic solution, and the stress field obtained from the two MBL models. All solutions show
good agreement near the crack-tip, i.e. r ! 0. The actual stress field deviates from the Williams� asymptotic
solution as the distance from the crack-tip increases. This is due to the effect of the higher-order terms of
the Williams� solution. Difference between these two results determines the K–T dominance, which will be
discussed in the following subsection. Here, we focus on the size effect of the MBL model. Results obtained
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from the two MBL models, i.e. ‘‘model A’’ and ‘‘model B’’, demonstrate the size effect of the MBL model. The
stress field of ‘‘model A’’, which has the same crack length as the SE(T) specimen, deviates from the Williams�
asymptotic solution as the distance from the crack-tip increases. The illustration in Fig. 7 depicts that the K–T
dominant region of ‘‘model A’’ is within the K–T dominant region of the SE(T) specimen. The stress field of
‘‘model A’’ starts to deviates from the Williams� asymptotic solution at the distance where the K–T dominance
vanishes for the MBL model. On the other hand, for ‘‘model B’’, which has a crack length eight times larger
than that of the SE(T) specimen, the K–T dominant region of the SE(T) specimen is contained within that of
the MBL model. Under these conditions, the stress field obtained from ‘‘model B’’ fully explains the K–T dom-
inant region of the SE(T) specimen. Fig. 7 shows that the stress field of ‘‘model B’’ matches the Williams�
asymptotic solution up to r/aSE(T) = 0.15.

3.1.2. Nonhomogeneous material

The size of the MBL model does not affect the material properties for homogeneous materials. However,
for graded nonhomogeneous materials, the size of the proposed MBL model affects the material gradation.
For any model size, the material nonhomogeneity parameter (k) and the material property (Young�s modulus)
at the crack-tip must be equal to those of the full cracked structure. In this example, the Young�s modulus of
the SE(T) specimen is exponentially graded from E1 = 5 to E2 = 1 and the material nonhomogeneity para-
meter k = �0.08. The Young�s modulus at the crack-tip Etip = 4.26. Based on these values, gradation of
the Young�s modulus within the MBL model is determined by
E1 ¼ Etipe
�ka;

E2 ¼ Etipe
kðw�aÞ;

ð8Þ
where a is the crack length and w is the half-plate width of the MBL model. E1 and E2 are the Young�s mod-
ulus at the center and lateral edge of the model, respectively (Fig. 8). In this study, we employ ‘‘model B’’ as
the MBL model. Illustration in Fig. 8, depicts the material gradient of the MBL model. The Young�s modulus
of the MBL model is graded from E1 = 15.32 to E2 = 0.84. Fig. 8 shows the plot of normalized stress, ryy/rt,
at the symmetry plane (h = 0) versus the normalized distance from the crack-tip, r/aSE(T), for graded nonho-
mogeneous material. Fig. 8 shows the actual stress field obtained from the FE analysis of the SE(T) specimen,
stress field based on the Williams� asymptotic solution, and the stress field obtained from the MBL model
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(‘‘model B’’). Results are very similar to those of the homogeneous example where all solutions agree well very
near the crack-tip. Fig. 8 also demonstrates that the proposed MBL model can fully explain the K–T dominant
region of a graded nonhomogeneous material, provided that it has a larger K–T dominant region compared to
that of a full cracked structure.

As described above, the material gradient of the MBL model can be determined from Eq. (8). However, if
the full cracked structure, i.e. SE(T) specimen, has a relatively severe material gradient, the values of the mate-
rial property (Young�s modulus) would be extremely large or very close to zero either at the center or the lat-
eral edge of the MBL model. In the present study, another method is adopted to assign the material gradient
to the MBL model. As illustrated in Fig. 9, the material property of the MBL model is graded only in the
region corresponding to the SE(T) specimen. The other regions of the MBL model have homogeneous mate-
rial properties, i.e. E1 = 5 and E2 = 1. Fig. 9 shows the actual stress field obtained from the FE analysis of the
SE(T) specimen, stress field based on the Williams� asymptotic solution, and the stress field obtained from the
MBL model with material property graded only in the region corresponding to the SE(T) specimen. Results
are exactly same as the results shown in Fig. 8. Application of this method to elastic–plastic analysis is pre-
sented in Section 4.

3.2. K–T dominance of graded nonhomogeneous materials

The MBL model generates the K–T stress fields for homogeneous and graded nonhomogeneous materials
for a desired values of KI and T. Now the question becomes how far away from the crack-tip does the K–T
field match with the actual stress field. In this study, we compare the actual stress field with the K–T stress field
and investigate the extent of the K–T dominance for SE(T) specimen (homogeneous and nonhomogeneous
materials). We define the K–T dominant region by comparing the normalized opening stress, ryy/rt, at the
symmetry plane. The K–T dominant region is defined as the region where the actual and asymptotic stresses
differ within 5%. For example, Fig. 7 shows the actual stress field and the asymptotic stress field for a homo-
geneous SE(T) specimen (a/w = 0.1). Two results show a 5% difference at r/aSE(T) = 0.124, i.e. the distance
from the crack-tip is 12.4% of the SE(T) specimen crack length. Fig. 8 shows the crack-tip stress field for a
graded nonhomogeneous SE(T) specimen (E2/E1 = 5, a/w = 0.1). The actual stress field and the asymptotic
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solution show a 5% difference at r/aSE(T) = 0.108. Due to the material gradient, the K–T dominant region
slightly reduces in size compared to that of the homogeneous material.
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We further investigate the K–T dominance of graded nonhomogeneous materials considering various mate-
rial gradients and crack geometries. Material gradients range from E2/E1 = 1/20 to E2/E1 = 20. The geometry
considered in the present study is a SE(T) specimen with three different crack lengths, i.e. a/w = 0.1, 0.3, 0.5.
Fig. 10 shows the extent of the K–T dominance for various material gradients and geometries considered in the
present study. The extent of the K–T dominance (r/a · 100) is plotted against the normalized material nonho-
mogeneity parameter, ak = a/w ln(E2/E1), which represents the material gradient. The maximum extent of the
K–T dominance is obtained at different material gradients for each geometry. For a/w = 0.3, the homogenous
material (E2/E1 = 1) shows the maximum extent of K–T dominance. For a/w = 0.5, the maximum extent of
the K–T dominance is obtained at E2/E1 = 5. Results shown in Fig. 10 demonstrate that the maximum range
of K–T dominance does not always prevail for homogenous materials. For a certain range of material gradient
for a/w = 0.5, the size of the K–T dominant region increases as the material nonhomogeneity increases. Fig. 10
also shows that the extent of the K–T dominance is less than r/a · 100 = 15 for most of the material gradients
and geometries considered in the present study. Fig. 10 also shows the valid extent of the MBL model for each
material gradient and crack geometry. The crack-tip stress field of the MBL model can match (within 5%) that
of the SE(T) specimen within the ranges shown in Fig. 10. Moreover, to obtain small scale yielding conditions
in nonlinear analysis, the fracture process zone (e.g. plastic zone) must remain well within the K–T dominant
region. It will be shown in the following section that it is valid to employ the proposed MBL model if the size
of the region affected by the fracture process zone is approximately half the size of the K–T dominant region.

4. Application to elastic–plastic crack-tip analysis

This section describes the application of the proposed MBL model to elastic–plastic (nonlinear) crack-tip
analysis. We employ the MBL model to analyze the elastic–plastic crack-tip field of a Ti/TiB FGM [27] SE(T)
specimen.

4.1. Ti/TiB FGM SE(T) specimen

The company CERCOM Inc. developed the Ti/TiB FGM/LB (functionally graded material/large bulk)
system in a layered structural form for potential armor applications [28]. In this study, we consider a Ti/
TiB FGM SE(T) specimen with a continuously graded elastic–plastic material properties. Fig. 11 depicts
the geometry and the material property variation of the Ti/TiB FGM SE(T) specimen. The idealized FGM
composition varies from 100% TiB (ceramic) at the cracked surface to 100% Ti (metal) at the uncracked sur-
face—the actual material variation from processing is presented in Ref. [27]. Thus ideally, the volume fraction
σt

a

w

x

y

TiB 100 %

V Ti = ( x
w)

0.84V Ti = 0

V Ti = 1

Ti 100 %

Fig. 11. Idealization of Ti/TiB FGM SE(T) specimen.The material gradient is expressed in terms of the volume fraction of Ti.



Table 1
Material properties of Ti and TiB

Materials Young�s modulus
(GPa)

Poisson�s
ratio

Yield stress
(MPa)

Hardening
exponent

Critical J-integral
(JIC) (kJ/m

2)

Ti 107 0.34 450 14 24a

TiB 375 0.14 – – 0.11

a Estimated from the experimental crack initiation load [17].
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of Ti (VTi) varies from zero at the cracked surface to one at the uncracked surface. Table 1 lists the material
properties of Ti and TiB (data from Refs. [17,29,30]). The volume fraction of Ti within the specimen is
expressed as a simple power function, VTi = (x/w)p, where the power exponent p = 0.84 [17].

While the classical Hooke�s law describes the linear-elastic response of FGMs with the elastic properties
approximately evaluated by simplified micromechanics models [31] (for conventional composite), determina-
tion of the elastic–plastic behavior of FGMs remains as a challenging task. Previous studies [17,29,32,33] have
adopted the J2 flow theory for ceramic/metal FGMs and evaluated the material properties using the volume
fraction based model proposed by Tamura et al. [34] (so called TTO model). The present study also employs
this engineering method to estimate the elastic–plastic behavior of the Ti/TiB FGM. The TTO model relates
the uniaxial stress and strain of a two-phase composite to the corresponding average uniaxial stresses and
strains of the two constituent materials (see Appendix B for details). The material-dependent parameter q

should be calibrated to match the measured flow properties of tensile specimen extracted from monolithic
composites of the FGM constituents. Because such data remains unavailable for the Ti/TiB FGM, we adopt
q = 4.5 GPa as in previous studies [17,29,32,33]. Fig. 12 shows the elastic–plastic material properties (Young�s
modulus E, Poisson�s ratio m, yield stress rYS, and the power-law hardening exponent n) of the Ti/TiB FGM
SE(T) specimen obtained from the TTO model.
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Fig. 12. Material properties of Ti/TiB FGM SE(T) specimen obtained from the TTO model.
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The present study considers two Ti/TiB FGM SE(T) specimens (w = 20mm) with different crack length, i.e.
a = 2 and 8.8mm, which yield a/w = 0.1 and 0.44, respectively. For a/w = 0.1, the crack-tip is located at a
position where the volume fraction of Ti is 14% (VTi = 0.14). The volume fraction of Ti at the crack-tip is
50% (VTi = 0.5) for a/w = 0.44. Thus, for both cases, the crack-tip is located within a relatively brittle region
of the FGM system. Table 2 lists the material properties at the crack-tip for the two cases considered.

4.2. Elastic–plastic crack-tip analysis

Fig. 13 depicts the set-up of the MBL model for elastic and elastic–plastic analysis. Here, we employ
‘‘model B’’ from the previous section as the MBL model. The material gradient of the MBL model is expressed
in terms of volume fraction of Ti. Since the volume fraction of Ti must be between zero and one, the material
properties are graded only in the region corresponding to the SE(T) specimen. The other regions of the MBL
model have either homogeneous material properties of Ti (VTi = 1) or TiB (VTi = 0) as shown in Fig. 13.

Fig. 14 illustrates the procedure adopted in the present study to perform elastic–plastic analysis. First, we
perform elastic analysis for the SE(T) specimen, considering only the elastic material properties (E and m). The
tensile stress (rt) is applied to the SE(T) specimen to obtain a KI value slightly (3%) less than the fracture
toughness (KIC) at the crack-tip, which is estimated from Ref. [17]. The elastic analysis yields KI and T, which
are used to determine the traction boundary conditions for the MBL model. The traction boundary conditions
are determined from the elastic analysis of the MBL model only considering E and m (see Fig. 2). The deter-
mined traction boundary conditions are applied to the MBL model for elastic–plastic analysis. The elastic and
plastic material properties (E, m, rYS, and n) are considered in the elastic–plastic analysis of the MBL model.
The crack-tip stress and strain field and the plastic zone size and shape are analyzed in the elastic–plastic ana-
lysis. These results are compared with those obtained from the elastic–plastic analysis of the SE(T) specimen to
validate the applicability of the MBL model to elastic–plastic crack-tip analysis.
Table 2
Crack-tip material properties obtained from the TTO [34] model for the Ti/TiB FGM SE(T) specimens consider in the present study

a/w VTi,tip Etip (GPa) mtip rYS,tip (MPa) ntip

0.1 0.14 279 0.17 461 3.1
0.44 0.5 167 0.24 457 6.4

MBL
model

SE(T)

TiB 100 % Ti 100 %

V Ti = x
w

0.84V Ti = 0

E tip
V Ti = 1ν tip

σYS , tip n tip

y

x

w

a

( )

Fig. 13. Set-up of modified boundary layer (MBL) model for Ti/TiB FGM. Material properties are graded only in the region
corresponding to the SE(T) specimen.
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The FE meshes used for elastic–plastic analyses are similar to those used for elastic analyses. The mesh con-
sists of triquadratic (20-noded brick) graded elements with reduced (2 · 2 · 2) integration. All the nodes in the
model are constrained in the thickness direction to obtain plane strain conditions. However, for elastic–plastic
analysis, the crack-tip elements have half-point nodes and crack-tip constraints permit blunting deformations.
Deformation plasticity and small-strain formulation are employed for the elastic–plastic analysis.

4.3. Elastic and elastic–plastic analysis results

The elastic and elastic–plastic analysis results obtained from the two Ti/TiB SE(T) specimens (a/w = 0.1
and 0.44) and the MBL models are shown in Fig. 15. The normalized opening stress, ryy/rt, at the symmetry
plane (h = 0) is plotted against the normalized distance from the crack-tip, r/aSE(T). The extent of the K–T
dominant region is determined by comparing the elastic analysis results obtained from the SE(T) specimen
and the MBL model. The elastic–plastic analysis results of the SE(T) specimen and the MBL model show
excellent agreement near the crack-tip but show a difference as the distance from the crack-tip increases. Com-
parison between elastic and elastic–plastic analysis results (for both the SE(T) specimen and the MBL model)
shows the effect of the plastic deformation to the crack-tip stress field. However, as the distance from the
crack-tip increases, the two stress fields become identical. The region affected by the plastic deformation is
approximately half the size of the K–T dominant region. This confirms that SSY conditions are satisfied
and thus validates the applicability of the proposed MBL model. Results shown in Fig. 15 also demonstrate
that the material properties assigned to the MBL model, i.e. material graded only in the region corresponding
to the SE(T) specimen (Fig. 13), are valid for elastic and elastic–plastic analysis for the geometries and mate-
rial properties considered.
Fig. 16. Comparison of normalized opening total strain (�total) and plastic strain (�pl) at symmetry plane (h = 0) obtained from the elastic–
plastic analysis of proposed modified boundary layer (MBL) model considering SE(T) specimen.
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Fig. 16 shows the plot of normalized opening strain, �yy/�t, at the symmetry plane (h = 0) versus the nor-
malized distance from the crack-tip, r/aSE(T), obtained from the two Ti/TiB SE(T) specimens (a/w = 0.1 and
0.44). The total strain, �total, and the plastic strain, �pl, is normalized by �t, which is defined as rt/Etip. The plas-
tic strain is calculated according to
�pl ¼ �total �
1

Etip

fryy � mtipðrzz þ rxxÞg. ð9Þ
Results obtained from the MBL model show excellent agreement with those obtained from the SE(T) speci-
men. The plastic strain fields in Fig. 16 show the size of the plastic zone at the symmetry plane. Fig. 17 shows
the size and shape of the plastic zone obtained from the proposed MBL model and the SE(T) specimen.
Boundaries of the plastic zone are obtained from a stress contour, where the von Mises stress equals the yield
stress at the crack-tip. The maximum plastic zone size, rp,max, is defined as the distance measured from the
crack-tip to the furthest point on the boundary of the plastic zone. The maximum size and shape of the plastic
zone obtained from the MBL model and the SE(T) specimen match well for both cases (a/w = 0.1 and 0.44).
Results shown in Figs. 15–17 validate the applicability of the MBL model to elastic–plastic crack-tip analysis.

5. Concluding remarks

This paper describes the development of a new MBL model for graded nonhomogeneous materials (e.g.
FGMs) under mode I, plane-strain conditions where the crack plane is parallel to the material gradient.
The proposed MBL model is based on a M(T) specimen with traction boundary conditions applied to the
top and lateral edges of the model. For linear behavior, a simple superposition method determines the traction
boundary conditions. These traction boundary conditions compensate for the material gradient and thus
enable the application of the MBL model to various material gradients. Moreover, the two length scales,
i.e. the fracture mechanics length scale and the intrinsic material length scale, are consistent within the model.
The elastic crack-tip stress fields obtained from the proposed MBL model show excellent agreement with those
obtained from the classical Williams� solution (up to two terms). For evaluating the crack-tip field of a cracked
structure, i.e. the SE(T) specimen in the present study, the size of the MBL model must be determined so that
the K–T dominant region of the SE(T) specimen is embedded within that of the MBL model.

A parametric study provides the extent of the K–T dominance for graded nonhomogeneous SE(T) speci-
mens. The present results, while not exhaustive, provide insights into the K–T dominance of graded nonhomo-
geneous materials considering material gradient and crack geometry. These results also serve as a guideline for
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applying theMBLmodel to FGMs. Elastic–plastic crack-tip analysis results show that theMBLmodel is appli-
cable even when the size of the region affected by the fracture process zone is approximately half the size of the
K–T dominant reign. Application to Ti/TiB FGM SE(T) specimen demonstrates the usefulness of the proposed
MBL model to elastic–plastic analysis of cracks in FGM configurations.

Various elastic–plastic fracture mechanics problems, which utilizes the standard MBL model for homoge-
nous materials (e.g. effect of T-stress on plastic zone size and shape, constraint effects, crack growth analysis,
etc.), can now be solved for FGMs by using the proposed MBL model. Investigation of crack growth (parallel
to the material gradient) in FGMs using the proposed MBL model and cohesive zone models is currently
being pursued by the authors. Moreover, the proposed MBL model can be employed to analyze the elas-
tic–plastic crack-tip fields along a 3-D surface crack-front in FGMs, however, predominant plane-stress con-
ditions near the free surface may limit the range of application of the MBL model.
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Appendix A. Calculation of SIF and T-stress based on interaction integral

The interaction integral method constitutes a post-processing step that utilizes the stresses, strains and dis-
placements generated during the solution of a boundary-value problem. Here the numerically-calculated
quantities are referred as actual fields. By superimposing actual fields with auxiliary fields corresponding to
a second, arbitrary equilibrium state, fields for the superimposed state are obtained. For this superimposed
state, domain integral at location s along the crack-front given by Shih et al. [35] becomes
J
ðSÞðsÞ ¼

Z
V
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where rij, ui, and �ij denote the stresses, displacements and strains for the crack-front fields expressed in a local,
orthogonal coordinate system at s on the curve front. Superscripts (1) and (2) indicate actual and auxiliary
fields, respectively, and (S) denotes the superimposed state. V defines the volume centered about point s over
which the analyst defined, weight function (q) has nonvanishing values and nonvanishing derivatives. Addi-
tional integrals for applied crack-face tractions are not shown. Eq. (A1) separates into three components:
J
ðSÞðsÞ ¼ J

ð1ÞðsÞ þ J
ð2ÞðsÞ þ IðsÞ; ðA2Þ
where J
ðSÞðsÞ is the domain integral for the superimposed state, J

ð1ÞðsÞ is the domain integral for the actual
state, J

ð2ÞðsÞ is the domain integral for the auxiliary state, and IðsÞ is the domain form of the interaction inte-
gral, written as
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Auxiliary fields must satisfy equilibrium, compatibility, and constitutive relations at crack-front location s

where the asymptotic functions maintain validity for both homogeneous and graded material [8]. For FGMs,
this requires that material properties correspond to the crack-front location s, but over a finite domain of inte-
gration, material properties at element integration points can be significantly different from properties at the
crack-front. To account for this discrepancy, Dolbow and Gosz [36] define strains according to
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�
ð2Þ
ij ¼ SijklðxÞrð2Þ

kl ; ðA4Þ
where Sijkl(x) is the spatially-varying compliance tensor. Except at crack-front location s, Eq. (A4) violates
strain–displacement compatibility. Also the following relationship enables us to simplify the expression of IðsÞ:
rð1Þ
ij;1�

ð2Þ
ij ¼ Cijkl;1ðxÞ�ð1Þkl �

ð2Þ
ij þ rð2Þ

ij �
ð1Þ
kl;1. ðA5Þ
Consideration of this ‘‘incompatibility’’ and Eq. (A5) leads to the expression WARP3D employs to evaluate
the interaction integral:
IðsÞ ¼
Z
V

rð1Þ
ij u

ð2Þ
j;1 þ rð2Þ

ij u
ð1Þ
j;1 � rð1Þ

jk �
ð2Þ
jk d1i

� �
q;i dV þ

Z
V

rð1Þ
ij uð2Þj;1i � �

ð2Þ
ij;1

� �
� Cijkl;1ðxÞ�ð1Þkl �

ð2Þ
ij

h i
qdV . ðA6Þ
For homogeneous materials, the second integral in Eq. (A6) vanishes. Eq. (A6) is valid for quasi-static, iso-
thermal, linear-elastic loading of FGMs in the absence of body forces. In this expression, auxiliary displace-
ments are the only quantities that employ material properties corresponding to crack-front location, s. The
compliance tensor for the FGM uses material properties at the location of the integration point. With IðsÞ
calculated, the pointwise value for the interaction integral at location s along the 3-D crack front becomes:
IðsÞ ¼ IðsÞR
Lc
qðsÞds . ðA7Þ
The energy release rate for the superimposed equilibrium state, in terms of the mixed-mode stress intensity
factors for the actual and auxiliary fields, is
J ðSÞðsÞ ¼ 1

E�ðsÞ Kð1Þ
I þ Kð2Þ

I

� �2

þ Kð1Þ
II þ Kð2Þ

II

� �2
� �

þ 1þ mðsÞ
EðsÞ Kð1Þ

III þ Kð2Þ
III

� �2

¼ J ð1ÞðsÞ þ J ð2ÞðsÞ þ IðsÞ; ðA8Þ
where
IðsÞ ¼ 1

E�ðsÞ 2Kð1Þ
I Kð2Þ

I þ 2Kð1Þ
II K

ð2Þ
II

� �
þ 1þ mðsÞ

EðsÞ 2Kð1Þ
IIIK

ð2Þ
III

� �
. ðA9Þ
For a plane-stress and plane-strain conditions, E*(s) = E(s) and E*(s) = E(s)/(1 � m(s)2), respectively. Eqs.
(A6)–(A8) provide the necessary relationship between the interaction integral and actual stress intensity fac-
tors. By alternately assigning a nonzero value to only one auxiliary stress intensity factor, Eq. (A8) yields
KIðsÞ ¼
E�ðsÞ
2

IðsÞ; KIIðsÞ ¼
E�ðsÞ
2

IðsÞ; and KIIIðsÞ ¼ lðsÞIðsÞ. ðA10Þ
To calculate T-stresses, Cardew et al. [26] and Kfouri [37] consider a 2-D line integral analogous to the first
integral in Eq. (A6):
I ¼
Z
C

rð1Þ
jk �

ð2Þ
jk d1i � rð1Þ

ij u
ð2Þ
j;1 þ rð2Þ

ij u
ð1Þ
j;1

� �h i
ni dC. ðA11Þ
When the Williams� solution including the nonsingular T-stress term defines the actual fields and auxiliary
fields given by Michell [38] defines the auxiliary fields, Eq. (A11) yields the following relationship:
T 11 ¼
E�I
f

. ðA12Þ
For WARP3D simulations of 2-D problems, Eqs. (A6) and (A7) yield a value for I(s) that can be used in Eq.
(A12) when actual fields are taken from the finite-element solution, and auxiliary fields follow Michell [38].
Values of T11 calculated in this manner are valid for simulations of 2-D problems with in-plane mode-I or
mode-II loading.
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Appendix B. Tamura–Tomota–Ozawa (TTO) model

The TTO model [34] couples the uniaxial stress, r, and strain, �, of a two-phase composite to the corre-
sponding average uniaxial stresses and strains of the two constituent materials by
r ¼ V 1r1 þ V 2r2; � ¼ V 1�1 þ V 2�2; ðB1Þ

where ri and �i (i = 1,2) denote the average stresses and strains of the constituent phases, respectively, and Vi

(i = 1,2) define the volume fractions. The TTO model introduces an additional parameter, q,
q ¼ r1 � r2

j�1 � �2j
; 0 < q < 1 ðB2Þ
to describe the ratio of stress-to-strain transfer. The value of q depends on the constituent material properties
and the microstructural interaction within the composite. For example, q ! 1 if the constituent elements de-
form identically in the loading direction, while q = 0 if the constituent elements experience the same stress
level. In general, the constituent elements in a composite undergo neither equal strain nor equal stress due
to the complicated microstructure (variations in particle shape, orientation, volume fraction, etc.). A nonzero,
finite value of q reflects approximately those effects. For applications involving plastic deformation of ceramic/
metal (brittle/ductile) composites, the TTO model assumes that the composite yields once the metal consti-
tuent yields. With these assumptions, the Young�s modulus, E, and the yield stress, rY, of the composite
may be obtained as follows [34]:
E ¼ V 2E2

qþ E1

qþ E2

þ ð1� V 2ÞE1

� ��
V 2

qþ E1

qþ E2

þ ð1� V 2Þ
� �

; ðB3Þ

rYðV 2Þ ¼ r0 V 2 þ
qþ E2

qþ E1

E1

E2

ð1� V 2Þ
� �

; ðB4Þ
where Ei (i = 1,2) are Young�s moduli of the constituent phases, and r0 denotes the yield stress of the metal
(phase 2). The above equation indicates that the yield stress of the composite depends on the yield stress of the
metal, the volume fraction of the metal, Young�s moduli of the constituent phases, and the parameter q. Pois-
son�s ratio, m of the composite just follows a rule of mixtures in the TTO model:
m ¼ V 1m1 þ V 2m2; ðB5Þ

where mi (i = 1,2) are Poisson�s ratios of the constituent phases. For an idealized bilinear model of metal yield
and hardening, the TTO model predicts that the composite also follows a bilinear response, as adopted in the
previous study on ceramic/metal FGMs [29,32,33]. For many structural metals, however, the simplistic bilin-
ear model does not capture adequately the variation in strain hardening rate under increased plastic flow. Jin
et al. [17] proposed to use a more descriptive power-law model for both the metal and the composite. There-
fore, the stress–strain curves of the metal and composite beyond the yield points have the form
�2 ¼ �0
r2

r0

	 
n0

; r2 P r0; ðB6Þ
and
� ¼ �Y
r
rY

	 
n

; r P rY; ðB7Þ
respectively, where �0 = r0/E2 and �Y = rY/E are the yield strains of the metal and composite, respectively and
n0 and n are the hardening exponents of the metal and composite, respectively. The following parametric equa-
tions determine the stress–strain (r–�) curve for the composite [17]:
�

�Y
¼ V 1E

qþ E1

r2

rY

þ ðqþ V 2E1ÞE
ðqþ E1ÞE2

r0

rY

r2

r0

	 
n0

; ðB8Þ

r
rY

¼ V 2qþ E1

qþ E1

r2

rY

þ V 1qE1

ðqþ E1ÞE2

r0

rY

r2

r0

	 
n0

.
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The composite r–� curve determined from the above equations does not follow the power function (B7). A
least squares method determines n to approximate (B8) by (B7).

The phenomenological parameter q influences the ‘‘shape’’ of the stress–strain curve. In an average sense,
the value of q reflects the composition and the complex microscale interaction of the constituents in an FGM.
In practice, q may be determined approximately by experimental calibration using tensile tests performed on
monolithic composite specimens. For example, a value of q = 4.5 GPa was found to be appropriate for dual
phase steels [34].
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