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SUMMARY

The computational bottleneck of topology optimization is the solution of a large number of linear systems
arising in the finite element analysis. We propose fast iterative solvers for large three-dimensional topology
optimization problems to address this problem. Since the linear systems in the sequence of optimization
steps change slowly from one step to the next, we can significantly reduce the number of iterations and the
runtime of the linear solver by recycling selected search spaces from previous linear systems. In addition,
we introduce a MINRES (minimum residual method) version with recycling (and a short-term recurrence)
to make recycling more efficient for symmetric problems. Furthermore, we discuss preconditioning to
ensure fast convergence. We show that a proper rescaling of the linear systems reduces the huge condition
numbers that typically occur in topology optimization to roughly those arising for a problem with constant
density. We demonstrate the effectiveness of our solvers by solving a topology optimization problem with
more than a million unknowns on a fast PC. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The goal of topology optimization is to find a material distribution in terms of design variables such
that a given objective function, e.g. compliance, is minimized subject to certain constraints. We give
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a brief introduction to topology optimization in the next section. To make topology optimization a
truly effective tool in the design of large structures and complex materials, we must be able to use
large three-dimensional models. Most work on topology optimization for continuum structures has
emphasized developing new formulations and applications, designing suitable elements, studying
existence and uniqueness issues, and solving (modest size) problems. However, the computational
aspect of large-scale topology optimization, specifically the high cost of solving many large linear
systems, has not received much attention. This is the focus of this paper.

The finite element analysis step in topology optimization requires the solution of a long sequence
of linear systems of the type

K(q(i))u(i)= f (1)

where K is the stiffness matrix as a function of the density distribution q at the i th optimization
step, f is the load vector, and u is the displacement vector. Currently, direct solvers are most
commonly used, because of the very large condition numbers arising in topology optimization.
Unfortunately, direct solvers cannot effectively handle large 3D problems, since their large stor-
age and computational requirements make them prohibitively expensive. Iterative solvers have
low storage requirements and the computational cost per iteration is small. Therefore, as long as
convergence is reasonably fast, we can solve very large problems.

Iterative solvers offer a number of additional advantages compared with direct solvers. First,
we do not need to solve very accurately in the early phase of the topology optimization process.
Second, iterative solvers are easy to parallelize, which is important for very large problems. For
instance, parallelization of topology optimization was studied in References [1–3]. Third, iterative
solvers can use solutions from previous systems as starting guesses, which leads to smaller initial
residuals. Last, for a sequence of linear systems that change slowly, we can reduce the total number
of iterations by recycling subspaces of earlier search spaces [4, 5].

In topology optimization, the change in the design variables becomes small after the first few
optimization steps. Therefore, the change in the system matrix K(q) from one optimization step
to the next is also small, and the Krylov subspace recycling methods introduced in Reference [4]
are likely to be effective. We give more background on recycling in Section 3. Some topology
optimization problems lead to a non-linear system in each optimization step [6]. If we use a
Newton or quasi-Newton method for the non-linear system, the (approximate) Jacobians often
change sufficiently slowly, and we can further exploit recycling; see, for example, Reference [5].

In most structural problems, the matrices are symmetric but not necessarily positive definite. For
example, in vibration problems symmetric indefinite matrices arise [7]. For such matrices, MINRES
(minimum residual method) [8] is the method of choice. Therefore, we focus on MINRES in the
present paper. We extend the idea of subspace recycling to MINRES and make it more efficient
by exploiting symmetry and short-term recurrences. We discuss the recycling MINRES in detail in
Section 4. For topology optimization problems with non-symmetric matrices, e.g. Reference [9],
the Krylov subspace recycling methods from [4], outlined briefly in Section 3, can be used.

To achieve fast convergence we do need to use preconditioning. As the material distribution in
a structure is being optimized, some elements become nearly void (we set a small positive lower
bound on the densities to avoid singularity). This makes the linear system very ill-conditioned.
First, we show that the ill-conditioning is largely a problem of poor scaling. We reduce the condition
number by 6 orders of magnitude by rescaling the system matrices with two diagonal matrices.
Since diagonal scaling does not introduce numerical errors, this also mitigates the serious potential
accuracy problems of ill-conditioning. Next, we combine the rescaling with other preconditioners
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to make the condition numbers of the linear systems even smaller. We discuss preconditioning in
Section 5.

In Section 6, we give some implementation details of our methods. In Section 7, we analyse our
methods for a model problem, and we present the numerical results to demonstrate the significant
improvements our solvers achieve. In the last section, we provide the conclusions.

2. TOPOLOGY OPTIMIZATION

Topology optimization is a powerful structural optimization method that combines a numerical
solution method, usually the finite element method (FEM), with an optimization algorithm to find
the optimal material distribution inside a given domain [10–15]. In designing the topology of a
structure we determine which points of space should be material and which points should be void
(i.e. no material). However, it is well known that an optimum result of topology optimization
consists in a structure with intermediate (or composite) material. So, continuous values between 0
and 1 replace the discrete 0/1 numbers to represent the relative densities of the elements, while
some form of penalization is used to steer the solution back to discrete 0/1 values [16]. The
objective function is the compliance and there is a volume constraint. This is the basic set-up of a
topology optimization problem. We specify the problem mathematically as follows:

min
q,u

c(q,u)=uTK(q)u

s.t.: K(q)u= f

0<�0��e�1 e= 1, 2, . . . , ne (2)∫
�

� d��V

where c is the compliance, K(q) is the stiffness matrix as a function of the density distribution q, u
and f are the displacement vector and load vector, �0 is a chosen, small, positive lower bound for
the density to avoid singularity of the stiffness matrix, and V is the total volume in use. The solid
isotropic material with penalization (SIMP) method [16, 17] uses one design variable to represent
the density in each element, while the recent method of continuous approximation of material
distribution (CAMD) [18–21] uses multiple variables per element. Since the focus of this paper is
the linear solver in the finite element analysis (FEA), we use the SIMP method as a simple set-up.

The basic scheme of topology optimization is described in Figure 1. First, we set up the geometry
and the loading, and initialize the density distribution q. Then, we start the optimization loop. We
need a linear solver to solve the equilibrium equations Ku= f in the finite element analysis. In the
sensitivity analysis, we compute the derivatives of the objective function �c/��e. After this, we can
apply an optional low-pass filter to remedy the checkerboard problem [22]. The next step is the
kernel of the optimization. There are various optimization algorithms that can be used for topology
optimization. For instance, optimality criteria (OC) is a simple approach based on a set of intuitive
criteria [23], while the method of moving asymptotes (MMA) is a mathematical programming
algorithm which is more robust and well established in theory [24]. Since this paper deals mainly
with the FEA in topology optimization, the choice of the optimization method is less relevant
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Figure 1. The general flow of computations for topology design.

for our discussion. Therefore, we choose the OC method for its simplicity. However, our Krylov
subspace recycling method and preconditioning techniques are general and can be used with other
optimization methods.

3. KRYLOV SUBSPACE RECYCLING

Consider the linear system Ku= f and an initial guess u0. A Krylov subspace method, such as the
generalized minimum residual method (GMRES) [25], builds the Krylov subspace, span{r0,Kr0,
K2r0, . . . ,Km−1r0}, where r0= f−Ku0, and computes the optimal solution over that subspace. We
use the Arnoldi recurrence [26] to obtain an orthonormal basis of the Krylov subspace:

v1 = r0/‖r0‖2
hi,i+1vi+1 =Kvi − hi,ivi − hi−1,ivi−1 − · · · − h1,iv1

(3)

which in matrix form is written as

KVm =Vm+1Hm (4)

where the columns of Vm are v1, . . . , vm ; the columns of Vm+1 are v1, . . . , vm+1; and Hm is an
(m + 1)×m upper Hessenberg matrix with coefficients {hi j }.
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For a symmetric matrix, we have K=SKST, where S is an orthogonal matrix, and K is a
diagonal matrix whose coefficients are the eigenvalues of K. The convergence rate of GMRES for
a symmetric problem is bounded by [27, p. 206]

‖rm‖2
‖r0‖2 � min

pm∈�(0)
m

max
�∈�(K)

|pm(�)| (5)

where �(0)
m is the set of polynomials pm of degree m such that pm(0)= 1, and �(K) is the set of

eigenvalues of K. So, the bound depends on the spectrum of the matrix. Therefore, if we remove
an appropriate subset of the eigenvalues, M ,

min
pm∈�(0)

m

max
�∈(�(K)\M)

|pm(�)|

can be significantly smaller than (5), and then the rate of convergence will be greatly improved.
This is the motivation for recycling approximate invariant subspaces; other subspaces of the Krylov
space may also be effective as a recycle space [4, 5]. Given the normalization condition, pm(0)= 1,
it is often effective to remove the eigenvalues close to the origin. This filtering of eigenvalues is
achieved by including the corresponding (approximate) invariant subspace in the Krylov subspace
over which we minimize. We typically recycle harmonic Ritz vectors with respect to the Krylov
subspace to approximate an invariant subspace [4].

When solving the next linear system,K(q(i+1))u(i+1)= f, we include the recycle space as follows.
We choose a basis for the recycle space to be the columns of a matrix U, such that C=KU and
CTC= I. In addition, we adapt the Arnoldi process to make each new Krylov vector v orthogonal
to range(C). This leads to the following recurrence:

(I− CCT)KVm =Vm+1Hm ⇔
KVm =CCTKVm + Vm+1Hm

(6)

whereHm is still an (m+1)×m upper Hessenberg matrix. Next, we compute the vector em =Uzm+
Vmym , such that um = u0 + em minimizes ‖rm‖2. This gives

‖rm‖2 =
∥∥∥∥∥r0 − K[U Vm]

(
zm

ym

)∥∥∥∥∥
2

=
∥∥∥∥∥[C Vm+1]

((
CTr0

�e1

)
−
[
I Bm

0 Hm

](
zm

ym

))∥∥∥∥∥
2

=
∥∥∥∥∥
(
CTr0

�e1

)
−
[
I Bm

0 Hm

](
zm

ym

)∥∥∥∥∥
2

(7)

where �=‖(I− CCT)r0‖2 and Bm =CTKVm . This least squares problem can be solved using the
QR decomposition of Hm . This approach derives from the GCRO method [28] and is also used in
the GCRODR method and GCROT with recycling [4, 5, 29].
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An important issue for GMRES is that it relies (for general matrices) on a complete orthogonal-
ization of the Krylov subspace. Therefore, as the Krylov subspace expands, the memory needed
for the orthogonal basis vectors and the computational time for orthogonalization increase. As a
result, normally restarting is required for GMRES, and we call the solution steps between two
restarts a cycle. To mitigate the reduced convergence rate due to the loss of orthogonality caused
by restarting, we use the recycle space immediately in the next cycle for the same system.

4. RECYCLING MINRES

While the recycling methods like GCRODR and GCROT, which are based on GMRES and GCRO,
solve systems with general matrices, in most topology optimization problems the system matrices
are symmetric. In most cases they are also positive definite. However, for some applications, e.g.
topology design with dynamic vibrations, they can be indefinite [7]. So, in general, the MINRES
method [8] is the most suitable iterative solver for topology optimization problems. In this section,
we study recycling in the MINRES method.

Both MINRES and GMRES minimize the two-norm of the residual over the Krylov subspace.
The difference is that MINRES utilizes the symmetry of the matrix, and the resulting Lanczos
three-term recurrence leads to significant reductions in memory requirements and computational
cost.

We can use the matricesU andC defining the recycle space, obtained from solving previous linear
systems, in the same way as in GCRODR. This leads to the same recurrence as in (6). However, the
symmetry of K implies the symmetry of Hm , the leading m×m submatrix of Hm .

¶ Since Hm is
also an upper Hessenberg matrix, this gives a tridiagonalHm , which we will denote as Tm from now
on. So, including the recycle space into the Krylov subspace does not affect the Lanczos recurrence
of MINRES. Now we explain how we adapt the MINRES method as described in Reference [30,
p. 84–86] or [31, p. 41–44] to include the recycle space. Similarly as in GCRODR, we need to
compute the vector em =Uzm + Vmym , such that um =u0 + em minimizes ‖rm‖2. For symmetric
K, (7) becomes

‖rm‖2=
∥∥∥∥∥
(
CTr0

�e1

)
−
[
I Bm

0 Tm

](
zm

ym

)∥∥∥∥∥
2

(8)

where �=‖(I− CCT)r0‖2 and Bm =CTKVm . The QR decomposition of Tm gives

Tm = ĜT
mXm (9)

where Ĝm is an orthogonal matrix of size (m+ 1)× (m+ 1), and Xm is an upper triangular matrix
of size (m+ 1)×m with bandwidth 3. Ĝ is the product of a series of orthogonal matrices defining
plane rotations, also called Given’s rotations, Ĝm =Gm · · ·G2G1 (see Algorithm 1). Let Xm be the
leading m×m submatrix of Xm , and {xi j } and {ti j } be the coefficients of Xm and Tm , respectively.
The solution of the least squares problem (8) is then

ym =X−1m Ĝm�e1, zm =CTr0 − Bmym (10)

¶Note that (I−CCT)Kx=(I−CCT)K(I−CCT)x for x∈ range (C)⊥, so that (I−CCT)K is symmetric over range(C)⊥.
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This leads to

um = u0 + Uzm + Vmym

= u0 + UCTr0 − UBmym + Vmym

= û0 − UBmym + Vmym (11)

where û0=u0 +UCTr0. Since Vm can be computed by a three-term recurrence, we only need the
last two columns of Vm for the recurrence. However, ym and ym−1 may differ in each coefficient,

so that we still need all the columns of Vm and UBm to update um . Let {vi } and {b̂i } be the columns
of Vm and UBm , respectively. To allow us to discard the old vi and b̂i vectors we use the same
transformations as in MINRES. Let

B̂m =UBm, B̃m = B̂mX−1m , Ṽm =VmX−1m , ỹm =Xmym (12)

Then

ỹm = Ĝm�e1=GmGm−1 · · ·G1�e1=Gm ỹm−1

and only the mth and (m + 1)th coefficients of ỹm−1 and ỹm differ. The update (11) becomes

um = û0 − B̃m ỹm + Ṽm ỹm

= û0 − (B̃m−1ỹm−1 + b̃m ỹm,m)+ (Ṽm−1ỹm−1 + ṽm ỹm,m)

= um−1 − b̃m ỹm,m + ṽm ỹm,m

where b̃m and ṽm are themth columns of B̃m and Ṽm , respectively, and ỹm,m is themth coefficient of
vector ỹm . Therefore, we only need the last column of B̃m and Ṽm to update u. From the definition
of B̃m and Ṽm in (12), we have

b̃m−2xm−2,m + b̃m−1xm−1,m + b̃mxm,m = b̂m (13)

ṽm−2xm−2,m + ṽm−1xm−1,m + ṽmxm,m = vm (14)

so that the columns of B̃m and Ṽm can be computed by three-term recurrences as well.
Algorithm 1 outlines this modified MINRES that includes the recycle space into the search

space. We give some further implementation details in Section 6. In this algorithm, because of
the three-term recurrences, we do not need to restart. So, in exact arithmetic, there is no need to
use the recycle space generated during the solution of a linear system in the solution of that same
system.‖ As a consequence, we can derive a more efficient method for recycling for symmetric

‖In floating point arithmetic, including the recycle space obtained from the current Krylov subspace may help remedy
the loss of orthogonality that generally occurs due to rounding errors.
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Algorithm 1 Modified MINRES

1: r0← f− Ku0
2: u0← u0 + UCTr0; r0← r0 − CCTr0
3: v1← r0/‖r0‖2; ỹ← ‖r0‖2e1
4: for m = 1, . . . do
5: v̂m+1← Kvm
6: v̂m+1← v̂m+1 − C(CTv̂m+1); b̂m ← U(CTv̂m+1)

� use modified Gram–Schmidt orthogonalization for updating v̂m+1 �
7: tm−1,m ← tm,m−1; v̂← v̂− tm−1,m v̂m−1
8: tm,m ← 〈v̂, vm〉; v̂← v̂− tm,mvm
9: tm+1,m ← ‖v̂‖2; vm+1← v̂/tm+1,m
10: X:,m ← Gm−1Gm−2T:,m� apply the Given’s rotations from the previous two iterations to �

� the new column of Tm �
11: Compute Given’s rotation Gm such that X:,m ← GmX:,m has a zero coefficient at position

(m + 1,m) � see MINRES [31, p. 41–44] �
12: ỹ← Gm ỹ
13: ṽm ← x−1m,m(vm − ṽm−1xm−1,m − ṽm−2xm−2,m)

14: b̃m ← x−1m,m(b̂m − b̃m−1xm−1,m − b̃m−2xm−2,m)

15: um ← um−1 + ṽm ỹm − b̃m ỹm � ỹm is the mth entry of vector ỹ �
16: end for

matrices. Although the Lanczos recurrence requires only the latest two basis vectors from the Krylov
subspace (Lanczos vectors) for orthogonalization and restarting is not necessary, we do need all
the Lanczos vectors to compute a recycle space. Therefore, to limit the memory requirements, we
update the selected recycle space periodically. In this case, a cycle refers to the solution process
between two updates of the recycle space.

We use s to denote the maximum length of a cycle (and hence the maximum number of Lanczos
vectors kept), and k to denote the number of linearly independent vectors selected for recycling. We
use RMINRES(s, k) to indicate the recycling MINRES method with the parameters s and k. The
matrix V j contains the Lanczos vectors generated in the j th cycle, V j =[v( j−1)s+1, . . . , v js], and
the matrix V j =[v( j−1)s, . . . , v js+1] denotes V j extended with one previous and one subsequent
Lanczos vector. Then, for the j th cycle, the modified Lanczos process gives

(I− CCT)KV j =V jT j (15)

where T j is the tridiagonal matrix T j with an additional row corresponding to v( j−1)s at the

top. The bottom row corresponds to v js+1. To be specific, T j has the non-zero pattern shown
in Figure 2.

Let U j−1 give the basis of a subspace that was selected at the end of cycle j − 1 for the current
linear system. U j−1 is used only to compute U j after cycle j ; it is not used in solving the current
linear system. The final U j will be used for the next linear system. Below, we discuss several
options to compute U j from U, U j−1, and the matrix V j containing the Lanczos vectors generated
in the latest cycle for the current system.
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Figure 2. Non-zero pattern of T j .

The modified Lanczos recurrence that includes the orthogonalization against C gives

K[U U j−1 V j ]= [C C j−1 V j ]

⎡⎢⎢⎣
I 0 B j

0 I 0

0 0 T j

⎤⎥⎥⎦ (16)

where B j =CTKV j has been computed in the course of the iteration (see (15)). Now, we have
several options for selecting a new matrix U j for recycling. The first option is to compute the
harmonic Ritz vectors of K with respect to range ([U U j−1 V j ]). The second option is similar to
option 1, but we drop the U components from U j if the linear solver has not converged. This is
possible since U will be included again for the update of the recycle space after the next cycle for
the same linear system. The third option is to obtain U1 from range ([U V1]) after the first cycle
and U j from range ([U j−1 V j ]) after the j th cycle. In the last approach, the reappearance of U
can be avoided as well. Since the formulation and the performance of these options are similar, we
only discuss the third option in this paper.

Let

W j =[U j−1 V j ], W̃ j =[C C j−1 V j ], H̃ j =

⎡⎢⎢⎣
0 B j

I 0

0 T j

⎤⎥⎥⎦ (17)

Then, (16) gives

KW j = W̃ j H̃ j (18)

Now, we compute the harmonic Ritz values and vectors ofKwith respect to the subspace range (W j ).
These harmonic Ritz pairs (�,w) are defined by the condition

Kw− �w ⊥ range(KW j ) (19)

where w ∈ range (W j ). If we write w=W jp, computing harmonic Ritz pairs is equivalent to
solving the generalized eigenvalue problem

H̃T
j W̃

T
j W̃ j H̃ jp= �H̃T

j W̃
T
jW jp (20)
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After solving (20), we choose the k harmonic Ritz vectors with the (absolute) smallest harmonic
Ritz values for recycling, and set Ũ j =W jP j , where the columns of P j are the chosen harmonic
Ritz vectors. Now we have C̃ j =KŨ j = W̃ j H̃ jP j . To obtain C j with orthonormal columns, we
compute the QR decomposition of W̃ j (note that by construction almost all columns are already
orthogonal),

W̃ j = Ŵ jF j (21)

and of F j H̃ jP j ,

F j H̃ jP j =Q jR j (22)

Next, we set

U j =W j P̂ j , C j = Ŵ jQ j = W̃ j Q̂ j (23)

where P̂ j =P jR
−1
j , and Q̂ j =F−1j Q j . Then C j is orthogonal and KU j =C j . The two QR decom-

positions (21)–(22) are cheap to compute, because F j has very few non-zeros, whose positions are
known in advance, and F j H̃ jP j is a product of matrices of small dimensions.

Finally, to solve the generalized eigenvalue problem (20), we need the matrices H̃T
j W̃

T
j W̃ j H̃ j

and H̃T
j W̃

T
jW j . We can simplify W̃T

j W̃ j and W̃T
jW j as follows:

W̃T
j W̃ j =

⎡⎢⎢⎢⎣
I CTC j−1 0

CT
j−1C I CT

j−1V j

0 VT
j C j−1 I

⎤⎥⎥⎥⎦ (24)

W̃T
jW j =

⎡⎢⎢⎢⎣
CTU j−1 0

CT
j−1U j−1 CT

j−1V j

VT
j U j−1 I

⎤⎥⎥⎥⎦ (25)

where I is an extended identity matrix with an additional row of zeros at the top and at the bottom.
We can simplify the computation of most blocks in these two matrices further.

CTC j−1 =CTW̃ j−1Q̂ j−1=[I CTC j−2 0]Q̂ j−1 (26)

VT
j C j−1 =VT

j W̃ j−1Q̂ j−1=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 1 0

0 · · · 0 0 1

...
. . .

. . .
...

...

0 · · · · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Q̂ j−1 (27)
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CTU j−1 =CTW j−1P̂ j−1= [CTU j−2 0]P̂ j−1 (28)

CT
j−1U j−1 = Q̂T

j−1(W̃T
j−1W j−1)P̂ j−1 (29)

CT
j−1V j = Q̂T

j−1

⎡⎢⎢⎢⎣
CT

CT
j−2

V j−1

⎤⎥⎥⎥⎦V j = Q̂T
j−1

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

0 0 · · · 0

...
...

. . .
...

1 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦ (30)

From the above derivation, we can obtain VT
j C j−1 and CT

j−1V j simply from Q̂ j−1 (known from

the previous cycle), and we can compute CTC j−1, CTU j−1 and CT
j−1U j−1 recursively with 2k3, 2k3

and 2k(k + s)(3k + s) flops, respectively. Therefore, the computation of these submatrices is very
cheap. Only VT

j U j−1 must be computed explicitly by matrix–matrix product, which takes about

2ksn flops. In summary, the cost of each update of the recycle space is about (12k2+6ks+6k+4)n
flops, ignoring the terms that do not have a factor n. Compared with the cost of MINRES, which
is mainly determined by the matrix–vector product and the forward and backward solve for the
preconditioner for each iteration, the overhead of the subspace selection is modest (see the timing
results in Section 7).

The general form of the RMINRES is outlined in Algorithms 2 and 3, below. For brevity, we
do not explicitly deal with the slight changes for the first linear system in the sequence, when we
do not have a recycle space Û yet, and for the first cycle for each linear system, i.e. j = 1, when
we do not have U j−1 and C j−1 yet. For the first system in the sequence, we define

W1 =V1, W̃1=V1

W j = [U j−1 V j ], W̃ j =[C j−1 V j ] for j>1
(31)

And for the first cycle of each subsequent system, we let

W1=[U V1], W̃1=[C V1] (32)

The U j and C j for these special cases can be easily derived using the simplified definitions of W
and W̃ in (31) and (32) following the approach that we give for general case, and Algorithm 3 can
be modified correspondingly. Again, we provide some further implementation details in Section 6.

5. PRECONDITIONING FOR TOPOLOGY OPTIMIZATION

The convergence rate of Krylov methods for a symmetric matrix depends only on the spectrum of
the matrix. In fact, the ratio between the absolute largest and smallest eigenvalues governs a worst-
case upper bound on the convergence rate. In large-scale finite element simulations in physics and
engineering, the linear systems tend to be ill-conditioned. In topology optimization, this problem
is exacerbated by the wide range of magnitudes of the element densities.
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Algorithm 2 Solve Ku= f with u0 and Û from the previous system, and s and k

1: Ĉ← KÛ
2: compute the QR decomposition of Ĉ as Ĉ=CR̃
3: U← ÛR̃−1 � use backward substitution �
4: u← u0; r← f− Ku
5: u← u+ U(CTr); r← r− C(CTr) � use Modified Gram–Schmidt �
6: �=‖r‖2; v1← r/�; ỹ← �e1
7: m ← 0; j ← 0
8: while �/‖ f‖2>tol do
9: m ← m + 1

10: v̂=Kvm
11: v̂← v̂− C(CTv̂); b̂← U(CTv̂) � use Modified Gram–Schmidt �
12: tm−1,m ← tm,m−1; v̂← v̂− tm−1,m v̂m−1
13: tm,m ← 〈v̂, vm〉; v̂← v̂− tm,mvm
14: tm+1,m ← ‖v̂‖2; vm+1← v̂/tm+1,m
15: X:,m ← Gm−1Gm−2T:,m
16: compute Given’s rotation Gm such that X:,m ← GmX:,m has a zero coefficient at position

(m + 1,m)

17: ỹ← Gm ỹ
18: ṽm ← x−1m,m(vm − ṽm−1xm−1,m − ṽm−2xm−2,m); then drop ṽm−2
19: b̃m ← x−1m,m(b̂− b̃m−1xm−1,m − b̃m−2xm−2,m); then drop b̃m−2
20: u← u+ ṽm ỹm − b̃m ỹm ; �← ỹm+1 � ỹm and ỹm+1 are the mth and (m + 1)th entries

of vector ỹ, so �=‖r‖2 �
21: if (�/‖ f‖2�tol) or (mod(m, s)= 0) then
22: j ← j + 1
23: compute U j and C j following Algorithm 3
24: drop U j−1, C j−1, and all v vectors except vm+1 and vm
25: end if
26: end while
27: return u as the solution and initial guess u0 for the next system,

and return U j as the Û for the next system

Ill-conditioning creates two problems for numerical simulation. First, ill-conditioning may seri-
ously affect the accuracy of the computed solution. Second, the convergence of iterative methods
is poor for ill-conditioned problems. The second problem is generally addressed by proper precon-
ditioning. In principle, preconditioning does not alleviate the potential accuracy problem, because
a preconditioner that is effective for an ill-conditioned matrix has to be fairly ill-conditioned itself.
This leads to two multiplications by ill-conditioned matrices in each iteration (or three for two-sided
preconditioning), which may lead in turn to serious accumulation of numerical errors. However,
in certain cases the accuracy problem can be relieved by properly scaling the linear system. We
show that this is the case for topology optimization. This leads to a preprocessing step and a
preconditioning step (or two preconditioners depending on one’s view).

In the next section, we discuss the preprocessing and preconditioner that we used for our
numerical experiments. We illustrate the idea of rescaling from a mechanical point of view for
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Algorithm 3 Compute U j and C j

1: compute CTC j−1 following (26) with CTC j−2 and Q̂ j−1 already available from the ( j − 1)th
cycle

2: compute VT
j C j−1 following (27) with Q̂ j−1 already available from the ( j − 1)th cycle

� Copy the last two rows of Q̂ j−1 �
3: compute CTU j−1 following (28) with CTU j−2 and P̂ j−1 already available from the ( j − 1)th

cycle
4: compute CT

j−1U j−1 following (29) with Q̂ j−1, W̃T
j−1W j−1 and P̂ j−1 already available from

the ( j − 1)th cycle
5: compute CT

j−1V j following (30) with Q̂ j−1 already available from the ( j − 1)th cycle

� Copy the last column of Q̂T
j−1 �

6: compute VT
j U j−1 by matrix-matrix product

7: assemble W̃T
j W̃ j and W̃T

jW j following (24) and (25)
8: solve the generalized eigenvalue problem (20) and pick the k generalized eigenvectors corre-

sponding to the k smallest eigenvalues to form the columns of P j

9: compute the QR decomposition of W̃ j as W̃ j = Ŵ jF j

� Orthogonalize the first two columns of V j against C j−1 �
10: compute the QR decomposition of F j H̃ jP j as F j H̃ jP j =Q jR j

11: P̂ j ← P jR
−1
j ; Q̂ j ← F−1j Q j

12: U j ← W j P̂ j ; C j ← W̃ j Q̂ j

a 1D problem in Section 5.2. Borrvall and Petersson [1] suggested, without further discussion, that
the condition number of the matrix can be as large as the ratio of maximum to minimum density.
We show that this ratio provides only a lower bound on the condition number and that the actual
condition number typically is even larger. The actual conditioning is a combination of this ratio
and the conditioning of a corresponding problem with constant density.

5.1. Preconditioning

The following analysis shows how ill-conditioned the stiffness matrices can be.
The two-norm condition number of a matrix K can be defined as

�(K)= max‖u‖=1 ‖Ku‖
min‖u‖=1 ‖Ku‖

Since

min‖u‖= 1
‖Ku‖�‖Ke�‖=‖k�‖� max

‖u‖= 1
‖Ku‖ for any �= 1, . . . , n

where k� is the �th column of K and e� is the Cartesian basis vector with the �th coefficient equal
to 1, we have

�(K)�‖k�1‖
‖k�2‖

for any �1, �2= 1, . . . , n
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Figure 3. N�: the set of elements associated with the �th d.o.f. indicated by the circle in the middle.

In topology optimization, a column of the stiffness matrix is given by

k�= ∑
e∈N�

�p
e L

T
eK0Lee�

where K0 is the unit element stiffness matrix, Le is the local-to-global transformation matrix, and
N� is the set of elements that are associated with the �th d.o.f. These usually form a 2× 2× 2
block in the 3D mesh (see Figure 3). If the blocks associated with d.o.f. �1 and �2 are solid and
void, respectively, namely �e= 1 for e∈ N�1 and �e= �0 for e∈ N�2 , we have

k�1 =
∑
e∈N�

LT
eK0Lee�1

k�2 = �p
0

∑
e∈N�

LT
eK0Lee�2

Then, assuming that the elements are uniform and isotropic, we have

�(K)�‖k�1‖
‖k�2‖

= 1

�p
0

(33)

For �0= 10−3 and p= 3, which are commonly used in topology optimization, the condition number
of the stiffness matrix will be greater than 109 when solid and void areas begin to appear in the
design domain.

Note that this analysis provides only a lower bound on the condition number, and that structures
from homogeneous material can also have large condition numbers. However, the analysis suggests
that, to a significant degree, the ill-conditioning comes from the poor scaling of the material
densities over the design domain. We can understand this intuitively as follows. A change in
an algebraic degree of freedom, say the Cartesian basis vector e j , associated with a nodal basis
function in a region with very small density corresponds to a displacement that requires a very
small amount of energy (eTjK(q)e j small). However, that same change in an algebraic degree of
freedom, ei , associated with a nodal basis function in a region with large density corresponds to a
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displacement of the same magnitude that requires a large amount of energy (eTi K(q)ei large). Since
for symmetric K

�(K(q))�
eTi K(q)ei
eTjK(q)e j

this shows that the system is inherently ill-conditioned. Therefore, we expect that we can re-
duce the ill-conditioning due to the large variation in density by scaling the linear system such
that changes of equal magnitude in algebraic degrees of freedom yield equal changes in energy
(eTi K(q)ei = eTjK(q)e j for all i and j). Since this is the case for a problem with homogeneous
density, we expect that this scaling reduces the condition number of the stiffness matrix to roughly
that for a similar problem with homogeneous density. Indeed, in general we obtain a condition
number that is slightly better than that for a problem with constant density. Alternatively, in light
of (33) we may want to scale the linear system such that all columns have the same norm. In
the next section, we discuss the effects of rescaling for a simple 1D problem with heterogeneous
density.

We propose to rescale the stiffness matrices K by multiplying with a diagonal matrix on both
sides (for symmetry),

K̃=D−1/2KD−1/2

where the entries of the diagonal matrix D are either the diagonal coefficients of K or the
absolute column sums of K, i.e. di =‖ki‖1. In Figure 4 we compare the condition numbers
of stiffness matrices that arise in topology optimization for a model problem on a 18× 6× 3
mesh with the condition numbers of the rescaled stiffness matrices. The model problem is the
same as that used in the numerical results section. The condition numbers of the stiffness ma-
trices quickly rise to about 1011 after only a few optimization steps. However, the condition
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Figure 4. Condition numbers of stiffness matrices and rescaled stiffness matrices for the model problem
in Figure 7 on a 18× 6× 3 mesh.
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numbers of the rescaled matrices remain at about the same level as those at the beginning
(at about 105).

To obtain rapid convergence for iterative methods, it is important to further reduce the condition
number after rescaling by more general preconditioning techniques. In our numerical experiments,
we use an incomplete Cholesky decomposition with zero fill-in of the rescaled stiffness matrix as
a preconditioner [32],

K̃=D−1/2KD−1/2 ≈ LLT

Finally, we note that diagonal scaling does not decrease the relative accuracy of the matrix
coefficients, and hence such scaling leads to a real improvement in the worst-case numerical error
in the computed solution. The second type of preconditioning, using the incomplete Cholesky
decomposition, improves the rate of convergence, but will typically not affect the accuracy of
the computed solutions. Since the Cholesky decomposition may fail for a very ill-conditioned
matrix, we explicitly rescale the stiffness matrix before we compute the incomplete Cholesky
decomposition.

We solve the preconditioned system

L−1K̃L−Tũ= f̃

to get ũ, where f̃=L−1D−1/2f. Then, we compute

u=D−1/2L−Tũ

to obtain the solution of the original system Ku= f.
Preconditioners other than incomplete Cholesky have been proposed for topology optimization,

e.g. block Jacobi preconditioners [3], especially for use on parallel computers.

5.2. Rescaling for a 1D elasticity problem

We use an idealized 1D elasticity problem with piecewise constant modulus of elasticity to explain
the idea of rescaling. Consider the following problem:

Find u(x) with boundary conditions u(0)= 0 and u(1)= 1, such that

a(u, v) ≡
∫ 1

0
E(x)uxvx dx = 0 with E(x)�E0>0

for all v with v(0)= v(1)= 0. Furthermore, following the typical case of topology optimiza-
tion, we assume that E is piecewise constant (see Figure 5) and varies over a large range of
values.

−−

Figure 5. Piecewise constant modulus of elasticity Ei .
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For simplicity, we discretize the problem using piecewise linear nodal basis functions and a
mesh with equal length elements. This yields the following linear system:⎡⎢⎢⎢⎢⎢⎣

E1 + E2 −E2

−E2 E2 + E3 −E3

. . .
. . .

. . .

−En−1 En−1 + En

⎤⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎝
u1

u2
...

un−1

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝

0

0

...

En

⎞⎟⎟⎟⎟⎟⎠ (34)

We can write this system of equations as follows (note (Eux )x = 0⇔ Eux = constant):

Ei (ui − ui−1)− Ei+1(ui+1 − ui )= 0 for i = 1, . . . , n − 1

where we have used u0= 0 and un = 1. Introducing the difference matrix

D1=

⎡⎢⎢⎢⎢⎢⎣
1

−1 1

. . .
. . .

−1 1

⎤⎥⎥⎥⎥⎥⎦
and the diagonal matrix X= diag(E1, E2, . . . , En−1), we can write (34) as

(DT
1XD1 + Enen−1eTn−1)u= Enen−1 (35)

For a problem with constant modulus of elasticity, E , this equation gives

E(DT
1D1 + en−1eTn−1)u= Een−1 (36)

where DT
1D1 + en−1eTn−1 is the well-known tridiagonal matrix with coefficients [−1 2 − 1].

Next, we want to demonstrate two issues. Comparing (35) with (36), it is clear that extreme
ill-conditioning in (35) must arise from the scaling introduced by X. First, we demonstrate that
this leads to a condition number (bound) that is roughly the product of the condition number of
the constant elasticity problem and the condition number of X. Second, we show how a proper
(re)scaling brings the condition number down to that for the constant elasticity case, if the solution is
properly defined.We note that for general choices ofX there may be no diagonal scaling that reduces
the condition number. For example, in 1D if we have two non-adjacent ‘holes’ the displacement
for material in between the holes is not properly defined (as the modulus of elasticity goes to zero),
since there is no connection to any point with a fixed displacement. In higher dimensions this is
rarely a problem, as the topology optimization algorithm leads to energetically favourable solutions
that do not have such anomalies.

Below, we need the following well-known result for symmetric positive definite matrices A,B ∈
Rn× n and �, � ∈ R+ [33, pp. 338–389]. Let A and B be such that for all u 
= 0

��uTAu
uTBu

�� (37)

Then

�(B−1/2AB−1/2)��

�
(38)

where � denotes the condition number.
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Using (37) and (38), we can bound the condition number of the matrix in (35) as follows:

�(DT
1XD1 + Enen−1eTn−1)=

max‖u‖=1 uT(DT
1XD1 + Enen−1eTn−1)u

min‖u‖=1 uT(DT
1XD1 + Enen−1eTn−1)u

Let y=D1u and hence u=D−11 y. Then

uTDT
1XD1u+ EnuTen−1eTn−1u= (D1u)TX(D1u)+ Enu

2
n−1

= yTXy+ En(y1 + · · · + yn−1)2

(D−11 y)T(D−11 y)
(39)

Let Emin= mini (Ei ), Emax= maxi (Ei ), and let �min be the smallest eigenvalue of the matrixD1DT
1

and �max its largest eigenvalue. Furthermore, note that D1DT
1 and DT

1D1 have the same eigenvalues.
Since y appears quadratically in both the numerator and the denominator, we can assume y to be
normalized. Then, (39) gives

Emin�min�
yTXy+ En(y1 + · · · + yn−1)2

(D−11 y)T(D−11 y)
�nEmax�max

which finally gives

�(DT
1XD1 + Enen−1eTn−1)�n

Emax

Emin

�max

�min
= n�(X)�(DT

1D1)

Next, we show that scaling a problem (without non-adjacent ‘holes’) reduces the condition
number of the linear system to roughly that of a problem with constant elasticity. Let

S= diag(E1 + E2, E2 + E3, . . . , En−1 + En) (40)

We have

uT(DT
1XD1 + Enen−1eTn−1)u

uTSu

= E1u21 + E2(u1 − u2)2 + · · · + En−1(un−2 − un−1)2 + Enu2n−1
E1u21 + E2(u21 + u22)+ · · · + En−1(u2n−2 + u2n−1)+ Enu2n−1

= (E1 + E2)u21 + · · · + (En−1 + En)u2n−1 − 2(E2u1u2 + · · · + En−1un−2un−1)
(E1 + E2)u21 + · · · + (En−1 + En)u2n−1

= 1− 2(E2u1u2 + · · · + En−1un−2un−1)
(E1 + E2)u21 + · · · + (En−1 + En)u2n−1

= 1− 2(E2u1u2 + · · · + En−1un−2un−1)
E1u21 + E2(u21 + u22)+ · · · + En−1(u2n−2 + u2n−1)+ Enu2n−1

(41)
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It is easy to see that the maximum of (41) is bounded by 2. The condition number therefore depends
mainly on the minimum of (3). We consider three examples.

The first example considers the case of constant modulus of elasticity. The second example
demonstrates that the case of a bar with variable modulus (solid bar with a ‘hole’) leads to about
the same condition number after scaling as the case of a bar with constant modulus (homogeneous).
The third example shows that for the hypothetical case of a 1D bar with two non-adjacent ‘holes’
scaling cannot remove the actual singularity.

Example 1 (Constant modulus)
For a constant modulus of elasticity, (41) leads to

uT(EDT
1D1 + Een−1eTn−1)u

uTSu

= 1− 2u1u2 + · · · + 2un−2un−1
u21 + (u21 + u22)+ · · · + (u2n−2 + u2n−1)+ u2n−1

(42)

The minimum for (42) is obtained for ui = sin(�ih) which gives ui−1ui ≈ u2i and minimizes the
influence of the terms Eu21 and Eu2n−1. This leads to a condition number for the preconditioned
system of O(h−2).

Example 2 (Variable modulus)
Now consider a problem with a ‘hole’ at the end of the bar; Ei = 1 for i = 1, . . . , n − 5, where
n � 5, and Ei = 	 (small) for the remaining elements. The minimum for (41) is obtained for a
vector u such that |ui | = O(1) for i = 1, . . . n−5 and |ui | = O(	) for the remaining elements. After
substituting for the Ei in (41) and dropping the ui terms that are O(	), we need to minimize the
following expression:

1− 2u1u2 + · · · + 2un−6un−5
u21 + (u21 + u22)+ · · · + (u2n−6 + u2n−5)+ 	u2n−5

(43)

Comparing (43) with (42), we see that this minimization problem is essentially the same as the one
for the constant modulus (with a few terms of small magnitude dropped). Therefore, the resulting
condition number will be about the same.

Example 3 (Hypothetical case)
Finally, consider a hypothetical problem of a 1D bar with two non-adjacent ‘holes’. Let n= 5, and
let E1= E3= E5= 1 and E2= E4= 	. Now taking u1= u4= 0 and u2= u3= 1 in (41) gives

min
u
=0

uT(DT
1XD1 + Enen−1eTn−1)u

uTSu

�1− 2E3u2u3
E2u22 + E3(u22 + u23)+ E4u23

= 1− 2

	+ 2+ 	
= 	

1+ 	
(44)
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So, (44) can be made arbitrarily small, and therefore the condition number �(DT
1XD1+Enen−1eTn−1)

can be made arbitrarily large.

6. SOME IMPLEMENTATION ISSUES

We have developed our C/C++ code in an object-oriented fashion, since we intend to make the
RMINRES solver available as public domain software. This makes it easy to integrate the software
in other packages, and also facilitates maintenance and extension, while retaining high efficiency.
We store sparse matrices in compressed sparse row format (CSR). The (column) vectors in U, C,
V j , and so on, are stored as 1D arrays linked by a 1D array of pointers. The memory required
by the system matrix and the incomplete Cholesky factor is linear in the number of unknowns, n,
since the number of non-zero coefficients per row is never greater than 81. The RMINRES method
requires only matrix–vector multiplications, dot products, vector updates, forward and backward
solves with the incomplete Cholesky factors, and the incomplete Cholesky decomposition itself.
All of these operations have linear computational cost.

The small matrices, e.g. the matrices in (22), are all stored as dense matrices in column-wise
ordering (F77 format), so that dense matrix routines from LAPACK and BLAS can be used.
For the generalized eigenvalue problem (20) we use the LAPACK routine DSYGV, and for QR
decompositions we use the LAPACK routine DGEQRF. We use the BLAS routines DROTG,
to compute Given’s rotations, and DROT, to apply Given’s rotations. We use the BLAS routine
DGEMM for (small) dense matrix–matrix products. For convenience we use the CLAPACK library,
which provides an interface for C programs to LAPACK. However, since CLAPACK routines
call the corresponding LAPACK routines, we still need to adhere to F77 storage formats. The
computational cost of the work with these small matrices is negligible. Finally, we note that the
computational cost is significantly reduced by taking the simplifications in (24)–(30) into account.

7. NUMERICAL RESULTS

We demonstrate the performance of the MINRES iterative solver with the recycling and precondi-
tioning techniques discussed in Sections 4 and 5 on a large 3D design problem. We also provide
some analysis for the selection of the linear solver parameters.

Figure 6 shows our model problem. The volume fraction is 50%, and the radius of the filter is 10%
of Y . We use continuation on the density penalization, ranging from 1 to 3 with increments of 0.5.
As stated before, we use the OC method as the optimization algorithm. The convergence criterion
is that the maximum change in the design variables is less than 0.01 or the relative change of the
compliance is less than 10−6. For all the iterative solvers discussed, we always use the solution of
the previous system as the initial guess of the next system to reduce the initial error. We test three
discretizations of increasing mesh resolution. Exploiting the symmetry of the problem, we model
and simulate only half of the domain. For each test case, Table I lists the mesh size (for half of
the domain), the number of unknowns, the overall solution time, the number of optimization steps,
and the parameters used for the recycling MINRES solver. Figure 7 shows the final topologies.

First, we analyse the convergence properties of RMINRES for several parameter choices on
the medium size (84× 28× 14) mesh. The number of optimization steps to compute the optimal
design is 139, requiring the solution of 139 linear systems.
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Z

Figure 6. Design problem: finding optimal material distribution in a hexahedron with the left end fixed
and a distributed load applied on the right bottom edge (X :Y :Z = 3:1:1).

Table I. Three discretizations used for the example in Figure 6.

No. of unknowns Solution Optimization
Problem Mesh size (in simulation) time (h) steps Iterative solver

Small 36× 12× 6 9360 0.1 142 RMINRES(100, 10)
Medium 84× 28× 14 107 184 2.4 139 RMINRES(100, 10)
Large 180× 60× 30 1 010 160 45.7 130 RMINRES(200, 10)

As mentioned in the first section, we can vary the tolerance for the iterative solver, since less
accurate finite element solutions are sufficient at the beginning of the topology optimization process.
So, we can also apply a continuation approach to the tolerance of the linear solver, which reduces
the number of iterations in the early phase of the optimization process, as shown in Figure 8. The
jumps in the iteration counts correspond to the steps where the tolerance of the linear solver 

is decreased or the penalization parameter p is increased. We start with 
= 10−4 and p= 1. We
decrease 
 by a factor of 1/10 and increase p by 0.5 every time the maximum change of the design
variables drops below 0.1. And we stop updating them when 
= 10−10 and p= 3. Finally, we note
that allowing a higher tolerance for the linear solver in the beginning of the optimization process
did not affect the number of optimization steps required.

Next, we consider the parameters that govern the recycling for the MINRES solver, namely k, the
dimension of the subspace that is recycled from one linear system to the next, and s, the maximum
dimension of the Krylov subspace kept to periodically update the approximate invariant subspace
that will be recycled. We carry out two sets of experiments to analyse the effects of varying these
two parameters. To make a fair comparison, we use the solution from the previous system as the
initial guess of the next system and we use continuation on the tolerance for both RMINRES
and MINRES.

In the first set of experiments, we fix k= 10 and vary s. Figure 9 compares the number of
iterations and computation time for each linear system, for several choices of s. In the first few
optimization steps, the topology changes significantly, and the effect of recycling is modest. After
this, the recycling approach greatly reduces the number of iterations to solve each linear system.
We see that if we keep a larger Krylov subspace to update the approximate invariant subspace,
the recycling becomes more effective in reducing iteration counts. Since the dimension of the
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Figure 7. Final topologies of the model problem. Left: half domain; right: full domain: top row: small
mesh; middle row: medium size mesh; and bottom row: large mesh.

recycle space itself does not change, this suggests that we obtain a more accurate approximation to
the invariant subspace this way. This reduction in iterations significantly reduces the computation
time for RMINRES, in spite of the computational overhead from the orthogonalizations against
the recycle space and from the updates of the recycle space. Towards the end of the optimization
process, recycling leads to a 40% reduction in computation time and a 50% reduction in iterations.
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Figure 8. Reduction in the number of iterations using a relaxed tolerance for the linear solver (MINRES
without recycling). The jumps in the iteration counts over the first 30 iterations are caused by continuation

on the solver tolerance and the penalization parameter.
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Figure 9. Number of iterations (niters) and time (s) of RMINRES(s, k) with fixed k= 10 and varying s.
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Figure 10. Number of iterations (niters) and time (s) of RMINRES(s, k) with varying k and fixed s= 100.

Notice that increasing s beyond 100 has limited effect since RMINRES rarely takes more than 100
iterations for this problem. However, for harder problems, e.g. for finer meshes, the solver may not
converge so fast. In that case, larger values for s can be helpful. Note that increasing s does not
increase the computational cost of RMINRES. The only limit on s is the memory size.

In the second set of experiments, we fix s= 100 and vary k. The parameter k affects both
the computational cost per iteration, specifically the number of orthogonalizations and the cost
of subspace selection, and the total number of iterations for the solver. There is a trade-off be-
tween these two factors, and in Figure 10 we compare the number of iterations and computational
time for several values of k. Increasing k leads to a significant improvement in the convergence
rate; towards the end we obtain a factor 3 reduction in the number of iterations. Timewise, we
obtain a 40% improvement. We also see that the computation time is not overly sensitive to the
choice of k.

Finally, we compare a state-of-the-art sparse direct solver with our iterative method, including
recycling and the continuation on the solver tolerance, the initial scaling, and the preconditioner.
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Table II. Run time comparison (s) of direct and iterative solvers. The direct solver is the multifrontal,
supernodal Cholesky factorization in TAUCS; the iterative solver is RMINRES with rescaling and in-
complete Cholesky preconditioner and the continuation on the solver tolerance. These timings were
obtained on a PC with an AMD Opteron TM252 2.6GHz 64-bit processor, 8GB RAM of memory,

and the SuSE Linux system.

Direct solver time (s) Iterative solver time (s)
Problem No. of unknowns
size in simulation Decompose Solve Total min max Average IC(0)

Small 9360 0.95 0.01 0.96 0.94 2.25 1.66 0.02
Medium 107 184 179.0 0.3 179.3 21.2 71.9 50.5 3.6
Large 1 010 160 21 241 4904 26 154 254 1546 1170 26.3

We use the multifrontal, supernodal Cholesky factorization from the TAUCS package [34]. We
ran the comparison on a PC with an AMD Opteron TM252 2.6GHz 64-bit processor, 8GB RAM
of memory, and the SuSE Linux system. Table II lists the computation times of both the direct
solver and the iterative solver for a single linear system, for several problem sizes. For the direct
solver, the data include the time for the Cholesky decomposition, and for the forward and backward
substitution to solve one system. For the iterative solver, to make a fair comparison the data include
the minimum, maximum, and average solver time taken over all linear systems, and separately the
time to compute the incomplete Cholesky preconditioner for one system. The time to compute the
preconditioner is very small compared with the solver time. We note that the run time of the direct
solver seems to scale worse than quadratic, whereas the iterative solver scales slightly worse than
linear. Since the matrix changes at every optimization step, we cannot reuse the Cholesky factors
of the direct solver, and a new factorization must be computed every optimization step. Finally,
for the large system, the time for the forward and backward substitution of the direct solver alone
is significantly larger than the (average) time for the iterative solver. Therefore, for large systems,
our iterative solver is much faster than direct solvers even for additional right-hand sides for the
same linear system.

8. CONCLUSIONS

In this paper, we investigate iterative solvers for the equilibrium equations in topology optimiza-
tion. We address the main problem, the extreme ill-conditioning, by two approaches. First, we
rescale the system to reduce the ill-conditioning due to the variation in the density. Second, we
use an incomplete Cholesky preconditioner for the resulting linear system. In general, the rescaling
improves the accuracy of the solution as well as the convergence rate. The Cholesky precondi-
tioner improves convergence rate, but in general has no effect on the accuracy. Exploiting the
slowly changing nature of the linear systems arising in topology optimization, the RMINRES
method, which recycles selected subspaces, leads to a further significant reduction in iterations and
run time.

We benchmark our methods for a design problem on a sequence of increasingly finer meshes.
The largest problem has more than a million unknowns, resulting in a smooth solution. With the
proposed methods, we can solve these problems on a single PC in a reasonably short time.
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APPENDIX

List of symbols

n the size of the linear system
m the current number of iterations of the iterative method
k the dimension of the subspace to be recycled
s the maximum number of Lanczos vectors kept for updating the recycle space
j the index of the update cycle

a(u, v) bilinear form of the 1D idealized elasticity problem
c compliance
E, Ei modulus of elasticity
f load vector
K,K(i) global stiffness matrix
K0 element stiffness matrix
Ki j (i, j) coefficient of K
k j the j th column of K
p penalization parameter
u, u(i) displacement vector
V total volume
q, q(i) density distribution (the design variables of topology optimization problems)
�0 positive lower bound on the density to avoid singularity
X diagonal matrix of material constants

Vm first m vectors of the Krylov subspace, v1, v2, . . . , vm
V j ,V j the Krylov subspace generated in j th cycle, v( j−1)s+1, . . . , v js , and its extended

version, v( j−1)s, . . . , v js+1
U,U j basis for the recycle space
C,C j orthogonal basis of KU
Hm,Hm (m + 1)×m Hessenberg matrix generated in the Arnoldi iteration, and the first

m rows of Hm
r0, rm residual
T j , T j tridiagonal matrix generated by Lanczos iteration and its extended version with

an additional top row
�(·) condition number of a matrix
(�,w) an harmonic Ritz pair of K with Ritz value � and Ritz vector w

Abbreviations

GMRES generalized minimum residual method [25]
MINRES minimum residual method [8]
GCRODR generalized conjugate residual method with inner orthogonalization and deflated

restarting [4]
GCRO generalized conjugate residual method with inner orthogonalization [28]
GCROT generalized conjugate residual method with inner orthogonalization and optimal

truncation [29]
IC(0) incomplete Cholesky decomposition with zero fill-in [32]
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