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Abstract Debonding of particle/matrix interfaces
can significantly affect the macroscopic behavior of
composite materials. We have used a nonlinear cohe-
sive law for particle/matrix interfaces to study the effect
of interface debonding on the macroscopic behavior
of particle-reinforced composite materials subject to
uniaxial tension. The Mori–Tanaka method, which is
suitable for composites with high particle volume frac-
tion, is extended to account for interface debonding.
At a fixed particle volume fraction, small particles lead
to the hardening behavior of the composite while large
particles yield softening. The interface sliding may con-
tribute significantly to the macroscopic behavior of the
composite.
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1 Introduction

Debonding of particle/matrix interfaces in composites
may significantly affect their macroscopic behavior
since interface debonding leads to crack initiation and
propagation. Interface debonding is usually character-
ized by a nonlinear cohesive law (e.g., Needleman 1987;
Tvergaard and Hutchinson 1992, 1993; Xu and
Needleman 1994; Camacho and Ortiz 1996; Zhong
and Knauss 1997, 1999, 2000; Espinosa et al. 1998;
Geubelle and Baylor 1998; Huang and Gao 2001; Zhang
et al. 2002; Kubair et al. 2002, 2003; Samudrala et al.
2002; Samudrala and Rosakis 2003; Thiagarajan et al.
2004a, b; Tan et al. 2005a, 2006, 2007), which gives the
stress tractions in terms of displacement discontinuities
across the interface. Tan et al. (2005b) combined exper-
iments and micromechanics models to determine the
cohesive law for particle/matrix interfaces in the high
explosive PBX 9501. The bilinear interface cohesive
law obtained displays three stages, namely the linear
debonding (stage-I), softening (stage-II), and complete
debonding (stage-III), as illustrated in Fig. 1. The cohe-
sive properties, including the linear modulus, cohesive
strength, and softening modulus, have been obtained
for PBX 9501. Using such a cohesive law, Tan et al.
(2005a, 2006) studied the effect of nonlinear inter-
face debonding on macroscopic constitutive behavior

123



140 H. Tan et al.

σ

1

σ

[ ]u

k

1

k
~

int

max

σ
σ

I-egats

II-
egats

stage-III

Fig. 1 Three-stage interface cohesive law

of the high explosive PBX 9501 subject to hydrostatic
tension. The composite behaves nonlinearly after the
interface strength being reached. Small particles lead
to hardening behavior of PBX 9501 while large parti-
cles yield softening behavior. Large particles may also
lead to a sharp stress drop for a composite subject to
strain controlled loading.

Recently Tan et al. (2007) studied interface debond-
ing in composites subject to uniaxial tension since it is
a widely used test to characterize the material behavior.
However, their study is limited to the dilute solution,
which neglects the particle–particle interactions and is
therefore not suitable for composites with high parti-
cle volume fraction such as high explosives (7% binder

matrix with 93% energetic particles) and solid propel-
lants (more than 60% energetic particles).

We study in this paper the nonlinear interface deb-
onding in composites with high particle volume frac-
tion subject to uniaxial tension. Previous studies on the
three-stage interface cohesive law for the high explo-
sive PBX 9501 (Tan et al. 2005b) and a fundamen-
tal solution for composites with interface debonding
(Tan et al. 2007) are summarized in Sect. 2, based on
which the Mori–Tanaka method is extended to account
for interface debonding in Sect. 3. Results in Sect. 4
clearly show strong particle size effect, and the inter-
play between the particle volume fraction and nonlinear
interface debonding.

2 Previous results

2.1 A cohesive law for particle/matrix interfaces
in the high explosive PBX 9501

Interface cohesive law is expressed in terms of trac-
tion–displacement relations. Generally, the interface
displacement involves both opening and sliding, and
the interface traction involves both normal and tan-
gential stresses. Tan et al. (2005b) measured the cohe-
sive law of particle/matrix interfaces for high explosive
PBX 9501 subject to increasing hydrostatic tension.
Under the hydrostatic tension the interface sliding, and
thus the tangential interface traction, can be neglected.
As shown in Fig. 1, the cohesive law for an inter-
face with increasing opening [u] is well characterized
by three stages, namely the linear debonding, soften-
ing, and complete debonding, and each stage gives a
straight line. The cohesive law involves three parame-
ters, namely the interface cohesive strength σmax, linear
modulus k that gives the slop of the traction-curve in
stage-I of the interface debonding, and softening mod-
ulus k̃ that gives the slop in stage-II. These three inter-
face parameters are measured to be σmax = 1.66 MPa,
k = 1.55 GPa/µm and k̃ = 17 MPa/mm for the high
explosive PBX 9501 (Tan et al. 2005b). The normal
stress at the interface σ int is then related to the opening
displacement [u] by

σ int =

⎧
⎪⎪⎨

⎪⎪⎩

k[u] for stage-I, [u] ≤ σmax/k(
1 + k̃/k

)
σmax − k̃[u] for stage-II, σmax/k < [u] < σmax

(
1/k + 1/k̃

)

0 for stage-III, [u] ≥ σmax

(
1/k + 1/k̃

) , (1)

where the bracket [] is used to denote displacement
jump at the interface.

An essential length scale, critical opening displace-

ments of the interface δopen = σmax

(
1
k

+ 1
k̃

)
, is intro-

duced, which is 98µm for the high explosive PBX
9501. With the length scale δopen the relation between
the normal stress σ int and the opening displacement
[u], expressed in Eq. 1, can be reorganized as

σ int

σmax
=

⎧
⎪⎪⎨

⎪⎪⎩

1
λe

[u]
δopen

for stage-I, [u]
δopen

≤ λe

1
1−λe

(
1− [u]

δopen

)
for stage-II, λe<

[u]
δopen

<1

0 for stage-III, [u]
δopen

≥1

,

(2)
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where the interface elastic limit λe = k̃

k̃+k . The inte-

gration of the normal stress σ int over the opening dis-
placement [u] gives the cohesive energy

φ

γint
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
λe

( [u]
δopen

)2
for stage-I, [u]

δopen
≤λe

1− 1
1−λe

(
1− [u]

δopen

)2
for stage-II, λe<

[u]
δopen

<1

1 for stage-III, [u]
δopen

≥1

,

(3)

where the total interface cohesive energy γint = σ 2
max(

1/k + 1/k̃
)
/2.

The above interface cohesive law has been used to
study the constitutive behavior of composite materi-
als subject to hydrostatic tension (Tan et al. 2005a,
2006). However, only interface opening displacement
is considered in Eqs. 2 and 3. The effect of interface
sliding displacement [v] can be accounted for via the
combined measure of displacement discontinuity λ =√

( [u]
δopen

)2 +
( [v]
δslide

)2
(e.g., Tvergaard and Hutchinson

1993), where δslide is the critical sliding displacement of
the interface, and λ= 1 corresponds to complete inter-
face debonding. The interface cohesive energy φ

depends only on λ

φ = φ(λ). (4)

For the interface cohesive law in Eq. 3, and a loading
for λ increases from 0 towards 1, φ takes the form

φ

γint
=

⎧
⎪⎨

⎪⎩

1
λe
λ2 for stage-I, λ≤λe

1− 1
1−λe (1−λ)2 for stage-II, λe<λ<1

1 for stage-III, λ≥1
.

(5)

The normal and shear stresses at the particle/matrix
interface are given by

σ int

σmax
= φ′(λ)

2γintλ

[u]
δopen

τ int

τmax
= φ′(λ)

2γintλ

[v]
δslide

,

(6)

where τmax = δopen
δslide

σmax.

For pure interface opening, Eq. 6 gives the same
interface cohesive law as shown in Fig. 1 and Eq. 1.
For pure interface sliding, Eq. 6 gives σ int = 0 and

τ int

τmax
=

⎧
⎪⎨

⎪⎩

1
λe

[v]
δslide

for stage-I, [v]
δslide

≤λe
1

1−λe
(

1 − [v]
δslide

)
for stage-II, λe<

[v]
δslide

<1

0 for stage-III, [v]
δslide

≥1

.

(7)

The interface cohesive law for coupled opening and
sliding involves four parameters, namely the critical
opening displacement δopen, the critical sliding dis-
placement δslide, the linear modulus k and the softening
modulus k̃. Currently we have determined three param-
eters, k, k̃ and interface strength σmax, for the parti-
cle/matrix interfaces in the high explosive PBX 9501.
The critical opening displacement δopen and the inter-
face elastic limit λe relate to the measured three param-

eters through δopen = σmax

(
1
k

+ 1
k̃

)
and λe = k̃

k̃+k ,

respectively. Another interface parameter, the critical
sliding displacement δslide, remains unknown for the
high explosive PBX 9501.

2.2 A fundamental solution

We first present a fundamental solution for the axi-
symmetric problem of an infinite matrix containing
a spherical particle with radius a. As shown in Fig.
2, the matrix is subject to the remote axisymmetric
stress σ∞

xx = σ∞
yy and σ∞

zz . The particle/matrix inter-
face (r = a) has axisymmetric displacement discon-
tinuities [u] (opening displacement) and [v] (sliding
displacement) in the r and θ directions, respectively,
where (r, θ, ψ) are the spherical coordinates centered
at the particle. The general solution for an axisymmet-
ric deformation field can always be expressed in terms
of the Legendre polynomials Pn(cos θ) (Luré 1964).
For example, the interface opening displacement [u]
and sliding displacement [v], which depend only on θ ,
can be expressed as

[u] =
∞∑

n=0

[un]Pn(cos θ)

[v] =
∞∑

n=2

[vn]P ′
n(cos θ),

(8)

where the summation, here and thereafter, is for even
numbers only, P ′

n(cos θ) = dPn(cos θ)
dθ , and the coeffi-

cients [un] = (2n+ 1)
∫ π/2

0 [u]Pn(cos θ) sin θdθ and

[vn] = 2n+1
n(n+1)

∫ π/2
0 [v]P ′

n(cos θ) sin θdθ . The normal

and shear stresses at the interface, σ int and τ int, can be
similarly expressed as

σ int =
∞∑

n=0

σ int
n Pn(cos θ)

τ int =
∞∑

n=2

τ int
n P

′
n(cos θ),

(9)
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where the coefficients σ int
n and τ int

n are related to [un]
and [vn] by

Mu
nσ

int
n + n (n+ 1)Mv

nτ
int
n

= 1 − νm

4(1 + νm)µm

(
σ∞
zz +2σ∞

xx

)
δn0

+ 5(1 − νm)

(7 − 5νm)µm

(
σ∞
zz − σ∞

xx

)
δn2 − [un]

a
,

Mv
nσ

int
n + (

Mu
n +Mv

n

)
τ int
n

= 5(1 − νm)

2(7 − 5νm)µm

(
σ∞
zz − σ∞

xx

)
δn2 − [vn]

a
, (10)

where δnm is a Kronecker delta between integerm and
n. Here

Mu
n = 2n2 − 1 − (

2n2 − n− 2
)
νp

2 (n− 1)
[
n2 + n+ 1 + (2n+ 1) νp

]
µp

+ 2n2 + 4n+ 1 − (
2n2 + 5n+ 1

)
νm

2 (n+ 2)
[
n2 + n+ 1 − (2n+ 1) νm

]
µm

Mv
n = 2 − n+ (2n− 1) νp

2 (n− 1)
[
n2 + n+ 1 + (2n+ 1) νp

]
µp

+ n+ 3 − (2n+ 3) νm
2 (n+ 2)

[
n2 + n+ 1 − (2n+ 1) νm

]
µm

,

(11)

where µm (and νm) and µp (and νp) are shear mod-
uli (and Poisson’s ratios) of the matrix and particles,
respectively. Equation 10 gives two linear equations to
solve σ int

n and τ int
n in terms of the remote stresses and

displacement discontinuities across the particle/matrix
interface. For the axial symmetrical problem consid-
ered in the fundamental solution, as shown in Fig. 2,
the remote stress affects only modes n = 0 and 2 in
Eq. 10.

For an interface with linear bonding, Eq. 10 gives

σ int
n = τ int

n = 0, for n > 2. (12)

The interfacial tractions can then be written as

σ int = σ int
0 + σ int

2
3 cos2 θ − 1

2
τ int = −3τ int

2 cos θ sin θ,

where σ int
0 , σ int

2 , and τ int
2 can be solved from Eq. 10.

Therefore stress in the particle is uniform for linear
interface bonding. Further, for perfect interface bond-
ing the above derivation yields the same results where
the Eshelby solution is typically used (Mura 1987). For
interfaces with nonlinear debonding the statement in
Eq. 12 does not apply, and the stress in the particle is
non-uniform.

Fig. 2 An infinite matrix containing a spherical particle is
subject to the remote axisymmetric stress

3 Extended Mori–Tanaka method accounting
for particle/matrix interface debonding

The Mori–Tanaka method (Mori and Tanaka 1973) is
extended in this section to account for the nonlinear
interface debonding in the composite. The macroscopic
stress σ̄ and strain ε̄ represent the collective, homoge-
nized behavior of the composite, and are uniform in
the representative volume element. They are distin-
guished from their microscopic counterparts σ and ε
in each constituent (particles and matrix), which are
nonuniform due to material inhomogeneities, and sat-
isfy the corresponding constitutive law for the constit-
uent.

For a composite with particle volume fractionf sub-
ject to uniaxial tension along z direction, the relation
between the axial stress σ̄zz (denoted as σ̄ ) and the axial
strain ε̄zz (denoted as ε̄) is given by (e.g., Benveniste
and Aboudi 1984; Tan et al. 2007)

σ̄

Em
+ f

[

εint
zz +

(
1

2µp
− 1

2µm

)

σ
p
zz

+
(
νm

Em
− νp

Ep

)
(
σ
p
xx + σ

p
yy + σ

p
zz

)
]

− ε̄ = 0, (13)

whereEm andEp are Young’s moduli of the matrix and
particles, respectively; σp is the average stress in par-
ticles, and εint

zz is the additional strain due to interface
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debonding, and is related to the displacement discon-
tinuities [uz] across the particle/matrix interface Sint

by

εint
zz = 1

�p

∫

Sint

[uz]nzdA. (14)

Here �p is the particle volume and nz is the compo-
nent of the unit normal on the interface pointing into
the matrix.

Particle sizes in the high explosive PBX 9501 show
a bimodal distribution, with large and small particles
debond simultaneously (Tan et al. 2005a, b, 2006). To
simplify the problem for uniaxial loading, we consider
a RVE with particles of the same size in this paper
and assume that all the particles in the RVE debond
to the same degree, i.e., [un], [vn], σ int

n , and τ int
n are

the same for all interfaces. As shown in the Appen-
dix, the average stress in particles can be obtained in
terms of the coefficients of Legendre polynomial coef-
ficients σ int

0 , σ int
2 and τ int

2 in the fundamental solution
in Sect. 2.2 as

σ
p
zz = σ int

0 + 2

5

(
σ int

2 + 3τ int
2

)
(15)

and

σ
p
xx + σ

p
yy + σ

p
zz = 3σ int

0 .

Similarly, the additional strain due to interface debond-
ing is given in terms of [un] and [vn] in the fundamental
solution by

εint
zz = [u0]

a
+ 2 ([u2] + 3[v2])

5a
. (16)

The remote stress components, σ∞
zz and σ∞

xx , in the fun-
damental solution can be written as
σ∞
zz = σ̄ + σ̃zz

σ∞
xx = σ̃xx,

(17)

where σ̃xx and σ̃zz are the average perturbed stresses
in the matrix due to the presence of all inclusions (Weng
1984). The perturbed stresses relate to the average
stresses in particles through

σ̃zz = − f

1 − f

(
σ
p
zz − σ̄

)

σ̃xx = − f

1 − f
σ
p
xx.

(18)

With Eq. 15 the above equations become

σ̃zz = − f

1 − f

[

σ int
0 + 2

5

(
σ int

2 + 3τ int
2

)
− σ̄

]

σ̃xx = − f

1 − f

[

σ int
0 − 1

5

(
σ int

2 + 3τ int
2

)]

.

(19)

Substituting the expressions forσ∞
zz andσ∞

xx into Eq. 10
gives σ int

n and τ int
n , relating to [un] and [vn], as

{

Mu
n+ f

1−f
[

3(1−νm)
4(1+νm)µm δn0+ 3(1−νm)

(7−5νm)µm
δn2

]}

σ int
n

+
[

n (n+1)Mv
n+

f

1−f
9(1−νm)
(7−5νm)µm

δn2

]

τ int
n

= 1

1−f
[

1−νm
4(1+νm)µm δn0+ 5(1−νm)

(7−5νm)µm
δn2

]

σ̄−[un]
a

and
[

Mv
n+

f

1−f
3(1−νm)

2(7−5νm)µm
δn2

]

σ int
n

+
[

Mu
n+Mv

n+
f

1−f
9(1−νm)

2(7−5νm)µm
δn2

]

τ int
n

= 1

1−f
5(1−νm)

2(7−5νm)µm
δn2σ̄−[vn]

a
. (20)

Therefore, only [un] and [vn] remain to be determined,
and they can be obtained by minimizing the total poten-
tial energy density of the RVE, which is a functional
of [u] and [v], through

δ ([u], [v]) = 0. (21)

The total potential energy density of the RVE,
([u], [v]), is a sum of the elastic strain energy density
U and the potential energy of the macroscopic stress σ̄ .
For a RVE with controlled macroscopic strain ε̄ (during
the variation of interfacial jumps [u] and [v]), the vari-
ation of the potential energy of the macroscopic stress
σ̄ is zero. Therefore,

δ ([u], [v]) = δU ([u], [v]) = 0. (22)

Here the elastic energy density of the RVE,U , consists
of the energy

∫

Sint
φdA due to interface debonding and

the strain energy in the matrix and particles. For a RVE
subject to uniaxial tension, the strain energy density
U is given for any micromechanics model (e.g., dilute
solution, Mori–Tanaka method) as

U = 1

2
σ̄ ε̄ + 3f

a

{∫ π/2

0
φ sin θdθ

−
∞∑

n=0

σ int
n [un] + n(n+ 1)τ int

n [vn]
2(2n+ 1)

}

, (23)

whereφ is a nonlinear function of [un] and [vn]obtained
from Eqs. 3–5. Using the relations (14)–(17) for the
Mori–Tanaka method, the above strain energy density
can be written in terms of [un] and [vn] as
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U = σ̄ 2

2E0
− 3f

a2

{
1 −Km/K0

1 −Km/Kp

[u0]2

2Mu
0

+ 1 − µm/µ0

1 − µm/µp

([u2] + 3[v2])2
25(Mu

2 + 3Mv
2 )

}

+3f

a

∫ π/2

0
φ sin θdθ

+ 3f

2a2

∞∑

n=0

(
Mu
n +Mv

n

) [un]2 − 2n (n+ 1)Mv
n [un][vn] + n(n+ 1)Mu

n [vn]2

(2n+ 1)
[
Mu
n + (n+ 1)Mv

n

] (
Mu
n − nMv

n

) , (24)

where

σ̄ = E0

(

ε̄ − 1 −Km/K0

1 −Km/Kp

[u0]
a

− 1 − µm/µ0

1 − µm/µp

2[u2] + 6[v2]
5a

)

. (25)

HereE0, K0 andµ0 are respectively the Young’s, bulk
and shear moduli given by the Mori–Tanaka method for
a composite without interface debonding ([u] = [v] =
0), and are given in the Appendix.

According to Eq. 22, the Legendre components of
the interface displacement discontinuity, [un] and [vn],
can be obtained from
∂U

∂[un] = 0

∂U

∂[vn] = 0.

(26)

Once [un] and [vn] are obtained from Eqs. (26) for
a composite subject to uniaxial strain ε̄, we can use
[u0], [u2], and [v2] to construct the stress–strain rela-
tion of the composite using Eq. 25. It is interesting
to notice that Eq. 25 is identical to that for the dilute
solution (Tan et al. 2007) if E0, K0 and µ0 are substi-
tuted by their corresponding expressions in the dilute
solution.

The interface cohesive law enters into the Mori–
Tanaka method through Eq. 24, where the strain energy
densityU of the composite material contains the energy∫

Sint
φdA due to interface debonding. The difference

between the Mori–Tanaka method and the dilute
method in dealing with the constitutive behaviors of
composite materials accounting for the nonlinear inter-
face debonding is that: in dilute solution, the remote
stress σ∞ in the fundamental solution is taken as the
applied composite stress σ̄ (Tan et al. 2007); while in
the Mori–Tanaka method, the remote stress σ∞ is taken
as the average stress σm in the matrix. Through this
way interactions between particles are considered in

the Mori–Tanaka method. The method can therefore
be applied to investigate behaviors of solid propellants
and high explosives, where the particle volume fraction
is high and the interactions between particles can not
be neglected.

4 Results

The material properties are taken from the high explo-
sive PBX 9501. The elastic bulk and shear moduli of
particles are Kp = 12.5 GPa and µp = 5.43 GPa (Zaug
1998). The matrix Young’s modulus isEm = 1 MPa, and
Poisson’s ratio νm = 0.499 (Cady et al. 2006; Mas et al.
2001). The interface cohesive law for the high explosive
PBX 9501 has the cohesive strength σmax = 1.66 MPa,
linear modulus k = 1.55 GPa/µm and softening modu-
lus k̃ = 17 MPa/mm (Tan et al. 2005b), which give the
critical opening displacement δopen = 98µm.

4.1 Particle volume fraction f

Figure 3 shows the macroscopic stress–strain curves of
the composite (solid curves) with particle volume frac-
tion f = 10%, 60%, and 93%, where 93% is the particle
volume fraction in the high explosive PBX 9501 that
contains large particles (radius a = 125µm) and small
particles (radius a = 4µm). The tensile stress σ̄ is nor-
malized by the interface cohesive strength σmax. The
particle radius is fixed ata = 125µm, which is the radius
of large particles in the PBX 9501. The critical sliding
displacement is the same as the critical opening dis-
placement, i.e., δslide = δopen. Figure 3 also shows the
stress–strain curves of the composite predicted from
a non-cohesive model (dashed lines), where interface
displacements are assumed to be zero. However, inter-
face displacements are not zero when the interface is
in linear debonding stage. Therefore, Fig. 3 reflects the
significant effect of interface debonding on the Young’s
modulus. For each particle volume fraction, the curve
for interface debonding is clearly lower than that with-
out debonding.

As the particle volume fraction increases, the
Young’s modulus (initial slope of the stress–strain
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Constitutive behaviors of composites with interface debonding 145

curve) increases sharply because the elastic modulus
of particles (∼10 GPa) is several orders of magnitude
higher than that of the matrix (∼1 MPa). The particle
volume fraction also affects the strength (peak stress) of
the composite, which is 1.04 times the interface cohe-
sive strength, 1.04σmax, for f = 93% and 0.89σmax and
0.62σmax for f = 60% and 10%, respectively. Once the
peak stress is reached, the stress–strain curve reaches
the softening stage. Forf = 10%, the stress–strain curve
shows an abrupt drop after the peak stress, i.e., the so
called the “catastrophic debonding” (Tan et al. 2007).
For high particle volume fraction (f = 60% and 93%),
the abrupt drop disappears and the stress–strain curves
displays gradual decrease after the peak. This is con-
sistent with the analytical solution for the composite
with interface debonding subject to hydrostatic tension
(Tan et al. 2005a).

The curve forf = 60% in Fig. 3 becomes lower than
that for f = 10% at the large strain. This is because, at
the large strain, the debonded particles become effec-
tively the voids. A higher particle volume fraction then
gives a higher void volume fraction, and therefore lower
stress–strain curve.

strain

sserts

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

σ/
σ

xa
m

ε

93%

10%

f = 93%

f = 10%

f = 60%

60%

Fig. 3 The stress–strain curves for particle volume fraction
f = 10%, 60%, and 93%, where the stress is normalized by the
interface cohesive strength σmax. The particle radius is 125µm,
and the critical sliding displacement is the same as the critical
opening displacement, δslide = δopen. The stress–strain curves
predicted from a non-cohesive model are also shown

4.2 Particle size a

The solid lines in Fig. 4 show the normalized stress,
σ̄ /σmax, versus the strain for small particle radius
a = 4µm and large particle radius a = 125µm, respec-
tively. These two particle sizes are used in the high
explosive PBX 9501 (Skidmore et al. 1997; Berghout
et al. 2002). The particle volume fraction is f = 60%,
and the critical sliding and opening displacements are
the same, δslide = δopen. Small particles (a = 4µm)
give the hardening behavior, while large particles (a =
125µm) lead to softening behavior. This particle size
effect has also been observed in the dilute solution (Tan
et al. 2007), and therefore holds for both low and high
particle volume fractions.

It is interesting to point out that it is always the parti-
cle radius a times interface cohesive zone moduli, k for
linear debonding and k̃ for softening, that is compared
with the moduli of particles and the matrix (see also Tan
et al. 2007). Classical micromechanics models are size
independent. The particle radius a enters into the for-
mulation of the composite energy density U through
in two places: one is in the fundamental solution as

strain
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Fig. 4 The stress–strain curves for particle radius a = 4, 35, and
125µm, where the stress is normalized by the interface cohesive
strength σmax. The particle volume fraction is f = 60%, and the
critical sliding displacement is the same as the critical opening
displacement, δslide = δopen
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Fig. 5 Particle size effect at different volume fraction f = 10%,
60%, and 93%. The solid lines give the stress–strain curves for
large particles with radius 125µm, while the dashed lines for
small particles with radius 4µm. The stress is normalized by the
interface cohesive strength σmax. The critical sliding displace-
ment is the same as the critical opening displacement, δslide =
δopen

given in Eq. 10; the other is through the specific sur-
face 3f/a, which is the interface area per unit volume
of the material, as given in Eq. 24.

The reason for the large and small particles to dis-
play different behavior (at the same particle volume
fraction) is that the contribution from interface debond-
ing to the tangent modulus is −k̃a. For large particle
radius, k̃a may overwhelm the Young’s modulus E0

(for composite without interface debonding) such that
the increment modulus becomes negative, i.e., soften-
ing.

There exists a critical part size that separates the
hardening and softening behaviors, and it is about
35µm for the present material properties, as shown
by the dashed line in Fig. 4. This corresponds to the
ratio of particle radius to critical opening displace-
ment a/δopen = 0.36. This particle size effect clearly
results from the length scale introduced in the inter-
face cohesive law. The micromechanics models that do
not account for interface debonding can only predict
size-independent material behavior.

Figure 5 further shows the particle size effect at
different volume fraction f = 10%, 60%, and 93%. The
dashed line is for particle size a = 4µm, and solid line
for a = 125µm. The results indicate that: for the
composites with material parameters specified in the

strain
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Fig. 6 The stress–strain curves for critical sliding displacement
δslide = 0.5, 1, and 4 times the critical opening displacement δopen,
where the stress is normalized by the interface cohesive strength
σmax. The particle volume fraction is f = 60%, and the particle
radius a = 125µm

beginning of the section the constitutive behaviors
always show hardening for small particles with radius
of 4µm.

4.3 Interface sliding

Figure 6 shows the normalized stress, σ̄ /σmax, ver-
sus the strain for different ratio of critical sliding to
opening displacements, δslide/δopen = 0.5, 1, and 4. The
particle radius is a = 125µm, and the particle volume
fraction is f = 60%. All curves have the same initial
slope. For small critical sliding displacement δslide =
0.5δopen, the peak stress as well as the stress–strain
curve are higher than their counterparts for δslide =
δopen and 4δopen. This suggests that interface sliding
may significantly affect the stress–strain behavior of
the composite. In fact, δslide should be determined from
experiments that involve significant shear, such as uni-
axial tension.

5 Conclusions and Discussions

We have used a nonlinear cohesive law for particle/
matrix interfaces to study the effect of interface debond-
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ing on the macroscopic behavior of particle-reinforced
composite materials subject to uniaxial tension. The
Mori–Tanaka method, which is suitable for compos-
ite with high particle volume fraction, is extended to
account for interface debonding. At a fixed particle vol-
ume fraction, small particles lead to hardening behav-
ior of the composite while large particles yield soft-
ening behavior. The interface sliding may contribute
significantly to the macroscopic behavior of the com-
posite.

The interface debonding [u] between the large parti-
cles and the matrix in PBX 9501 is around 100 micron
(Tan et al. 2005b). The contribution of interface deb-
onding to the composite strain is on the order of [u]/a,
where a is the average radius of particles. For large par-
ticles in PBX 9501 the radius a is around 125 microns
(Skidmore et al. 1997), so [u]/a is close to 100%. In the
Figs. 3–6, the average strains are plotted to values of
one, corresponding to 100% strain. Such large strains
mostly occur through interface debonding.
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Appendix

The average stress in the particle isσpij = 1
�p

∫

�p
σijdV

= 1
�p

∫

�p
σikδjkdV = 1

�p

∫

�p
σikxj,kdV = 1

�p

∫

�p(
σikxj

)

,k
dV = 1

�p

∫

Sint
σikxjnkdA, where the equi-

librium equation σik,k = 0 and divergence theorem
have been used. It is noted that is the stress traction,
i.e., σ int and τ int in r and θ directions, respectively.
The substitution of σ int and τ int in Eq. 9 into the above
integral gives the average stress in particles in Eq. 14.

The average strain εint
zz due to interface debonding

can be similarly obtained by substituting [u] and [v] in
Eq. 8 into Eq. 13, where [uz] = [u] cos θ − [v] sin θ .

The Mori–Tanaka solution gives the bulk and shear
moduli of a composite without interface debonding

as K0 = Km

[

1 + f
(
Kp
Km

−1
)

1+(1−f ) 1+νm
3(1−νm)

(
Kp
Km

−1
)

]

and

µ0 = µm

[

1 + f
(
µp
µm

−1
)

1+(1−f ) 2(4−5νm)
15(1−νm)

(
µp
µm

−1
)

]

. The Young’s

modulus is given by E0 = 9µ0K0
µ0+3K0

.
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