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Abstract. This paper describes elastic–plastic crack growth resistance simulation in a ceramic/metal
functionally graded material (FGM) under mode I loading conditions using cohesive zone and modi-
fied boundary layer (MBL) models. For this purpose, we first explore the applicability of two existing,
phenomenological cohesive zone models for FGMs. Based on these investigations, we propose a new
cohesive zone model. Then, we perform crack growth simulations for TiB/Ti FGM SE(B) and SE(T)
specimens using the three cohesive zone models mentioned above. The crack growth resistance of the
FGM is characterized by the J -integral. These results show that the two existing cohesive zone mod-
els overestimate the actual J value, whereas the model proposed in the present study closely captures
the actual fracture and crack growth behaviors of the FGM. Finally, the cohesive zone models are
employed in conjunction with the MBL model. The two existing cohesive zone models fail to pro-
duce the desired K–T stress field for the MBL model. On the other hand, the proposed cohesive
zone model yields the desired K–T stress field for the MBL model, and thus yields JR curves that
match the ones obtained from the SE(B) and SE(T) specimens. These results verify the application
of the MBL model to simulate crack growth resistance in FGMs.

Key words: 3-D finite element analysis, cohesive zone model, crack growth resistance curve, elas-
tic–plastic crack growth, functionally graded material (FGM), J -integral, modified boundary layer
model.

1. Introduction

Functionally graded materials (FGMs) are new advanced multifunctional materi-
als, which are tailored to take advantage of its constituents, e,g. in a ceramic/metal
FGM, heat and corrosion resistance of ceramics together with mechanical strength
and toughness of metals. To keep pace with application and performance demands
of FGMs, scientific knowledge of fracture and damage tolerance is important for
improving their structural integrity. Fracture characteristics of FGMs have been
investigated by many researchers during the past years, e.g. Eischen (1987), Erdogan
(1995), Gu and Asaro (1997), Anlas et al. (2000), Kim and Paulino (2002a, 2003),
and Walters (2004, 2005, 2006). In the present study, fracture behaviors of FGMs
are investigated with special emphasis on the crack growth resistance using cohe-
sive zone and modified boundary layer (MBL) models. Experimental results reported
by Li et al. (2000), Abanto-Bueno and Lambros (2002), Moon et al. (2002),
and Tohgo et al. (2005) demonstrate that the crack growth resistance curves for
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FGMs follow the crack-bridging concept for the materials investigated, which sug-
gest that a cohesive zone model can be used to simulate crack growth resistance
in FGMs.

Needleman (1987) pioneered the computational scheme of interface-cohesive sur-
faces to nucleate and propagate cracks in finite element (FE) models. This work
lead to the introduction of the exponential form for the traction–displacement rela-
tionship (Needleman, 1990). Sebsequent researchers employed this and other types
of traction–displacement relationships to investigate various issues, e.g. void nucle-
ation (Tvergaard, 1990), quasi-static crack growth (Tvergaard and Hutchinson, 1992),
crack growth in ductile materials (Roy and Dodds, 2001; Tvergaard, 2001), dynamic
crack growth and impact damage in brittle materials (Xu and Needleman, 1996;
Camacho and Ortiz, 1996; Siegmund and Needleman, 1997; Geubelle and Baylor,
1998; Zavattieri and Espinosa, 200l; Zhang and Paulino, 2005).

While cohesive zone modeling for homogeneous materials has been widely inves-
tigated, its application to FGMs is still limited due to the complex, graded
microstructures within these materials. Jin et al. (2002) proposed a volume fraction-
based, phenomenological cohesive zone model for FGMs and later employed this
model to simulate elastic–plastic crack growth in TiB/Ti FGMs (Jin et al., 2003).
Tvergaard (2002) addressed theoretical issues related to the application of cohesive
zone model to study crack growth in FGMs. Rangaraj and Kokini (2004) stud-
ied thermal fracture behaviors in functionally graded thermal barrier coatings using
cohesive zone modeling. Jin and Dodds (2004) studied crack growth resistance behav-
iors in ceramic/metal FGMs. Zhang and Paulino (2005) and Kandula et al. (2005)
presented cohesive zone modeling of dynamic fracture in FGMs.

Recently, Shim et al. (2006a) developed a MBL model for FGMs. In their study,
they demonstrated the applicability of the MBL model to analyze various frac-
ture problems in FGMs. The motivation of the present study is to employ the
MBL model to investigate crack growth resistance behaviors in ceramic/metal FGMs.
For this purpose, we first explore the applicability of existing cohesive zone models
for FGMs. Based on these investigations, we propose a new cohesive zone model.
Then, we perform crack growth simulations for TiB/Ti FGM SE(B) and SE(T)
specimens using the three cohesive zone models. The crack growth resistance of
the FGM is characterized by the path independent J -integral. These results are
investigated to evaluate the relevance of the three cohesive zone models. Finally,
the cohesive zone models are employed in conjunction with the MBL model. The
crack growth resistance curves obtained from the MBL model are compared with
those obtained from the fracture specimens to verify the applicability of the MBL
model.

The remainder of the paper is organized as follows. Section 2 describes the
two existing cohesive zone models for FGMs and also presents a new cohesive
zone model. Section 3 describes the three-dimensional (3-D) finite element for-
mulation with graded solid and interface-cohesive elements tailored for applica-
tion to FGMs. Section 4 presents the crack growth resistance behavior of TiB/Ti
FGM SE(B) and SE(T) specimens. Section 5 describes the application of cohesive
zone modeling to the MBL model. Finally, Section 6 provides some concluding
remarks.
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2. On cohesive zone models for FGMs

While the cohesive zone approach has proven a convenient and effective method
to simulate and analyze crack growth in homogeneous materials, generalization of
the cohesive zone concept to model fracture in FGMs involves a challenging task
due to the complicated microstructures and the related failure mechanisms in FGMs.
Jin et al. (2002) proposed a volume fraction-based, phenomenological cohesive zone
model for FGMs, which introduces two material-specific parameters that account for
the interaction between different material phases. Recently, Zhang and Paulino (2005)
adopted the bilinear cohesive zone model to the volume fraction-based, phenomeno-
logical cohesive zone model to simulate dynamic failure in FGMs. This section first
reviews and discusses the phenomenological cohesive zone models proposed by Jin
et al. (2002) and Zhang and Paulino (2005). Then, based on these discussions, a new
volume fraction-based, phenomenological cohesive zone model is proposed for simu-
lating crack growth in FGMs.

In the present study, we only consider crack growth under mode I conditions,
where the crack is parallel to the material gradient. The description thus adopts a
tensile mode formulation. Crack growth in FGMs under mixed-mode conditions was
recently addressed by Kim and Paulino (2004), however, they did not employ a cohe-
sive zone approach. Figure 1 shows a schematic representation of the cohesive zone
concept and the cohesive tractions acting along the cohesive surface under mode I
conditions. Here, δ and σ denote the normal displacement jump across the cohesive
surface and the corresponding normal cohesive traction, respectively.

2.1. Exponential cohesive zone model

Jin et al. (2002) assumed a cohesive energy potential of the cohesive zone in a
ceramic/metal FGM in the following volume fraction-based form

φ (x̄, δ, κ)= Vmet (x̄)

Vmet (x̄)+βmet[1−Vmet (x̄)]
φmet (δ, κ)+ 1−Vmet (x̄)

1−Vmet (x̄)+βcerVmet (x̄)

×φcer (δ, κ) (1)

Figure 1. Schematic representation of the cohesive zone concept, showing cohesive tractions acting
along the cohesive surface at crack-tip under mode I conditions.
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with the effective cohesive traction given by

σeff = ∂φ

∂δ
= Vmet (x̄)

Vmet (x̄)+βmet[1−Vmet (x̄)]
∂φmet

∂δ
+ 1−Vmet (x̄)

1−Vmet (x̄)+βcerVmet (x̄)

∂φcer

∂δ
, (2)

where Vmet(x̄) denotes the volume fraction of the metal, x̄ = (x1, x2, x3), κ is an inter-
nal variable which evolves according to a set of kinetic relations describing the irre-
versible processes of decohesion, βmet and βcer are two cohesive gradation parameters
that describe the transition of failure mechanisms from pure ceramic to pure metal.
The parameters βmet and βcer are material-dependent and are calibrated via experi-
ments. Under loading conditions (described by κ), the cohesive energy potential for
the metal and ceramic phases, φmet and φcer, are selected as

φmet = eσ max
met δc

met

[
1−

(
1+ δ

δc
met

)
exp

(
− δ

δc
met

)]
, (3)

φcer = eσ max
cer δc

cer

[
1−

(
1+ δ

δc
cer

)
exp

(
− δ

δc
cer

)]
, (4)

respectively. The cohesive tractions of the metal and ceramic phases thus follow (e.g.,
Xu and Needleman, 1996; Siegmund and Needleman, 1997; Ortiz and Pandolfi, 1999;
Roy and Dodds, 2001)

σmet = ∂φmet

∂δ
= eσ max

met

(
δ

δc
met

)
exp

(
− δ

δc
met

)
, (5)

σcer = ∂φcer

∂δ
= eσ max

cer

(
δ

δc
cer

)
exp

(
− δ

δc
cer

)
, (6)

where e= exp(1), σ max
met is the maximum cohesive traction of the metal phase, δc

met is
the value of δ at σ = σ max

met , σ max
cer is the maximum cohesive traction of the ceramic

phase, and δc
cer is the value of δ at σ = σ max

cer . This model adopts a computationally
convenient, exponential form for the cohesive energy potentials for both metal and
ceramic phases.

Substitution of Equations (3) and (4) into Equation (2) yields the effective cohe-
sive traction for FGMs under loading conditions

σeff = Vmet (x̄)

Vmet (x̄)+βmet [1−Vmet (x̄)]
eσ max

met

(
δ

δc
met

)
exp

(
− δ

δc
met

)

+ 1−Vmet (x̄)

1−Vmet (x̄)+βcerVmet (x̄)
eσ max

cer

(
δ

δc
cer

)
exp

(
− δ

δc
cer

)
, if δ=δmax and δ̇ ≥0.

(7)

For the unloading case, the model assumes

σeff =
(

σmax

δmax

)
δ, if δ <δmax or δ̇ <0, (8)

where σmax is the value of σ at δ = δmax calculated from Equation (7).
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The effective cohesive energy density, or the work of separation per unit area of
cohesive surface, is defined by

�c
eff =

∞∫
0

σeff (δ)dδ. (9)

Substituting Equation (7) into the above equation yields

�c
eff (x̄)= Vmet (x̄)

Vmet (x̄)+βmet [1−Vmet (x̄)]
�c

met +
1−Vmet (x̄)

1−Vmet (x̄)+βcerVmet (x̄)
�c

cer, (10)

where �c
met and �c

cer denote the cohesive energy densities of the metal and ceramic
phases, respectively:

�c
met = eσ max

met δc
met, �c

cer = eσ max
cer δc

cer. (11)

Equation (10) shows that the cohesive energy density follows the same rule as that
of the cohesive traction. Figure 2 shows a typical shape of the traction–displacement
curve for the exponential cohesive zone model.

In the previous work by Jin et al. (2003) and by Jin and Dodds (2004), the
above cohesive zone model was used to investigate crack growth resistance in TiB/Ti
FGMs. They assume that the metal phase (Ti) controls the crack growth, and thus
the extinction of cohesive elements is based on the critical displacement of the metal
phase δc

met (see Section 3 for more detail).
Insertion of intrinsic cohesive elements introduces an artificial compliance to

the structure (e.g., Baylor, 1998; Klein et al., 2000; Zhang, 2003). The magni-
tude of the artificial compliance is primarily related to the initial slope of the

Figure 2. Typical traction–displacement curve for exponential cohesive zone model, where traction and
displacement are normalized by maximum traction and critical displacement, respectively.
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traction–displacement curve. For the exponential cohesive zone model, the trac-
tion–displacement curve has a defined shape, and thus defined initial slope. When
the crack trajectory is known a priori, the effect of the artificial compliance may
not be as significant for ductile materials – in general, the shape of the cohe-
sive traction–displacement curve is not significant as the cohesive energy density
and the maximum cohesive traction in simulating fracture in ductile materials
(Tvergaard and Hutchinson, 1992). However, for relatively brittle materials, the intro-
duction of the artificial compliance may have a significant effect on the numerical
results. In the previous work by Jin and Dodds (2004), the effect of the artificial com-
pliance to crack growth resistance in TiB/Ti FGM, which is a relatively brittle mate-
rial, was not investigated.

2.2. Traction-based bilinear cohesive zone model

Bilinear cohesive zone models have been adopted for simulating impact damage in
brittle materials (e.g., Zavattieri and Espinosa, 2001; Kandula et al., 2005). The
bilinear cohesive zone model allows the user to control the initial slope of the trac-
tion–displacement curve, and thus restrict the effect of the artificial compliance (Geu-
belle and Baylor, 1998). The cohesive law for homogeneous material under mode I
loading is stated as

σ =σ max
(

δc − δ∗

δc − δp

)
δ

δ∗ , (12)

where σ max is the maximum cohesive traction, δc is the critical displacement, δP is
the value of δ at σ =σ max and δ∗ is defined as

δ∗ = δp, if δ � δp,

= δ, if δ >δp.
(13)

The value of δP can be set close to zero to ensure initially stiff cohesive bond.
The material fails when displacement δ reaches the critical displacement δc. Figure 3
shows the traction–displacement curve based on Equations (12) and (13).

In order to simulate brittle, dynamic crack growth in FGMs, Zhang and Paulino
(2005) extended the above bilinear model to the volume fraction-based, phenomeno-
logical cohesive zone model described in Section 2.1. The effective cohesive traction for
FGM is calculated by the volume fraction-based formula and traction associated with
each material phase, which is determined from Equations (12) and (13) – the parameter
δp is evaluated for each material phase. In the present study, we refer to this model as
the traction-based bilinear cohesive zone model. The traction–displacement relationship
for a ceramic/metal FGM under loading conditions can be expressed as

σeff = Vmet (x̄)

Vmet (x̄)+βmet [1−Vmet (x̄)]
σ max

met

(
δc

met − δ∗
met

δc
met − δ

p
met

)
δ

δ∗
met

+ 1−Vmet (x̄)

1−Vmet (x̄)+βcerVmet (x̄)
σ max

cer

(
δc

cer − δ∗
cer

δc
cer − δ

p
cer

)
δ

δ∗
cer

, (14)

where Vmet(x̄), βmet, and βcer follow the same definitions as in Section 2.1. The
unloading process is similar to that of the exponential cohesive zone model.
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Figure 3. Typical traction–displacement curve for bilinear cohesive zone model, where traction and
displacement are normalized by maximum traction and critical displacement, respectively.

The effective cohesive energy density �c
eff for the bilinear cohesive model can also

be defined by Equation (10). The cohesive energy densities of the metal and ceramic
phases are given by

�c
met =

1
2
σ max

met δc
met, �c

cer = 1
2
σ max

cer δc
cer. (15)

In the present study, we employ the above model to simulate crack growth resis-
tance in TiB/Ti FGM. By introducing a steep initial slope, i.e. by assigning δ

p
met and

δ
p
cer close to (but not equal to) zero, the effect of the artificial compliance to crack

growth resistance is reduced. The above model also assumes that the metal phase
controls the crack growth, and thus the extinction of the cohesive elements is based
on the critical displacement of the metal phase δc

met (see Section 3 for more detail).

2.3. Displacement-based bilinear cohesive zone model

The two cohesive zone models described above, i.e. exponential and traction-based
bilinear models, assume that the metal phase controls the crack growth behavior of
the FGM. Such assumption is due to the fact that the cohesive fracture energy of
the ceramic phase is relatively small compared to that of the metal phase. However,
results from previous work (Carpenter et al., 1999) indicate that the cohesive fracture
energy of TiB/Ti FGM is relatively small even for regions with relatively high-volume
fraction of Ti, e.g. the cohesive fracture energy for 85% Ti and 15% TiB FGM is
only about 7% that of pure Ti. In this sense, the cohesive element extinction criterion
based on δc

met may not be suitable for FGMs. For example, consider a TiB/Ti FGM
with a very low (less than 1%) volume fraction of Ti. It is obvious that the TiB phase
(more than 99%), rather than the Ti phase, will control the crack growth behavior of
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this material. These observations suggest that a volume fraction-based element extinc-
tion criterion is needed for FGMs.

In the present study, a displacement-based bilinear cohesive zone model for FGMs
is proposed. This model is also based on the volume fraction-based, phenomenolog-
ical cohesive zone model described in Section 2.1. Instead of calculating the effective
cohesive traction, an effective critical displacement δc

eff is calculated from the volume
fraction-based formula as follows:

δc
eff (x̄)= Vmet (x̄)

Vmet (x̄)+βmet [1−Vmet (x̄)]
δc

met +
1−Vmet (x̄)

1−Vmet (x̄)+βcerVmet (x̄)
δc

cer, (16)

where δc
met and δc

cer are the critical displacements (cohesive parameters from the bilin-
ear model) of metal and ceramic, respectively. The effective cohesive energy density
�c

eff is calculated from Equations (10) and (15). Then, the effective maximum cohe-
sive traction can be defined as

σ max
eff =2

�c
eff

δc
eff

. (17)

By substituting the effective values of σ max, δc, and δP, i.e. σ max
eff , δc

eff , and δ
p
eff (this

is a user defined value close to zero), respectively, to Equations (12) and (13), a dis-
placement-based bilinear cohesive zone model can be obtained.

3. Finite element modeling of FGMs

This section describes the formulation of both the 3-D solid element and the interface-
cohesive element with graded material properties. For the solid elements which model
the bulk (background) FGM, the J2 flow theory with isotropic hardening describes
the material behavior and the volume fraction-based model proposed by Tamura et al.
(1973) (so called TTO model) characterizes the material properties (Young’s modulus,
Poisson’s ratio, yield stress, and power hardening exponent) within the element. For the
interface-cohesive elements, which initially have zero thickness, the material behavior
and properties follow the functionally graded cohesive law described in Section 2.

3.1. Graded solid and interface elements formulation

For FGMs, material properties depend on spatial positions even within an element.
Kim and Paulino (2002a,b) presented a generalized isoparametric formulation (GIF)
to calculate the material properties within an element. The present study uses the
GIF for both solid and interface elements. For 3-D solid elements, elastic and plastic
properties are interpolated using shape functions, i.e.

E =
m∑

i=1

NiEi, ν =
m∑

i=1

Niνi, σY =
m∑

i=1

NiσYi
, n=

m∑
i=1

Nini, (18)

where Ni(i = 1,2, . . . ,m) are the standard finite element shape functions and m is
the number of nodes in an element. Moreover, Ei , νi , σYi

, and ni(i = 1,2, . . . ,m)

are the values of Young’s modulus, Poisson’s ratio, yield stress, and power harden-
ing exponent at the nodal points, respectively. For the interface-cohesive element, we
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only need to specify the metal volume fraction Vmet, which is also calculated by the
standard interpolation

Vmet =
4∑

i=1

NiV
i

met, (19)

where V i
met(i = 1,2,3,4) are the values of Vmet at the nodal points of the interface-

cohesive elements.

3.2. Finite element analysis technique

The numerical analyses based on small-displacement formulation are performed using
WARP3D (Gullerud et al., 2004), a research finite element code for nonlinear fracture
mechanics, which employs an incremental-iterative, implicit formulation. In addition
to the conventional solid and interface-cohesive elements for homogeneous materials,
this code also supports solid elements with graded elastic and plastic properties and
interface-cohesive elements with graded cohesive traction and cohesive energy density.

Large load increments often specified in implicit solution methods may create an
“overshoot” problem with nonlinear cohesive zone model, i.e. some interface ele-
ments may miss the peak cohesive traction by passing from the pre-peak to post-peak
side of the traction–displacement curve within a single increment. This introduces
inaccurate stress and deformation fields, which do not follow the constitutive cohe-
sive law. To avoid these effects, WARP3D adaptively controls the size of the global
load increments to enforce the proper cohesive constitutive response.

3.3. Cohesive element extinction technique

For the exponential cohesive zone model, WARP3D removes the cohesive element
from the model (thereby growing the crack) when the effective displacement of a
cohesive element reaches 5δc

met. For the bilinear cohesive zone model, element extinc-
tion occurs when the cohesive traction reduces to zero, or equivalently, when the
effective opening displacement reaches the critical displacement. As described in the
previous section, the element extinction condition for the traction-based bilinear
cohesive zone model is similar to the exponential cohesive zone model, i.e. the critical
displacement of the metal phase controls the element extinction. On the other hand,
the displacement-based bilinear cohesive zone model uses an element extinction cri-
terion based on Equation (16), i.e. the element extinction occurs when the effective
displacement reaches the effective critical displacement defined by Equation (16). All
the other features of FGM modeling described in the present work have been imple-
mented in WARP3D.

4. J resistance curve behavior of ceramic/metal FGMs

4.1. TiB/Ti fracture specimen geometries, materials, and FE models

In the present study, numerical analyses of elastic–plastic crack growth are performed
for both SE(B) and SE(T) specimens made of TiB/Ti FGM containing an initially
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sharp crack front. Figure 4 shows the geometry of the SE(B) specimen used in the
present study. The SE(T) specimen has the same geometry but is loaded in the lon-
gitudinal direction. The company CERCOM Inc. developed the TiB/Ti FGM system
in a layered structural form for potential armor applications (Nelson and Ezis, 1996).
Table 1 summarizes the geometric parameters of the SE(B) specimen used in both
the present and experimental studies reported by Carpenter et al. (1999). In the pres-
ent numerical analyses of the specimens, the idealized FGM composition varies from
100% TiB at the cracked surface to 100% Ti at the uncracked surface – the actual
material variation from processing is presented by Carpenter et al. (1999). Thus ide-
ally, the volume fraction of Ti (VTi) varies from zero at the cracked surface to one
at the uncracked surface. The volume fraction of Ti within the specimen is approxi-
mated by a simple power function, i.e.

VTi(y)= (y/W)p, (20)

where the power exponent p=0.84 for the actual material variation (Jin et al., 2002).
Table 2 lists the material properties of TiB and Ti – data from Carpenter et al.
(1999), Paulino et al. (2001), Jin et al. (2003). The elastic–plastic material properties
within the TiB/Ti FGM specimens are estimated by the TTO model of Tamura et al.
(1973) – (see Jin et al., 2003 and Jin and Dodds, 2004 for more details). In the pres-
ent study, we adopt the same material-dependent parameter q = 4.5 GPa for TiB/Ti
FGM as in the previous studies (e.g. Williamson et al., 1993; Giannakopoulos et al.,
1995; Carpenter et al., 1999; Jin et al., 2003).

Jin et al. (2003) showed that no crack tunneling develops for the TiB/Ti FGM
SE(B) specimen considered in the present study, i.e. crack extension at the surface
and mid-plane almost show no difference. In this sense, the present study employs
a plane–strain condition FE model. Figure 5(a) shows the 3-D FE mesh used in
the present study. Symmetry conditions permit modeling of only half of the speci-
men. The mesh consists of eight-node isoparametric solid elements and eight-node
interface-cohesive elements. The interface-cohesive elements are placed only over the
initial uncracked ligament. In the region beyond the initial crack front (6 mm), inter-
face-cohesive elements have uniform size of 0.1 mm. The mesh has two layers of ele-
ments in the thickness direction and all nodes in the model are constrained in the
thickness direction to obtain plane–strain conditions. The FE model has 3,324 nodes
and 2,036 elements.

The finite element code WARP3D calculates the J -integral using the domain inte-
gral technique, which can be employed for homogeneous materials as well as for
FGMs (Walters et al., 2004). The J values are evaluated for the three domains shown
in Figure 5(b). Note that the domains are sufficiently remote from the initial crack-
tip, and thus the crack-tip remains well within the domains during crack growth,

Table 1. Geometric parameters of fracture specimens.

Specimen L (mm) W (mm) B (mm) a0/W R (mm)

SE(B) 79.4 14.7 7.4 0.3 10.2
SE(T) 79.4 14.7 7.4 0.3
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Table 2. Material properties of Ti and TiB.

Material Young’s modulus (GPa) Poisson’s ratio Yield stress Hardening CriticalJIc

(MPa) exponent (kJ/m2)

Ti 107 0.34 450 14 24a

TiB 375 0.14 – – 0.11

a Estimated from the experimental crack initiation load (Jin et al., 2003).

Figure 5(c). Moreover, only the solid elements within the domain contribute to the
J evaluation. Numerical results show that the J values obtained from these domains
match within 1% error throughout the crack growth analyses, verifying the path-
independence of the J -integral. The J values presented in the following sections are
obtained from the largest domain shown in Figure 5(b).

4.2. Determination of cohesive parameters

The uncoupled contribution of the metal and ceramic to the effective traction,
Equations (7) and (14), or effective displacement, Equation (16), enables separate
calibration of the cohesive parameters associated with metal and ceramic, respec-
tively. The three cohesive zone models described in Section 2 have the follow-
ing six material-dependent parameters that characterize the fracture process in a
ceramic/metal FGM: �c

met and �c
cer (local work of separation of metal and ceramic,

respectively), σ max
met and σ max

cer (maximum cohesive tractions of metal and ceramic,
respectively), and, βmet and βcer (cohesive gradation parameters). In addition to these
six parameters, the bilinear cohesive zone model has two more parameter, i.e. δ

p
met

and δ
p
cer, which are user defined values close to zero. In the present study, δ

p
met and

δ
p
cer are defined as δc

met/100 and δc
cer/100, respectively, for both traction-based and dis-

placement-based bilinear cohesive zone models.
Jin et al. (2003) discussed the details on the calibration procedure for the six cohe-

sive parameters for the exponential cohesive zone model. They calibrated the cohe-
sive parameters for a TiB/Ti FGM using experimental load versus crack extension
responses for both Ti metal (Paulino et al., 2001) and TiB/Ti FGM SE(B) specimens

Figure 4. Geometry and material gradient of the SE(B) specimen.
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Table 3. Calibrated cohesive parameters for TiB/Ti FGM.

Cohesive model �c
met(=J met

Ic
) σ max

met (=2.5σ0) δc
met βmet �c

cer(=J cer
Ic ) σ max

cer δc
cer βcer

(kJ/m2) (MPa) (mm) (kJ/m2) (MPa) (mm)

Exponential 24 1,125 0.008 18.5 0.11 22 0.0018 1.0
Traction bilinear 24 1,125 0.043 18.25 0.11 22 0.01 1.0
Disp. bilinear 24 1,125 0.043 50 0.11 22 0.01 1.0

(Carpenter et al., 1999). Based on these results, the parameters are calibrated for the
bilinear cohesive zone models in the present study. Table 3 lists the calibrated cohe-
sive parameters for the three cohesive zone models considered in the present study. In
Table 3, σ0 denotes the yield stress of the metal (Ti), and J met

Ic and J cer
Ic are the crit-

ical J -integrals at crack initiation for the metal and the ceramic (TiB), respectively.
Note that βcer is set to unity for all the cohesive zone models and βmet is calibrated
by matching the experimental crack initiation load (Carpenter et al., 1999) with the
numerical results.

Figure 6 compares the traction–displacement curves obtained from the three
cohesive zone models using the parameters listed in Table 3 – here VTi = 0.364,
which corresponds to the volume fraction of metal (Ti) at the initial crack-
tip of the FGM specimen considered in the present study. Since the calibrated
values of βmet are similar for the exponential model and the traction-based
model (see Table 3), traction–displacement curves for the two models show sim-
ilar trend – except that the traction-based bilinear model has a steeper initial
slope. This is due to the fact that these two models assume that the metal
phase controls the crack growth process. In Figure 6, the cohesive element
extinction occurs for the exponential and the traction-based bilinear model when the
effective displacement reaches 0.04 and 0.043 mm, respectively. On the other hand, for
the displacement-based bilinear model, the cohesive element extinction occurs when
the effective displacement reaches 0.007 mm, which is calculated from Equation (16).
Also, the maximum effective traction for the displacement-based bilinear model is twice
larger than that for the other two models. Moreover, the effective critical cohesive
energy density, �c

eff , for the displacement-based bilinear model is less than half of that
for the other two models. Figure 7 compares the �c

eff calculated from the three cohe-
sive zone models (using parameters listed in Table 3) for the entire range of VTi. The
�c

eff calculated from the displacement-based bilinear model is smaller than that of the
other two models for the entire range of VTi. Furthermore, the JIc values reported by
Carpenter et al. (1999) for two specific values of VTi are more closely estimated by the
displacement-based bilinear model.

4.3. Crack growth resistance of TiB/Ti FGM specimens

Figure 8 shows the load versus crack growth responses of the SE(B) specimen (Fig-
ure 4) obtained from the numerical analyses using three different cohesive zone
models. Since the cohesive parameters are calibrated by matching the numerically
obtained crack initiation load to that of the experimental one (0.925 kN), the crack
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(a)

(b) (c)

Figure 5. Longitudinal cross-section of the 3-D mesh used in the present study: (a) Overall view; (b)
Close-up view of the crack-tip region showing the domains used for J calculation; (c) Crack growth
via cohesive element extinction.

Figure 6. Traction–displacement curves obtained from the three cohesive zone models using the cohe-
sive parameters listed in Table 3. Note that VTi =0.364, which corresponds to the volume fraction of
Ti at the initial crack-tip of the SE(B) specimen considered in the present study.
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Figure 7. Effective critical cohesive energy densities calculated from the three cohesive zone models
for the entire range of VTi. The JIc values for two specific values of VTi (Carpenter et al., 1999) are
shown for comparison.

initiation loads from the three cohesive zone models approximately match each other
in Figure 8. Note that, by matching the experimental crack initiation load, the three
different cohesive zone models yield the same load versus crack growth response.
Now, we compare the J resistance behavior of the SE(B) specimen obtained from
these three models. Figure 9 shows the J -integral versus crack growth responses, i.e.
JR curves, obtained from the three cohesive zone models. Since the crack grows into
a increasingly tough material, the J -integral increases with crack growth for all three
models. However, the three cohesive zone models yield different J -integral values at
crack initiation, Jinit. The exponential and traction-based bilinear models show simi-
lar results, i.e. Jinit values are near 2.0 kJ/m2. On the other hand, Jinit for the displace-
ment-based bilinear model is about 0.5 kJ/m2. Although the three cohesive models
yield the same load versus crack growth response, the J -integral versus crack growth
responses are quite different.

This phenomenon can be explained by observing the load versus crack mouth open-
ing displacement (CMOD) and J -integral versus CMOD responses. Figure 10 shows
the load versus CMOD curves obtained from the three cohesive zone models, as well as
the curve obtained from a stationary crack model without cohesive elements. For the
stationary crack model, the load increases almost linearly with the increasing CMOD in
the range of loads considered, indicating little plastic deformation in the background
material before crack initiation. Ideally, the result obtained from the cohesive zone
model should match that of the stationary crack model before crack initiation. How-
ever, such result can only be obtained when an extrinsic cohesive zone model (e.g.,
Camacho and Ortiz, 1996; Ortiz and Pandolfi, 1999), is used. Since the cohesive zone
models adopted in the present study are an intrinsic type, the artificial compliance intro-
duced by the cohesive elements cause softening of the structure prior to crack initiation.
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Figure 8. Load versus crack growth responses obtained from the three cohesive zone models for the
TiB/Ti SE(B) specimen (p =0.84).

The curve obtained from the exponential model shows large amount of softening, i.e.
the initial slope of the curve in Figure 10 is much smaller than that of the stationary
crack at the initial loading stage. The crack initiation occurs after the load passes the
peak value. The CMOD at crack initiation for the exponential model is approximately
seven times that of the stationary crack. This is due to the fact that the exponential
model assumes that the metal phase (Ti) controls the crack growth. For the traction-
based bilinear model (which has a steep initial slope, Figure 6), the initial slope of the
load versus CMOD curve shown in Figure 10 is much larger than that of the expo-
nential model, and is close to the initial slope of the stationary crack model. However,
as the load increases, the curve obtained from the traction-based bilinear model devi-
ates from the stationary crack curve and then closely follows the curve obtained from
the exponential model beyond peak point. Since the traction-based bilinear model also
assumes that the metal phase controls the crack growth, the value of CMOD at crack
initiation is similar to that of the exponential model. For the displacement-based bilin-
ear model, the initial slope of the curve is approximately same as that of the stationary
crack model. Moreover, the two curves, i.e. displacement-based bilinear model and sta-
tionary crack model, show relatively good agreement up to the peak point, indicating
small amount of softening effect. The crack initiation for the displacement-based bilin-
ear model (which is based on the effective critical displacement) occurs just after the
peak load and the corresponding CMOD value is approximately twice larger than that
of the stationary crack, but is three times smaller than that of the other two models.

Figure 11 shows the J -integral versus CMOD curves obtained from the three
cohesive zone models and the stationary crack model. Here again, ideally, the curve
obtained from the cohesive zone model should match that of the stationary crack
prior to crack initiation. However, due to the softening introduced by the cohe-
sive elements, the curves obtained from the cohesive zone models deviate from the



106 D.-J. Shim et al.

Figure 9. J -integral versus crack growth responses (JR curves) obtained from the three cohesive zone
models for the TiB/Ti SE(B) specimen (p =0.84).

stationary crack curve. Such difference is more pronounced for the exponential and
the traction-based bilinear models, which assume that the metal phase controls the
crack growth. The curve obtained from the displacement-based bilinear model closely
follows the stationary crack curve in the initial stage of loading, but starts to show
a difference as it approaches crack initiation. The J -integral value calculated from
the stationary crack model at crack initiation load is 0.28 kJ/m2. As shown in Fig-
ure 11, Jinit obtained from the displacement-based bilinear model shows a relatively
small difference with that of the stationary crack model compared to the difference
shown by the other two models (78% versus 600%). Note that the Jinit for the station-
ary crack model and the intrinsic cohesive zone model do not match, unless another
model is employed, e.g. extrinsic cohesive zone model (Celes et al., 2005). Figure 11
indicates that the exponential and the traction-based bilinear models overestimate the
actual J value at a given load. Note that for FGMs, the J -integral does not corre-
spond to the cohesive energy density at specific locations of the current crack front.
Instead, it represents effects of the cohesive energy density over the whole cohesive
zone and the background material gradation (Jin and Dodds, 2004). This explains
why the Jinit values shown in Figure 11 are higher than the �c

eff values shown in
Figure 6.

Figures 10 and 11 show that the assumption of metal phase controlling the crack
growth, i.e. critical displacement of the metal phase controlling the cohesive element
extinction, is inappropriate for the TiB/Ti FGM considered in the present study. On
the other hand, results obtained from the displacement-based bilinear model seem to
be more reasonable and closely capture the fracture and crack growth behaviors of
the TiB/Ti FGM.

We now adopt the displacement-based bilinear cohesive model to investigate the
effect of material gradient on the JR curve for the TiB/Ti FGM SE(B) specimen.
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Figure 10. Load versus CMOD responses obtained from the three cohesive zone models and the sta-
tionary crack model for the TiB/Ti SE(B) specimen (p =0.84).

Figure 11. J -integral versus CMOD responses obtained from the three cohesive zone models and the
stationary crack model for the TiB/Ti SE(B) specimen (p =0.84).

Figure 12 shows the JR curves for various values of p in Equation (20). The “built-
in” toughening behavior of the FGM, i.e. increase of J -integral with crack growth,
is shown for all cases. J -integral at fixed crack growth increases with decreasing p –
a smaller p corresponds to a higher metal volume fraction, which leads to a higher
cohesive traction and energy for the FGM, thereby enhancing the crack growth resis-
tance.
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Figure 12. J -integral versus crack growth responses (JR curves) for the TiB/Ti SE(B) specimen
obtained from the displacement-based bilinear cohesive zone for different values of exponent p.

Figure 13 shows the JR curve for the SE(T) specimen in comparison to that for
the SE(B) specimen, where p =0.84 for both specimens. The JR curve for the SE(T)
specimen is slightly (5%) higher than that for the SE(B) specimen. Linear elastic
analyses performed for the SE(B) and SE(T) specimens show that both specimens
have negative T -stresses and the biaxiality ratios β(=T

√
a/KI) are −0.14 and −0.51,

respectively. These results indicate that the specimen configuration (or T -stress) has
insignificant effect on the JR curve for the TiB/Ti FGM considered in the present
study, i.e. where crack growth remains in the relatively brittle region of the FGM.

5. Application of cohesive zone model to modified boundary layer model

5.1. Modified boundary layer model for FGMs

The MBL formulation has been adopted by many researchers to analyze the elastic–
plastic crack-tip fields in homogeneous materials (e.g., Larsson and Carlsson, 1973;
Bilby et al., 1986; Betegon and Hancock, 1991; Xia and Shih, 1995). Recently, Shim
et al. (2006a) proposed a MBL model for FGMs with material gradient parallel
to the crack plane. In their work, they selected the middle-crack tension, M(T),
specimen as the reference configuration for the MBL model. Figure 14 shows the
geometry of the MBL model. The material is graded parallel to the crack plane
and material properties are symmetric with respect to the centerline of the model.
The symmetric loading conditions and material properties enable the use of a quar-
ter model. Considering the quarter model (shaded region in Figure 14), tractions are
applied to the top edge of the model and also to the lateral edge of the model. Now,
the key task becomes the determination of the corresponding traction boundary con-
ditions that generate the desired K–T field near the crack-tip. Figure 15 shows the
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procedure to obtain the traction boundary conditions. Only the linear-elastic material
properties are considered for this procedure. First, a unit traction σ unit

top is applied to
the top edge of the model, Figure 15(a). This unit traction produces Kunit

I,top and T unit
top

at the crack-tip. As a second step, a unit traction σ unit
lateral is applied to lateral edge of

the model, Figure 15(b). Similarly, this unit traction produces Kunit
I,lateral and T unit

lateral at
the crack-tip. For homogeneous materials, Kunit

I,lateral =0 since the stress parallel to the
crack plane does not contribute to the mode I SIF. However, for graded nonhomoge-
neous materials, stress parallel to the crack plane contributes to the mode I SIF thru
secondary bending (Shim et al., 2006a). The SIF and T -stress values are proportional
to the applied tractions. Let KI and T denote the desired values of mode I SIF and
the T -stress. Then these two values can be expressed by

KI =fKunit
I,top +gKunit

I,lateral, (21)

T =fT unit
top +gT unit

lateral, (22)

where

f = σtop

σ unit
top

, g = σlateral

σ unit
lateral

, (23)

where σtop and σlateral are the traction boundary conditions needed to obtain KI

and T . By using Equations (21)–(23), the traction boundary conditions for the MBL
model can be easily determined for any desired KI and T , Figure 15(c).

Figure 13. J -integral versus crack growth responses (JR curves) obtained from the displacement-based
bilinear cohesive zone model for TiB/Ti SE(T) and SE(B) specimens (p =0.84).
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Figure 14. Schematics of the MBL model. Material properties are graded in the x-direction and sym-
metric with respect to the centerline of the model. The traction boundary conditions are applied to
the top and lateral edges of the model.

5.2. Crack growth in FGM using cohesive zone and MBL models

This subsection describes the application of cohesive zone and MBL models to ana-
lyze crack growth resistance in TiB/Ti FGM. In the present study, we employ the
MBL model of Shim et al. (2006a). In this context, the SE(B) and SE(T) specimens,
described in Section 4, represent the arbitrary geometry conditions which are simu-
lated via the MBL model. Figure 16 depicts the set-up of the MBL model for crack
growth analysis. The material gradient of the MBL model is expressed in terms of
volume fraction of Ti. Since the volume fraction of Ti must be between zero and one,
the material properties are graded only in the region corresponding to the specimen.
The other regions of the MBL model have either homogeneous material properties of
Ti (VT i = 1) or TiB(VT i = 0) as shown in Figure 16. The interface-cohesive elements
are placed only over the initial uncracked ligament of the MBL model.

Figure 17 shows the procedure adopted in the present study to perform elastic–
plastic crack growth analysis using the MBL model. First, we perform elastic analy-
sis for the specimen (stationary crack model without cohesive elements), considering
only the elastic material properties (E and ν). The elastic analysis yields KI and T

(calculated from interaction integral technique implemented in WARP3D – see Walt-
ers et al., 2005, 2006),which are used to determine the traction boundary conditions
for the MBL model. The traction boundary conditions are determined from the elas-
tic analysis of the MBL model (stationary crack model without cohesive elements)
only considering E and ν (see Figure 15). The determined traction boundary con-
ditions are applied to the MBL model, which has interface-cohesive elements, for
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crack growth analysis. The elastic and plastic material properties (E,ν, σYS , and n)
are considered for the crack growth analysis. The crack growth resistance behavior,
i.e. the JR curve, is obtained from the MBL model. This result is compared with that
obtained from the crack growth analysis of the specimen, i.e. the arbitrary geometry,
to validate the applicability of the MBL model to crack growth analysis.

The FE mesh employed for the MBL model is similar to the one used for the
SE(B) and SE(T) specimens (see Figure 5). The mesh has two layers of elements
in the thickness direction and all nodes in the model are constrained in the thick-
ness direction to obtain plane–strain conditions. The FE model has 5,040 nodes and
3,154 elements. The size of the MBL model must be determined so that the K–T
dominant region of the specimen is embedded within that of the MBL model (Shim
et al., 2006a,b). In the present study, the half-width w (Figure 14) of the MBL model
is set to 200 mm and the height h=2w.

5.3. Comparison of J resistance curves

The three cohesive zone models described in Section 2 are adopted for the MBL model
for comparison. Figure 18 compares the JR curves obtained from the SE(B) specimen
with those obtained from the MBL model. The JR curves obtained from the MBL
model using exponential and traction-based bilinear cohesive zone models are approxi-
mately 100% higher than those from the SE(B) specimen. Such difference arise from the
fact that the traction boundary conditions (determined from the elastic analysis of a
stationary crack) fail to produce the desired K–T stress field when applied to the MBL
model with interface-cohesive elements. This can be inferred from Figure 11, where
the J -integral values obtained from the exponential and traction based bilinear models
show large difference with that from the stationary crack model prior to crack growth.

(a) (b) (c)

Figure 15. Procedure to obtain the traction boundary conditions for the MBL model. Unit traction
applied to (a) the top edge and (b) the lateral edge of the model. Equations (21)–(23) yield the trac-
tion boundary conditions required to generate KI and T at the crack-tip (c).
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Figure 16. Setup of MBL model for crack growth analysis for TiB/Ti FGM. Material properties are
graded only in the region corresponding to the specimen.

In contrast, as shown in Figure 18, the JR curves obtained from the MBL model and
the SE(B) specimen using the displacement-based bilinear model show good agreement,
which demonstrate that the traction boundary conditions obtained from the stationary
crack correspondingly produce the desired K–T stress field for the MBL model with
interface-cohesive elements. Figure 19 compares the JR curves obtained from the MBL
model and the SE(T) specimen, both using the displacement-based bilinear model,
which show good agreement.

The exponential and the traction-based bilinear model not only overestimate the
J -integral values (Figures 9 and 11), but also fail to produce the desired K–T stress
field for the MBL model. On the other hand, the displacement-based bilinear model
closely calculates the actual J -integral values, and thus serves as a suitable cohesive
zone model for the MBL model.

6. Concluding remarks

In this study, the J resistance behavior of TiB/Ti FGM is investigated by employ-
ing a phenomenological cohesive zone model (coupled with experimental calibra-
tions) and a MBL model. The present study only considers mode I, plane–strain
conditions. Two existing models and a new cohesive zone model for FGMs are
adopted to simulate the crack growth resistance. The two existing models, i.e. expo-
nential and traction-based bilinear models, assume that the metal phase (Ti) con-
trols the crack growth and thus uses the critical displacement of the metal phase
as the element extinction criterion. Such criterion may be applicable for conven-
tional composites, which have distinct matrix and inclusion phases and uniform mi-
crostructures. However, FGMs have a complex interconnecting region with graded
microstructures that dominate the response. The cohesive zone model proposed in
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Figure 17. Procedure adopted in the present study to perform elastic–plastic crack growth analysis
using the MBL model.

Figure 18. Comparison of J -integral versus crack growth responses (JR curves) obtained from the
MBL model and SE(B) specimen (p =0.84).

the present study, i.e. displacement-based bilinear model, adopts a volume fraction-
based element extinction criterion, which more effectively reflects the effects of graded
microstructure.

The three cohesive zone models are employed to simulate the crack growth
resistance of a TiB/Ti SE(B) specimen. The cohesive parameters are calibrated by
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Figure 19. Comparison of J -integral versus crack growth responses (JR curves) obtained from the
MBL model and SE(T) specimen (p =0.84) using displacement-based bilinear cohesive zone model.

matching the numerical results to the crack initiation load obtained from the exper-
iment. Although the load versus crack growth responses obtained from the three
cohesive zone models show similar results, the JR curves show a large difference.
Numerical results of the present study demonstrate that the J values obtained from
the exponential and traction-based bilinear cohesive zone models overestimate the
actual J value. On the other hand, the displacement-based bilinear cohesive zone
model yields more reasonable results and closely captures the fracture and crack
growth behaviors of TiB/Ti FGM.

The effect of specimen configuration, i.e. T -stress, on the JR curve is insignificant
for the TiB/Ti FGM considered in the present study. This is due to the fact that
the crack growth remains within the relatively brittle region of the FGM. The effect
of T -stress on the JR curve may be more significant for regions with relatively high
ductility. This issue is not addressed in the present study since it is not within the pri-
mary scope of the work. However, the present numerical results suggest that the dis-
placement-based bilinear model can be employed to simulate crack growth in TiB/Ti
FGMs when the crack-tip remains within the relatively brittle region, where VTi is
less than 0.7.

The applicability of the cohesive zone model to the MBL model is investigated
in the present study. The exponential and traction-based bilinear cohesive zone mod-
els fail to yield the desired K–T stress field. The JR curves obtained from the MBL
model using these two cohesive zone models show approximately 100% difference to
that obtained from the SE(B) specimen. On the other hand, the displacement-based
bilinear model yields the desired K–T stress field for the MBL model, and thus yields
JR curves that match the ones obtained from the SE(B) and SE(T) specimens. These
results verify that the proposed displacement-based bilinear model serves as a suitable
cohesive zone model for the MBL model.
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The crack growth resistance of a FGM now can be investigated by using the MBL
model in conjunction with the cohesive zone model. This approach will serve as a
powerful and useful tool for investigating the fracture and crack growth behaviors
of ceramic/metal FGMs. However, as failure process in ceramic/metal FGMs become
better understood, e.g. through more experiments, the FGM cohesive zone model
proposed in the present study may be revisited accordingly.
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