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Abstract

Thermoelastic behavior of functionally graded particulate materials is investigated with a

micromechanical approach. Based on a special representative volume element constructed to

represent the graded microstructure of a macroscopic material point, the relation between the

averaged strains of the particle and matrix phases is derived with pair-wise particle interactions, and

a set of governing equations for the thermoelastic behavior of functionally graded materials is

presented. The effective coefficient of thermal expansion at a material point is solved through the

overall averaged strain of two phases induced by temperature change under the stress-free condition,

and is shown to exhibit a weak anisotropy due to the particle interactions within the graded

microstructure. When the material gradient is eliminated, the proposed model predicts the effective

coefficient of thermal expansion for uniform composites as expected. If the particle interactions are

disregarded, the proposed model recovers the Kerner model. The proposed semi-analytical scheme is

consistent and general, and can handle any thermal loading variation. As examples, the thermal

stress distributions of graded thermal barrier coatings are solved for two types of thermal loading:

uniform temperature change and steady-state heat conduction in the gradation direction.
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1. Introduction

Functionally graded materials (FGMs) are characterized by continuous variation of the
volume fraction of the constituents (Miyamoto et al., 1999). In recent years, FGMs have
been manufactured for various multifunctional tasks (Suresh and Mortensen, 1998;
Paulino, 2004). For instance, in ceramic/metal two-phase FGMs, a continuous trade-off
between the fracture toughness and high thermal-conductivity of metals is utilized with the
high hardness and low thermal conductivity of ceramics. In heat and impact protection
applications, the material multifunctionality consists of the ability to provide structural
support by virtue of the metallic portions of FGMs, and the simultaneous ability of the
same material system to provide the required thermal or impact resistance by virtue of the
ceramic portions of FGMs. Due to the gradually varying microstructure, the overall
thermomechanical response of the material system continuously changes in the gradation
direction and, thus, thermal stresses may be reduced as compared to corresponding two-
layer or bimaterial systems (Paulino et al., 2003).

Investigation of effective thermomechanical properties of FGMs has attracted a
significant amount of attention in recent years. Kesler et al. (1998), Ishibashi et al. (2000),
and Khor and Gu (2000) have employed different approaches to obtain the effective
coefficients of thermal expansion (CTE) and thermal stress distribution of FGMs in the
gradation direction. Finite element models have been used to simulate thermomechanical
response and to analyze experimental results (Dao et al., 1997; Reiter and Dvorak, 1998;
Neubrand et al., 2002; Agrawal et al., 2003). Because FGMs generally have a complex
microstructure and the accuracy of numerical simulations depends on the quality of
meshing (e.g. discretization aspects), it is not straightforward to extend these results to
general cases.

Effective medium theory has been successfully developed to predict the effective elastic
constants and CTEs for homogeneous composites. Although FGMs have quite different
microstructure from homogenous composites, the Mori–Tanaka (Mori and Tanaka, 1973)
and self-consistent (Hill, 1965; Budiansky, 1965) models have been directly employed to
estimate the effective moduli and CTEs for FGMs as seen in Reiter and Dvorak (1998),
Vel and Batra (2003), and Kim and Paulino (2003) among others. Buryachenko and
Rammerstorfer (2001) and Tsukamoto (2003) approximated the continuous volume
fraction distribution function of an FGM with a step function. As a result, the FGM was
transferred into a multi-layer system. However, none of these approaches directly
considered the continuous material gradient nature and local particle interaction of FGMs
at the microscopic scale.

Some studies have suggested the need to consider the effect of a continuous
volume fraction gradient on the effective properties of an FGM. For instance, Zuiker
and Dvorak (1994) extended the Mori–Tanaka method to linearly varying fields and
investigated the relations of the averaged stress versus strain relation, and of the stress-
gradient versus strain-gradient, which was shown to be dependent on the size of
the representative volume element (RVE). By definition, a RVE in a continuum body
is a material volume that statistically represents the neighborhood of a material point
(Nemat-Nasser and Hori, 1999). Aboudi et al. (1999) developed a higher-order cell
theory based on volumetric averaging of the mechanical fields and numerically studied
the micro–macro-structural coupling effect in the effective thermomechanical behavior
of FGMs.
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The purpose of this work is to investigate the effective thermoelastic behavior of FGMs
considering local particle interactions and particle distributions. An FGM, illustrated in
Fig. 1(a), microscopically contains a particle–matrix zone with dispersed particles filled in a
continuous matrix, followed by a skeletal transition zone in which the particle and matrix
phases cannot be well defined because the two phases are interpenetrated into one other as
a connected network. The transition zone is followed by another particle–matrix zone with
interchanged phases of particle and matrix (Yin et al., 2004). Macroscopically, the FGM is
observed as a homogeneous material with varying effective material properties along the
gradation direction in a continuous and differentiable fashion (Eischen, 1987). To solve
the overall behavior based on the microstructure, a graded RVE is constructed to represent
the microstructure at the neighborhood of a material point in the particle–matrix zones. By
integrating the pair-wise particle interactions from all other particles over the RVE, the
relation between the particle and matrix averaged strains for FGMs subjected to thermal
and mechanical loading is obtained. Then, a set of governing equations are provided for
the thermoelastic behavior of FGMs.
Effective CTEs of composite materials is generally defined through the overall averaged

strain of a material point induced by temperature change under the stress-free condition
(Kingery et al., 1976). Using the governing equations of FGMs, the averaged thermal
strain distribution in the gradation direction is solved. In the transition zone, a transition
function (Reiter and Dvorak, 1998; Yin et al., 2004) is introduced to make the averaged
strain fields continuous and differentiable in the gradation direction. From the relation
between averaged thermal strain and temperature change, the effective CTE distribution is
obtained. The effective CTEs are weakly anisotropic due to the particle interaction and
graded microstructure. When the material gradient is reduced to zero, the proposed model
can also predict the effective CTEs and thermal stresses of both phases for uniform
Fig. 1. Schematic illustration of a two-phase FGM graded along the X3 direction: (a) microstructure including A

and B phases and three zones, and (b) RVE of the neighborhood of the material point X0. The global coordinate

system is denoted (X1, X2, X3) and the local coordinate system is denoted (x1, x2, x3).
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composites. Further, disregarding the particle interactions, the effective CTEs are
predicted by means of an explicit form, which recovers the former Kerner model (1956).

The proposed method is also used to calculate the thermal stress distribution of FGMs
for different boundary conditions and loading conditions. For a graded thermal barrier
coating (TBC) deposited onto a uniform substrate, the horizontal deformation is
constrained by the substrate and the vertical deformation is free. To simulate the
deposition and application of TBCs, two types of loading conditions are considered: the
uniform temperature change and the steady-state temperature field for the upper and lower
surfaces of the FGM with different temperatures. For the latter case, the temperature field
in TBCs is first solved. The averaged strain distribution for each phase of the FGM is then
derived, and, finally, the thermal stress distribution is obtained.

The remainder of this paper is organized as follows. Section 2 defines the pairwise
interaction for two interacting particles filled in the infinite domain subject to a far-field
stress and uniform temperature change, and uses it to obtain the governing equations for
thermoelastic behavior of FGMs. Section 3 studies the effective CTE distribution in
FGMs. When the material gradient is null, the proposed model predicts the effective CTE
for uniform composites. Section 4 simulates the thermal stress distributions in graded
TBCs under uniform temperature change and steady-state heat conduction. Concluding
remarks are given in Section 5.

2. Micromechanical analysis of the RVE

Consider a particulate FGM (Fig. 1(a)) containing two phases A and B with isotropic
elastic tensors CA and CB and isotropic CTEs aA and aB, respectively. The overall grading
length of the FGM is t (thickness). The global coordinate system of the FGM is denoted by
(X1, X2, X3) with X 3 being the continuous gradation direction. Three material zones exist in
the gradation direction: zone I (0pX3pd1) including discrete particles of phase A with the
continuous matrix of phase B; zone III (d2pX3pt) including discrete particles of phase B

with the continuous matrix of phase A, and; special transition zone II (d1pX3pd2) including
interpenetrating phases (Reiter and Dvorak, 1998; Torquato, 2002). Here the boundaries of
the transition zone are denoted by d1 and d2, which could be obtained from microstructure
characterization (Bao and Cai, 1997). Typically, in each graded thin layer (X 12X 2 plane),
micro-particles are uniformly dispersed with a two-dimensionally random setting so that the
material layer is statistically homogeneous. Although these micro-particles, whose sizes are
much smaller than the thickness of the FGM, cannot be observed at the macroscopic scale,
the volume fraction of phase A or B varies gradually in the X3 direction.

For any macroscopic material point, the effective material behavior depends upon the
microstructural features in the local neighborhood of the point. For convenience, a
material point X0 is arbitrarily chosen in the range of 0pX3pd1 (zone I) (Fig. 1(a)).
A graded RVE is introduced to represent the microstructure in the neighborhood of
the material point (Fig. 1(b)). The RVE contains a number of micro-particles of the phase
A embedded in a continuous matrix of the phase B, and the overall volume fraction of
particle phase A and its gradient should be consistent with the macroscopic counterparts
f X 0

3

� �
and df=dX 3jX3¼X0

3
. Here, f denotes the volume fraction of phase A, and thus,

the volume fraction of phase B is 1�f. The local coordinate system (x1, x2, and x3)
is constructed with the origin corresponding to X0 to represent the microstructure. All
micro-particles are assumed to be spherical with identical radius a(a5t). The entire RVE
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domain is denoted as D and the ith micro-particle’s (i ¼ 1, 2, 3,y,N) domain is denoted
as Oi, which is centered at xi. For ease of formulation, a particle centered at the origin is
assumed and denoted as O0.
Originally, the FGM is free-standing with no initial stress or strain at any point. When it

is subjected to a uniform thermomechanical loading, an overall deformation at the material
point X0 can be observed at the macroscopic scale. This deformation is obtained by the
averaged deformation of the particles and matrix in the corresponding X1�X2 plane. At the
microscopic scale, the discrete particles are constrained by the matrix, and the occurrence of
a particle has an interaction on the elastic fields of neighboring particles. The relation
between particle and matrix deformations depends on the constituents and microstructure
of the RVE. In the following, the thermoelastic interaction between particles in the RVE
under a thermomechanical loading is first investigated; the relation between the particle and
matrix strains of the RVE with particle interactions is then derived, and finally; the
governing equations for thermomechanical behavior of FGMs are provided.

2.1. Pair-wise thermoelastic interaction in the RVE

To analytically solve the interaction between particles, the RVE including only the particle O0

is first considered. When this RVE is subjected to a uniform temperature change and a uniform
stress on the boundary, the local elastic field in the neighborhood of the particle is distorted due
to the material mismatch in both the stiffness and CTE. Using Eshelby’s equivalent inclusion
method (Eshelby, 1957, 1959), the material elastic mismatch is simulated by introducing an
eigenstrain on the particle, and then the problem is reduced to a homogeneous domain with the
matrix material subjected to the uniform thermomechanical loading along with the particle
elastic and thermal equivalent eigenstrains in the particle domain.
Based on the Eshelby’s equivalent inclusion method, the local strain field at a certain

point x for the phase A particle embedded in the phase B matrix under the external far-field
stress r0 and the temperature change T can be written as

eðxÞ ¼ e0 þ e0ðxÞ, (1)

where

e0 ¼ CB
� ��1

: r0 þ aBTd, (2)

denotes the uniform strain caused by the thermomechanical loading, in which d is the
second rank unit tensor or the Kronecker Delta tensor, and the disturbed strain e0 due to
the material mismatch between the particle and the matrix reads:

e0 xð Þ ¼ �
Z
O0

C x� x0ð Þ � CB : e� x0ð Þ þ eT
� �

dx0, (3)

in which the symbols ‘‘ � ‘‘and ‘‘:’’ indicate the tensor contraction between two fourth-rank
tensors and between fourth-rank and second-rank tensors, respectively. In addition, e�

denotes the elastic equivalent eigenstrain (to be solved later) and eT is the thermal
equivalent eigenstrain written as

eT ¼ aA � aB
� �

Td. (4)

Compared with the size of the RVE, the particle is sufficiently small to be considered as
embedded in an infinite domain. Thus, the modified two-point Green function C (Kröner,
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1990) can be written as

Gijkl x� x0ð Þ ¼
1

16pmB 1� vBð Þ
�c;ijkl þ 1� vB

� �
dikj;lj þ dilj;jk þ djkj;il þ djlj;ik
� �h i

(5)

with c ¼ x� x0j j, j ¼ 1= x� x0j j, and mB and vB being the shear modulus and the Poisson
ratio of the matrix, respectively. Here, C x� x0ð Þ describes the response strain at an
arbitrary point x due to the unit source eigenstrain at a certain point x0. Because
eigenstrain only exists in the particle domain O0, the disturbed strain is written in an
integral form as shown in Eq. (3).

From the stress equivalent formulation in the spherical particle domain,

CA : e0 þ e0 xð Þ � aATd
� �

¼ CB : e0 þ e0 xð Þ � e� xð Þ � aATd
� �

, (6)

the equivalent eigenstrain e� is derived as

e� ¼ CB
� ��1

� P0 � DC�1
� ��1

: e0 � aATd� P0 � CB : eT
� �

, (7)

where the elasticity mismatch tensor DC ¼ CA
� CB, and

P0
ijkl ¼

dijdkl � 4� 5vB
� �

dikdjl þ dildjk

� �
30mB 1� vBð Þ

. (8)

The combination of Eqs. (1), (3) and (7) yields the local strain field due to a single particle
O0 embedded in the matrix. In particular, the strain field in the spherical particle domain
O0 is shown to be uniform as

eO ¼ aATdþ I� P0 � DC
� ��1

: e0 � aATd� P0 � CB : eT
� �

, (9)

where the standard fourth rank unit tensor is I ijkl ¼ dikdjl þ dildjk

� �
=2.

If another identical particle O1 centered at x1 is added in the RVE, the strain field in the
particle domain is no longer uniform. Using the equivalent inclusion method, Moschovidis
and Mura (1975) solved the elastic problem of two particles embedded in the infinite
domain under uniform far field strain. In a similar fashion, the current thermoelastic
problem can be solved (see Appendix A). Then, the averaged strain in the first spherical
particle domain O0 can be derived by integrating the local strain field over the particle as

ēO ¼ aATdþ I� P0 þ P x1
� �� �

� DC
� 	�1

: e0 � aATd
�

� P0 þ P x1
� �� �

� CB : eT
	
þO r8

� �
, ð10Þ

where r ¼ a= x1


 

 and the precision reaches the order of O(r8). Because rp0.5, this

precision is fairly high. In addition, the fourth-rank tensor P reads:

Pijkl x1
� �
¼

Z
O1

Gijkl x
0ð Þdx0

¼
r3

60mB 1� vBð Þ

5� 3r2
� �

dijdkl � 5� 10vB þ 3r2
� �

dikdjl þ dildjk

� �
þ15 5� 7r2

� �
ninjnknl � 15 1� r2

� �
dijnknl þ dklninj

� �
�15 vB � r2

� �
diknjnl þ djkninl þ dilnjnk þ djlnink

� �
2
664

3
775
ð11Þ
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with n ¼ x1= x1


 

. Comparison of Eqs. (9) and (10) shows the additional particle provides

an interaction term on the averaged strain of the first particle as

d 0; x1
� �

¼ DC�1 � L 0;x1
� �

: e0 � aATd� DC�1 � CB : eT
� �

þO r8
� �

, (12)

where the pair-wise interaction tensor is

L 0;x1
� �

¼ DC�1 � P0 � P x1
� �� ��1

� DC�1 � P0
� ��1

. (13)

It is noted that the pair-wise interaction term in Eq. (12) denotes the contribution of the
occurrence of the second particle to the averaged strain of the first particle. The magnitude
of the interaction not only depends on the nature of the imposed thermomechanical
loading, but also relies on the distance between particles. As the spacing between two
particles becomes smaller, the disturbed strain becomes larger and thus the interaction is
stronger. Notice that the tensor P in Eq. (11) contains some terms of the vector n, and the
mathematical inverse operation of the fourth-rank tensor that appears in Eqs. (10) and (13)
can be found in Ju and Chen (1994). Thus, the fourth-rank pair-wise interaction tensor L
can be explicitly derived as given in Appendix B. Numerically, if the vector n is known, the
components of the tensor P can be solved and the inverse can be calculated through the
matrix operations of the six-dimensional representation of a fourth-rank tensor (Cowin
and Mehrabadi, 1995).

2.2. Particle averaged strain with particle interactions in the RVE of FGMs

When an FGM is subjected to thermomechanical loading, the averaged strains of the
particles and the matrix vary in the gradation direction. For an arbitrarily chosen X 0

3 in
Fig. 1(a), its neighboring microstructure is represented as the RVE in Fig. 1(b). Because the
particle size is much smaller than the macroscopic size (such as the thickness t of FGMs),
the RVE may contain many particles. Drugan and Willis (1996) and Drugan (2000, 2003)
have demonstrated that, when the size of a RVE is larger than a specific value, the
modeling result is no longer sensitive to the size of the RVE. Therefore, for modeling
convenience, it is assumed that the RVE includes an infinite number of particles and that
the volume of the RVE is not bounded. In the central region of the RVE, the particle
distribution is consistent with the global volume fraction distribution. Without any loss of
generality, the averaged strain of the central particle of the RVE is used to represent the
particle averaged strain at X 0

3 in the gradation direction.
At the microscopic scale, particles are randomly dispersed in the matrix. It is not

possible to obtain an exact solution for the local strain field as in the previous subsection
due to the uncertainty of the particle distribution. However, the averaged strain of the
central particle can be estimated in the following way:
�
 when there is only one particle, the averaged strain is obtained from the single particle
solution, as given by Eq. (9);

�
 as more particles are added into the RVE, each additional particle will produce an

interaction on the central particle as given by Eq. (12).

Therefore, the averaged strain in the central particle O0 can be written in two parts: a
single particle solution (for the central particle embedded in the RVE) and pair-wise



ARTICLE IN PRESS
H.M. Yin et al. / J. Mech. Phys. Solids 55 (2007) 132–160 139
interaction terms for all other particles:

eh iA 0ð Þ ¼ aATdþ I� P0 � DC
� ��1

: eh iB 0ð Þ � aATd� P0 � CB : eT
� �

þ
X1
i¼1

d 0;xi
� �

,

(14)

where the angular brackets �h iA and �h iB denote the volume averages over the phases A

and B in the X 12X 2 layer, respectively. It is noted that, due to the existence of so many
distributed particles, the matrix averaged strain is no longer solely decided by the external
thermomechanical loading as in Eq. (2). It is also affected by the particle distribution.
Because the central particle is constrained and loaded through the surrounding
matrix, based on the mean-field approximation (Yin et al, 2005; Torquato, 2002), the
uniform thermomechanical strain e0 of Eq. (9) is replaced by the matrix averaged strain
eh iB in Eq. (14).
Because the matrix averaged strain varies in the gradation direction, from Eq. (12), the

particle interaction term is written as

d 0;xi
� �

¼ DC�1 � L 0; xi
� �

: eh iB xi
3

� �
� aATd� DC�1 � CB : eT

� �
þO r8

� �
, (15)

in which eh iBðxi
3Þ is the averaged matrix strain in the xi

3th layer. Because all particles
are statistically distributed in a random fashion, the total particle interactions can be
obtained by integrating the pair-wise interaction of Eq. (15) over all possible particle
positions as:

dh i 0ð Þ ¼
X1
i¼1

d 0;xi
� �

¼

Z
D

P xj0ð Þd 0; xð Þdx, (16)

where P xj0ð Þ is the conditional number density function used to locate a particle centered
at x when the first particle is located at 0. Following our recent work (Yin et al., 2004), the
particle number density function is introduced as

P xj0ð Þ ¼
3g xð Þ

4pa3
f X 0

3

� �
þ e�x=df;3 X 0

3

� �
x3

h i
, (17)

where g(x) with x ¼ xj j denotes the Percus–Yevick radial distribution function (Percus
and Yevick, 1958; Tsang et al., 2001) and d represents the attenuating rate of the
gradation of the particle volume fraction in the far field. Given that the maximum
volume fraction of particles in the RVE should not be greater than the maximum volume
fraction in the particle–matrix zone and that the minimum volume fraction is zero, we can
impose:

d ¼
e

f;3 X 0
3

� �min f;fc
� fð Þ, (18)

where fc denotes the maximum volume fraction in the particle–matrix zone. Because the
averaged matrix strain eh iB continuously and differentially changes along with coordinate
x3, it can be written in terms of a Taylor expansion, i.e.,

eh iB x3ð Þ ¼ eh iB 0ð Þ þ eh iB;3 x3ð Þx3 þ � � � . (19)

Truncating eh iB x3ð Þ to a linear expression in terms of x3 and disregarding the
higher-order terms O(r8) in Eq. (15), one can analytically integrate the interactions in
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Eq. (16) as:

dh i 0ð Þ ¼ f X 0
3

� �
DC�1 �D 0ð Þ : eh iB 0ð Þ � aATd� DC�1 � CB : eT

� �
þ f;3 X 0

3

� �
DC�1 � F 0ð Þ : eh iB;3 0ð Þ, ð20Þ

where

D 0ð Þ ¼

Z 1
2a

g xð Þ

5ar2
15c1 þ 10c3 þ c5ð Þdijdkl þ 15c2 þ 10c4 þ c5ð Þ dikdjl þ dildjk

� �� �
dx

(21)

and

F 0ð Þ ¼

Z 1
2a

e� x=dð Þ g xð Þa

35r4
35c1 þ 14c3 þ c5 þ 2 7c3 þ c5ð Þ dI3 þ dK3ð Þ½ �dijdklþ

35c2 þ 14c4 þ c5 þ 2 7c4 þ c5ð Þ dI3 þ dJ3ð Þ½ � dikdjl þ dildjk

� �( )
dx.

(22)

Here, the definitions of ci (i ¼ 1, 2,y,5) and the derivations of the tensors D and F are
given in Appendix B. It is noted that Mura’s (1987) tensorial indicial notation is followed
in the above equation; i.e., uppercase indices have the same representation as the
corresponding lowercase ones, but are not summed. Due to the anisotropy of the tensor F,
the effective material behavior is also anisotropic, which is illustrated later.
Substituting Eq. (20) into Eq. (14), and recognizing that the origin of the local

coordinates in the RVE corresponds to the global coordinate point X0 of the FGM, one
can obtain the averaged particle strain tensor in terms of the arbitrary material point X3

eh iA X 3ð Þ ¼ aATdþ I� P0 � DCð Þ
�1 : eh iB X 3ð Þ � aATd� P0 � C

B : eT
� �

þ f X 3ð ÞDC
�1
�D X 3ð Þ : eh iB X 3ð Þ � aATd� DC�1 � CB : eT

� �
.

þ f;3 X 3ð ÞDC
�1
� F X 3ð Þ : eh iB;3 X 3ð Þ ð23Þ

This is the governing ordinary differential equation for the present problem.

2.3. Governing equations for overall material behavior

When the FGM is subjected to a thermomechanical loading, the overall material
behavior is represented by the overall averaged stress and strain distributions at the
macroscopic scale, which change in the gradation direction. The averaged stress and strain
in the X 12X 2 layer are defined as the volume average of the stress and strain on the two
phases, and are expressed as

rh i X 3ð Þ ¼ f X 3ð Þ rh iA X 3ð Þ
� �

þ 1� f X 3ð Þ½ � rh iB X 3ð Þ
� �

, (24)

eh i X 3ð Þ ¼ f X 3ð Þ eh iA X 3ð Þ þ 1� f X 3ð Þ½ � eh iB X 3ð Þ, (25)

where the angular bracket �h i denotes the volume average over the entire FGM domain of
the X 12X 2 layer. For each phase, the averaged stress is related to the averaged strain as:

rh iA X 3ð Þ ¼ CA : eh iA X 3ð Þ � aATd
� �

, (26)

rh iB X 3ð Þ ¼ CB : eh iB X 3ð Þ � aBTd
� �

. (27)
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In addition, the particle averaged strain is related to the matrix averaged strain by
Eq. (23). Eqs. (23)–(27) form the governing equations for the thermomechanical behavior
of FGMs. Here six tensor variables are included in the five equations, which are the
averaged stress and strain for phases A and B, and for the overall material point. If the
overall averaged stress or strain distribution is given, all other variables can be calculated
through these governing equations. In the following two sections, two specific cases are
considered. First, letting the overall averaged stress be zero for each material point, the
overall averaged strain is solved and the effective CTE distribution in the gradation
direction is obtained; then, considering the overall averaged strain of FGMs constrained
by stiff and thick substrates, the thermal stress distribution in graded TBCs is calculated.

It is noted that Eq. (23) is derived for zone I with the phase A as particles and the phase
B as matrix. In the other particle–matrix zone, the relation between the particle and matrix
averaged strains can be similarly obtained by interchanging the roles of phases A and B. In
the transition zone, a transition function will be introduced to simulate the microstructural
transition between two particle–matrix zones, which is discussed Section 3.

3. Effective CTE distribution

The effective CTE for a composite material is generally measured as the overall averaged
strain at a unit temperature change under the stress-free condition (Kingery et al., 1976). In
FGMs, the effective CTE, which is an intrinsic physical quantity for a material point,
continuously changes in the gradation direction. Consider a free-standing FGM under a
uniform temperature change. For a constant or linear effective CTE distribution in the
gradation direction, the thermally induced strain is uniform or linear, respectively, which
satisfies compatibility, so that no thermal stress is induced. However, the effective CTE
distribution in general FGMs may be nonlinear. Due to loss of compatibility of the
thermally induced strain, which is discussed in detail later, thermal stress must be present
to make the total strain compatible. Therefore, the effective CTE may not be directly
observed from the total strain distribution in the gradation direction in a free-standing
FGM under uniform temperature change. For a certain material point, the effective CTE
can be experimentally measured within individual thin slices cut perpendicular to the
gradation direction (Ishibashi et al., 2000), in which the thermal stress is very close to zero
in the thin slices. Herein, to analytically obtain the effective CTE at the material point, the
overall averaged stress is assumed to be zero. From the relation between the overall
averaged strain and the temperature change, the effective CTE can be obtained.

3.1. Formulation of effective CTE

For an FGM under uniform temperature change, although the averaged stress of a
material point is set to be zero, thermal stress will be induced due to the CTE mismatch
between the particles and the matrix at the microscopic scale. Therefore, the averaged
stresses of both the particle and the matrix phases are not zero. From Eq. (24), we obtain

f X 3ð Þ rh iA X 3ð Þ
� �

þ 1� f X 3ð Þ½ � rh iB X 3ð Þ
� �

¼ 0. (28)

With the combination of Eqs. (23), (24), and (26)–(28), the averaged particle strain tensor
eh iA X 3ð Þ and the averaged matrix strain tensor eh iB X 3ð Þ along the FGM gradation
direction X 3 can be solved. Since Eq. (23) represents a set of ordinary differential
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equations, the appropriate boundary condition is needed. In the particle–matrix zone with
0pX3pd1, the boundary at X3 ¼ 0 corresponds to the 100% matrix material (i.e.,
f(0) ¼ 0). Thus, the corresponding boundary conditions can be proposed as

eh iB 0ð Þ ¼ aBTd. (29)

In some specific FGMs (Aboudi et al., 1999; Neubrand et al., 2002), the volume fraction
range of one material phase may not vary across the entire possible range, i.e., 0–1. For
example, the volume fraction of a given phase may not reach 100%. In such instances, the
boundary condition presented in Eq. (29) is not applicable. However, the modified
boundary condition of eh iB 0ð Þ can be derived with the aid of an appropriate uniform
composite model (as seen in Eq. (36)), which is discussed later in this section.
Therefore, the averaged strain tensors in both phases can be numerically solved on the

basis of the standard backward Eulerian method. Similarly, in the other particle–matrix
with the range of d2pX3pt (zone III), the averaged strain fields are also solved by
interchanging the matrix and particle phases.
For the transition zone II (d1oX 3od2), the particle and matrix phases are not well

defined because the two phases interpenetrate into one other as a connected network.
Similarly to Reiter and Dvorak (1998), a phenomenological transition function is
introduced to represent the continuous microstructural transition from zone I to III. Two
sets of solutions are first calculated for zones I and III by extending the respective zone
boundaries. Then, a cubic Hermite function is introduced to combine the contributions
from both solutions as

eh iA or B
zone�II X 3ð Þ ¼ f X 3ð Þ eh iA or B

zone�I X 3ð Þ þ 1� f X 3ð Þ½ � eh iA or B
zone�III X 3ð Þ, (30)

where the Hermite-type transition function (Yin et al., 2004) is given by

f ðX 3Þ ¼ 1� 2
f X 3ð Þ � f d1ð Þ

f d1ð Þ � f d2ð Þ

� �
f X 3ð Þ � f d2ð Þ

f d1ð Þ � f d2ð Þ

� �2
. (31)

The above treatment allows the averaged strain distributions for both phases to be
continuous and differentiable in the gradation direction. However, because the
microstructure of the transition zone is not truly characterized, this treatment only
provides a phenomenological approximation for the averaged strain in the transition zone
in lieu of a rigorous physics-based solution. For some composites, particles may be
clustered and form a continuous network even at a relative low volume fraction (Agrawal
et al., 2003). The transition zone in such FGMs may thus extend to a wide range. To
predict the effective material properties in the transition zone with increased accuracy, a
rigorous characterization of the microstructure is ultimately needed (Torquato, 2002).
Once the averaged strain distribution of each phase along the gradation direction is

solved, the overall averaged strain at each layer can be further obtained from Eq. (25).
From the relation between the averaged strain and the temperature change, the effective
CTE distribution in the FGM gradation direction can be derived as

ā X 3ð Þ ¼
eh i X 3ð Þ

T
. (32)

Because thermal shear strains are not present, ā X 3ð Þ has only three non-zero components,
among which, ā11 ¼ ā22 due to the symmetry in the x12x2 plane (see Fig. 1). However,
ā33aā11 because the averaged strains in the gradation direction is different from those in
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other directions due to the particle interactions. Thus, even though both phases of the
FGM are isotropic, the effective CTEs are no longer isotropic.

For an actual free-standing FGM under distributed temperature loading in the
gradation direction, using the CTE distribution in Eq. (32), the thermal strain distribution
can be given as follows:

e X 3ð Þ ¼ ā X 3ð ÞT X 3ð Þ (33)

with e12 ¼ e23 ¼ e31 ¼ 0. However, from the strain compatibility conditions,

�23;23 ¼
1

2
�22;33 þ �33;22
� �

; �31;31 ¼
1

2
�33;11 þ �11;33
� �

, (34)

in which e23,23 ¼ e31,31 ¼ e33,22 ¼ e33,11 ¼ 0. If e11(X3) and e22(X3) are nonlinearly
distributed in the X3 direction, their second derivatives in Eq. (34) will not be zero, so
the strain compatibility conditions are not met. Therefore, thermal stress must be induced
to make the strain compatible. However, in some specific situations such as e11(X3) and
e22(X3) being constant or linear functions of X3, the strain compatibility conditions are still
valid and the FGMs will deform uniformly or curl with a constant curvature, so that no
thermal stress is induced. It is noted that the singular thermal stress in multilayer structures
can be avoided in FGMs due to the continuous material property distribution along the
gradation direction.

The proposed method aims at the thermomechanical behavior of FGMs. However, if
the gradient of the microstructure is zero or if the particle volume fraction is constant in
any direction, this model is still applicable to the uniform composites containing randomly
dispersed particles. In this case, Eq. (23) is reduced to

eh iA ¼ aATdþ I� P0 � DCð Þ
�1 : eh iB � aATd� P0 � C

B : eT
� �

þ fDC�1 �D : eh iB � aATd� DC�1 � CB : eT
� �

. ð35Þ

Substituting Eq. (35) into Eq. (24) provides the averaged strain in phase B as

eh iB ¼ aBTdþ f f I� P0 � DCð Þ
�1
þ fDC�1 �D

� �
þ 1� fð Þ CA

� ��1
� CB

n o�1
� I� P0 � DCð Þ

�1
� Iþ P0 � C

B
� �� �

þ fDC�1 �D � DC�1 � CA
� 	

: eT. ð36Þ

Inserting Eq. (36) into Eq. (35) and using Eqs. (25) and (32), one can calculate the effective
CTE. The term related to D in Eq. (35) represents the interactions from other particles.
Disregarding this term, Eq. (36) is reduced to

eh iB ¼ aBTdþ f fIþ 1� fð Þ I� P0 � DCð Þ � CA
� ��1

� CB
n o�1

� Iþ P0 � C
B

� �� �
: eT.

(37)

Solving for the overall averaged strain, one can obtain the effective CTE from Eq. (32) as

ā11 ¼ ā22 ¼ ā33 ¼ aB þ f aA � aB
� � KA 3KB þ 4mB

� �
4mB fKA þ 1� fð ÞKB

� �
þ 3KAKB

, (38)

where KA and KB are the bulk moduli of phases A and B, respectively. This prediction is
the same as the former Kerner model (1956). Because this prediction is directly based on
the solution for one particle embedded in the infinite domain and the particle interactions
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have been disregarded, the original Kerner model does not directly take into account the
particle interactions.
3.2. Results and discussion

To demonstrate the capability of the proposed model, the modeling predictions are
compared with the experimental data of Ishibashi et al. (2000). Mo/SiO2 FGMs were
fabricated with Mo particles filled in the continuous, glassy SiO2 matrix; and the effective
CTE distribution was measured along the gradation direction. The material properties of
Mo and SiO2 are: EMo ¼ 324GPa; vMo ¼ 0:31; aMo ¼ 5:1� 10�6 C�1; ESiO2 ¼ 80:4GPa;
vSiO2 ¼ 0:18; and aSiO2 ¼ 0:54� 10�6 C�1 (Ishibashi et al., 2000). The volume fraction of
Mo is approximated by the function,

f X 3ð Þ ¼ 0:2 e�28 X3�0:085ð Þ2 � 0:1X 3 þ 0:1
� �

. (39)

Thus, the maximum volume fraction of Mo is about 0.22 at X3E0.085 and only one
particle matrix zone exists in this FGM. The corresponding SEM micrographs can be
found in Ishibashi et al. (2000). Fig. 2 shows the comparisons of the predicted CTE
distribution along the gradation direction with the experimental data. Because the volume
fraction function of Mo particles is not monotonic, the effective CTE does not
monotonically vary in the gradation direction but increases to the peak point and then
decreases. The proposed model provides a relatively good agreement with the experimental
data. However, because the particles are not perfectly spherical with identical size, the
proposed model somewhat underestimates the experimental results at large volume
fractions (small values of X3).
Neubrand et al. (2002) measured CTE distribution in an Al/Al2O3 FGM with a linear

gradient of volume fraction of Al particles. The material properties of Al and Al2O3

(Neubrand et al., 2002, Moon et al., 2005) are: EAl ¼ 69GPa; vAl ¼ 0:33;
aAl ¼ 23:1� 10�6 C�1; EAl2O3 ¼ 390GPa; vAl2O3 ¼ 0:2; and aAl2O3 ¼ 7:7� 10�6 C�1. In
Fig. 3, Neubrand et al. (2002) used the Reuss and Voigt estimates to establish bounds for
their experimental data. The proposed model was found to fit reasonably well with their
experimental results, which lie just above the lower bound described by the Reuss estimate.
The effective CTE of a two-phase FGM not only depends on the individual CTE of

constituent phases, but also depends on the difference in mechanical properties between
the particle and matrix phases. The thermoelastic properties of two phases of FGMs can
vary by more than an order of magnitude. For instance, the Young’s modulus of graphite
is as low as 9.0GPa, whereas the modulus of silicon carbide can reach 468.8GPa (Kingery
et al., 1976). In addition, the CTE of silica is as low as 0:5� 10�6 C�1 (Wong and
Bollampally, 1999), whereas the CTE of aluminum can reach 23:1� 10�6 C�1(Neubrand et
al., 2002). Typically, the effective CTE of a two-phase FGM varies in the range between
the CTEs of the two phases. The variation of the effective CTE in the gradation direction
depends on the volume fraction distribution. For some applications of FGMs in thermal
barrier coatings, there exists a favorable effective CTE distribution to minimize the
thermal stress, which can be achieved by properly selecting the material constituents and
volume fraction distribution. This problem is further discussed in Section 4.2.
Fig. 4 illustrates the effect of the phase material properties on the effective CTE for

FGMs with a linear volume fraction distribution f X 3ð Þ ¼ X 3=t. For convenience, we
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assume vA ¼ vB ¼ 0:3. The microstructural zone boundaries are selected with the
corresponding volume fractions of 40% and 60%, respectively, which follows Bao and
Cai’s suggestion (1997). In Fig. 4(a), using aA/aB

¼ 10, the normalized effective CTE
increases with increasing Young’s modulus in phase A. In each particle-matrix zone, when
the particles are much stiffer than the matrix, further changing the particle Young’s
modulus will not produce a considerable effect on the effective CTE distribution. In the
transition zone II, a continuous and differentiable jump of the effective CTE is observed.
For EAaEB, a weak anisotropy of the effective CTE can be observed. In zone I, the
effective CTE along the gradation direction is slightly lower than those in the other two
directions, and vice versa in zone III. However, the difference is very small, so in the
following only the CTE along the gradation direction is discussed. In Fig. 4(b), under the
condition of EA/EB

¼ 10, if the CTE for each phase is the same, i.e. aA/aB
¼ 1, the effective

CTE is constant since no thermal stress is induced. When the matrix is much stiffer than
the particles, the effective CTE greatly depends on the matrix CTE.

When the volume fraction gradient of an FGM is reduced to zero or the particle volume
fraction is constant in any direction, the proposed model is still applicable, e.g., for
uniform composites containing randomly dispersed particles. Wong and Bollampally
(1999) measured the CTE for spherical silica particle-filled epoxy composites. The
material properties are given as: Eepoxy ¼ 2:25GPa; vepoxy ¼ 0:19; aepoxy ¼ 88� 10�6 C�1;
Esilica ¼ 73GPa; vsilica ¼ 0:19; and asilica ¼ 0:5� 10�6 C�1. Fig. 5 presents a comparison of
the effective CTE as described by the experimental data, the proposed model, the Kerner
model, and the Turner model (Kingery et al., 1976). The proposed model is found to be in
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excellent agreement with the experimental data, whereas the Turner model grossly
underestimates the effective CTE. Because the epoxy matrix is much more compliant than
the silica particles, it provides a relatively weak constraint on particle deformation.
Therefore, the particle interactions produce a small effect, and the Kerner model yields a
slightly higher prediction. However, these results still illustrate the benefits afforded by the
current model, which explicitly accounts for particle interactions.

4. Thermal stress in graded TBCs

Graded TBCs have been widely used in propulsion and power-generation applications
such as diesel engines, jet engines, and gas turbines (Schulz et al., 2003; Portinha et al.,
2004). The reliability and functionality of coated components are strongly related to
thermal stress in the graded materials (Karlsson et al., 2002; Balint and Hutchinson, 2005).
When a hot FGM is deposited onto a uniform substrate and cooled down to room
temperature, the device is subjected to a large temperature change, which causes a
considerable thermal residual stress in the component. During the service life of a graded
TBC, the surface is exposed to high temperatures, while the temperature in the substrate
may be much lower. As a result, a strong heat flux will be induced within the coating. To
simulate these two situations, in what follows, the thermal stress for graded TBCs bonded
to a thick substrate are considered under two types of thermal loading: uniform
temperature change and steady-state heat conduction.
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Consider a graded ceramic/metal TBC bonded to a thick metal substrate as illustrated in
Fig. 6. The temperature changes on the surface of the TBC and at the interface between the
TBC and the substrate are denoted as T1 and T2, respectively. It is assumed that the
substrate is stiffer than the coating material and the thickness of TBC is much smaller than
other dimensions (Teixeira, 2001; Rangaraj and Kokini, 2003). Thus, the deformation of
the TBC in the X 12X 2 plane is strongly constrained by the substrate, whereas the
deformation in the X3 direction is free. Since the thermal conductivity of the metal
substrate is typically much higher than that of the coating, the temperature variation in the
substrate should be small. Consequently, the thermal strain of the substrate is, for
simplicity, assumed to be uniform. Although the TBC may provide a shear loading
through the interface, especially at the ends of the coating, it will not affect the shape of the
substrate because the coating is thin and compliant. Thus, the interface remains in plane.
Consequently, it is approximated that the averaged strain components of the TBC in the
X 12X 2 plane are consistent with the deformation of the metal substrate, namely,

�11h i X 3ð Þ ¼ �22h i X 3ð Þ ¼ �
s, (40)

where es denotes the strain of the substrate, typically determined by the CTEs and the
boundary condition of the substrate. Due to the free surface of the TBC, it is written

s33h i X 3ð Þ ¼ 0. (41)

Thus, in the entire graded TBC, the strains �11h i and �22h i and stress s33h i are uniform. On
the upper or lower boundary of the graded TBC, the material is either phase A or B, so,
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Fig. 6. Schematic illustration of a thin graded ceramic/metal TBC deposited onto a thick metal substrate and

subjected to a thermal loading.
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combining Eqs. (40) and (41), the averaged strain on the corresponding boundary can be
solved. For instance, on the lower boundary, there exists

�11h i
B 0ð Þ ¼ �22h i

B 0ð Þ ¼ �s; �33h i
B 0ð Þ ¼

1þ vB

1� vB
aBT �

2vB�s

1� vB
. (42)

Using Eqs. (40)–(42) along with the governing equations of Eqs. (23)–(27), the averaged
strain distribution in each phase of the grade TBC can be derived. The overall thermal
stress distribution in the FGM can then be obtained.

4.1. Graded TBCs under a uniform temperature change

First, consider the graded TBC under a uniform temperature change in the gradation
direction of the FGM, i.e., T1

¼ T2
¼ T. In the following numerical simulations, the FGM

TBC is made of NiCrAlY metal and ZrO2Y2O3 ceramic, which are commonly used
in duplex TBC systems (Teixeira, 2001) with a linear volume fraction distribution. The
material constants are: ENiCrAlY ¼ 170GPa; vNiCrAlY ¼ 0:25; aNiCrAlY ¼ 12:5� 10�6 K�1;
EZrO2Y2O3 ¼ 80GPa; vZrO2Y2O3 ¼ 0:23; and aZrO2Y2O3 ¼ 8:6� 10�6 K�1 (Teixeira, 2001).
The coating is deposited onto a stiffer substrate, which deforms with the temperature
according to

�s ¼ asubT (43)

with asub being the CTE of the substrate. It is noted that, although in the above equation it
is assumed that the substrate strain es is governed by the temperature change in the
substrate, in general applications of TBCs, the variation of es along the interface may also
be related to the boundary conditions of the substrate, the thermomechanical property of
the coating, and the geometry of the coating and the substrate. For simplicity of modeling,
it is assumed that the mechanical properties of each phase of the FGMs are independent of
temperature, and the deformation of the materials is always in the linear elastic range.
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In Fig. 7, the thermal stress distributions are illustrated for the graded TBC deposited on
four types of substrates and subjected to a temperature change of T ¼ �400K . The sub-
strates dictate uniform strains, namely: es ¼ �0.002 �0.005 and �0.01, which correspond
to their CTEs, which are: 5; 12.5, and 25 (� 10�6K�1), respectively. Since the metal phase
of the TBC is stiffer than the ceramic phase, the thermal stress in the metal-rich end is more
sensitive to the change of es than that of the ceramic-rich end. Unlike the discontinuous
thermal stress in multi-layer structures (Teixeira, 2001), the thermal stress of the graded
TBC continuously varies in the gradation direction. When the CTE of the substrate is
higher than that of each layer of the coating, the thermal stress in the coating is
compressive; and vice versa. To reduce the thermal stress, the CTE of the stiffer phase
should be selected close to the CTE of the substrate. In the actual material system, the
tensile strength of ZrO2Y2O3 ceramic may vary across a wide range, e.g. from 15MPa to
800MPa (Choi et al., 2004, Kondoh et al., 2004), which depends on the testing
temperature and the chemical composition of the stabilizer. The stresses are presented here
in the context that they are not higher than the material strength for each material phase.
When the CTE of the substrate matches that of NiCrAlY, the strain of the substrate will

be es ¼ �0.005. Fig. 8 compares the averaged thermal stresses of each phase with the
overall stress distributed in the gradation direction of the TBC. Although the overall
thermal stress varies smoothly, the stress in each phase may not vary monotonically in the
gradation direction due to the interchange of the particle and matrix phases through the
transition zone. In Fig. 8(a), because phase A is much more compliant than phase B and
the substrate has the same CTE as phase B, the compressive thermal stress of phase A
0
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increases along with its volume fraction in zones I and III, whereas it decreases in zone II
due to the exchange of the particle and matrix phases. However, when the elastic mismatch
between two phases is smaller, the variation of thermal stress for each phase will be
smoother. By setting EB/EA

¼ 1 in Fig. 8(b), the three curves are all linear, as expected. To
reduce the variation of thermal stress for each phase in the gradation direction, differences
in the elastic moduli between phases of the graded TBC should be minimized to the extent
possible.

4.2. Graded TBCs under a steady-state heat flux

During service, the surface of the coating typically is exposed to a higher temperature,
whereas the substrate material stays at a relatively low temperature. An approximately
steady-state temperature field exists in the coating. Since the effective thermal conductivity
of the graded TBC varies spatially in the coating, the temperature field will not linearly
change in the gradation direction. In our recent work (Yin et al., 2005), given the thermal
properties of each phase and the volume fraction distribution of an FGM, the effective
thermal conductivity distribution is successfully predicted. Then, given the temperature
boundary conditions in the surface and the bottom of the coating, the heat flux in the
gradation direction can be solved, and the temperature profile can be calculated. Once the
temperature distribution is obtained, similarly to the previous subsection, the overall
thermal stress distribution and thermal stress in each phase can be obtained.
In the following simulations, the same graded TBC is used, which contains the NiCrAlY

metal and the ZrO2Y2O3 ceramic with a linear volume fraction distribution. Initially, the
TBC is assumed to be unrestrained and free of any thermal residual stresses in either phase.
The temperature changes on the surface and bottom are T1

¼ 400K and T2
¼ 275K,

respectively. The thermal conductivities of NiCrAlY and ZrO2Y2O3 are used as 12.5 and
1.8W/K, respectively (Teixeira et al., 1999). Then the effective conductivity distribution
and the temperature profile are obtained as shown in Fig. 9 (Yin et al., 2005). Because the
effective conductivity decreases in the gradation direction, the temperature distribution
curve is downward convex. Thus, in the metal-rich range, the temperature changes slowly,
whereas in the ceramic-rich range, the temperature increases rapidly.
If the substrate is assumed with the same CTE as NiCrAlY, the overall thermal stress at

the bottom of the coating is always zero. Fig. 10 shows the thermal stress distributions of
both phases and overall thermal stress in the gradation direction due to a steady-state
thermal loading. The overall thermal stress is always close to zero, whereas the tensile
stress in phase A and the compressive stress in phase B may be in excess of 100MPa. Since
the effective CTE of the TBC decreases while the temperature increases along the
gradation direction, the overall thermal strain in the TBC is very close to the one in the
substrate. Therefore, the substrate provides a relatively small constraint and the overall
thermal stress in the TBC is small. However, at any material point, since there is a
mismatch of CTEs between phases, thermal stresses will be induced in each phase and will
be proportional to the temperature change.
Fig. 11 compares the thermal stress for the TBC under the steady-state thermal loading

to those of the TBC under uniform temperature changes of T ¼ 275 and 400K,
respectively. Although the temperature field of the TBC is in the range of 275–400K for
the steady-state thermal loading, the thermal stress for the varying temperature field is
much lower than the stress for each uniform temperature change, either 275 or 400K. If, at
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any material point, there exists

ā X 3ð ÞT X 3ð Þ ¼ �
s, (44)

where ā X 3ð Þ refers to the components of effective CTE in the corresponding X1–X2 plane,
then, the overall thermal stress can be reduced to zero. For a gradually varying
temperature field in the coating, one can achieve the goal of eliminating thermal stress by
properly selecting the materials to optimize the microstructure. However, for given
temperature boundary conditions, because both the temperature field and the effective
CTE in the TBC are related to the microstructure, an iterative optimization method must
be employed. An extension of this work to the design of TBCs for specific applications is
underway.

5. Conclusions

A micromechanics-based thermoelastic model is developed for two-phase functionally
graded particulate materials. The Eshelby’s equivalent inclusion method is employed to
derive the local elastic field under thermomechanicial loading and to define the pair-wise
thermoelastic interaction. For a material point, a graded RVE is constructed to represent
the microstructure at the microscopic scale. By integrating all the pair-wise interactions
from other particles in the RVE, a set of governing equations is obtained for the
thermoelastic behavior of FGMs. Using the governing equations and considering
the stress-free condition over the RVE, the averaged thermal strain distribution in the
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gradation direction is solved and then the effective CTE is obtained, which is shown to be
weakly anisotropic and continuously varying in the gradation direction. When the material
gradient is reduced to zero, the proposed model predicts the effective CTE for uniform
composites. If the particle interactions are disregarded, the proposed model recovers the
well-known Kerner model. These features demonstrates the consistency of the proposed
approach. Furthermore, the proposed model is employed to calculate the thermal stress
distributions for graded TBCs deposited onto thick, stiff substrates. Two types of thermal
loading are considered: uniform temperature change and steady-state heat conduction in
the gradation direction. The effect of the stiffness and CTE of both phases on the thermal
stress distribution is discussed. The micromechanics framework presented in this work is
general and has recently been extended to damage of particulate FGMs (Paulino et al,
2006).
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Appendix A. Thermomechanical solution for two particles in an infinite domain

For two identical spherical particles O0 and O1 embedded in the infinite domain under a
uniform temperature change T and a far field elastic strain �0ij , the local elastic field can be
solved by the equivalent inclusion method (Moschovidis and Mura, 1975). Due to the
particle interactions, the elastic equivalent eigenstrain of the particles is no longer uniform.
The elastic equivalent eigenstrain of particle O0 centered at the origin can be extended in
terms of polynomial form of local coordinates as

��ij xð Þ ¼ B0
ij þ B1

ijkxk þ � � � x 2 O0. (45)

Because the symmetry of the geometry, the eigenstrain in the other particle O1 centered at
x1 is written as

��ij xð Þ ¼ B0
ij þ B1

ijk x1
k � xk

� �
þ � � � þ x 2 O1. (46)

Then, the perturbed strain due to material mismatch is written as

e0 xð Þ ¼ �
Z
O0

C x� x0ð Þ � CB : e� x0ð Þ þ eT
� �

dx0 �

Z
O1

C x� x0ð Þ � CB : e� x0ð Þ þ eT
� �

dx0.

(47)

Substituting Eq. (47) into Eq. (1) provides the strain field in particle O0 as

�ijðxÞ ¼ �
0
ij � P0

ijklC
B
klmn B0

mn þ �
T
mn

� �
�Q0

ijklp xð ÞCB
klmnB1

mnp

� Pijkl x� x1
� �

CB
klmn B0

mn þ �
T
mn

� �
þQijklp x� x1

� �
CB

klmnB1
mnp, ð48Þ
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where

Q0
ijklp xð Þ ¼

1

140mB 1� vBð Þ

2djpdklxi þ 7vB � 5
� �

dkpdjl þ dkjdlp

� �
xi

þ2dipdklxj þ 7vB � 5
� �

dkpdil þ dkidlp

� �
xj

þ2dijdplxk þ 7vB � 5
� �

dipdjl þ dildjp

� �
xk

þ2dijdpkxl þ 7vB � 5
� �

dipdjk þ dikdjp

� �
xl

þ2dijdklxp þ 14vB � 12
� �

dikdjl þ dildjk

� �
xp

2
6666664

3
7777775
, (49)

and

Qijklp x� x1
� �

¼
ar4

140mB 1� vBð Þ

�

7� 5r2
� �

djpdklni þ 7vB � 5r2
� �

dkpdjl þ dkjdlp

� �
ni

þ 7� 5r2
� �

dipdklnj þ 7vB � 5r2
� �

dkpdil þ dkidlp

� �
nj

þ 7� 5r2
� �

dijdplnk þ 7vB � 5r2
� �

dipdjl þ dildjp

� �
nk

þ 7� 5r2
� �

dijdpknl þ 7vB � 5r2
� �

dipdjk þ dikdjp

� �
nl

þ 7� 5r2
� �

dijdklnp þ 14vB � 7� 5r2
� �

dikdjl þ dildjk

� �
np

�35 1� r2
� �

dijnknl þ dklninj

� �
np

�35 vB � r2
� �

diknjnlnp þ dilnjnknp þ djkninlnp þ djlninknp

� �
þ35 1� r2

� �
dpknjnlni þ dplnjnkni þ dpinjnknl þ dpjninknl

� �
þ35 7� 9r2

� �
ninjnknlnp

2
6666666666666666666664

3
7777777777777777777775

.

ð50Þ

The strain in particle O0 must satisfy the stress equivalent formulation in Eq. (6). Because
the particle strain field is neither uniformly nor linearly distributed, Eq. (6) cannot be
strictly satisfied by introducing a linear eigenstrain as Eq. (45). However, the strain field of
Eq. (48) can be extended in terms of polynomial form of local coordinates. Using Eq. (6), it
is obtained

DC�1ijklC
B
klmnB0

mn ¼ � �
0
ij þ aATdij þ P0

ijkl þ Pijkl �xð Þ

� �
CB

klmn B0
mn þ �

T
mn

� �
�Qijklp �x

1
� �

CB
klmnB1

mnp,

DC�1ijklC
B
klmnB1

mnp ¼ Pijkl;p �x
1

� �
C0

klmn B0
mn þ �

T
mn

� �
þQ0

ijklq;p 0ð ÞCB
klmnB1

mnq

�Qijklq;p �x
1

� �
CB

klmnB1
mnq. ð51Þ

Solving the above equations for B0 and B1 provides

B0 ¼ CB
� ��1

� P0 þ P �x1
� �

� DC�1
� ��1

: e0 � aATd
�

� P0 þ P �x1
� �� �

� CB : eT
	
þO r8

� �
,

B1 ¼ O r4
� �

. ð52Þ

It is noted that, from Eq. (11), there exists P x1
� �
¼ P �x1

� �
. Substituting Eq. (52) into

Eq. (48) yields the local strain field. Considering an average over particle O0, one can find
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that the third term in the right-hand side of Eq. (48) vanishes, the fifth term is of order
O(r8), and then the averaged strain of particles is written as

ēO ¼ aATdþ I� P0 þ P x1
� �� �

� DC
� 	�1

: e0 � aATd� P0 þ P x1
� �� �

� CB : eT
� 	

þO r8
� �

.

(53)
Appendix B. Explicit form and integrals of the pairwise interaction tensor

Based on the method of Ju and Chen (1994), the pair-wise interaction tensor in Eq. (13)
can be explicitly derived as

Lijkl 0;x1
� �

¼ c1dijdkl þ c2 dikdjl þ dildjk

� �
þ c3 dijnknl þ dklninj

� �
þ c4 diknjnl þ dilnjnk þ djkninl þ djlnink

� �
þ c5ninjnknl , ð54Þ

where the coefficients ci (i ¼ 1, 2,y,5) are defined as

c1 ¼
�d1 2d2 þ 4d4 þ d5ð Þ þ d2

3

4d2 d1 3d2 þ 4d4 þ d5ð Þ þ d2 2d2 þ 2d3 þ 4d4 þ d5ð Þ � d2
3

� �þ a
2b 3aþ 2bð Þ

,

c2 ¼
1

4d2
�

1

4b
,

c3 ¼
�d1 4d4 þ d5ð Þ � 2d2d3 � d2

3

4d2 d1 3d2 þ 4d4 þ d5ð Þ þ d2 2d2 þ 2d3 þ 4d4 þ d5ð Þ � d2
3

� � ,
c4 ¼ �

d4

4d2 d2 þ d4ð Þ
,

c5 ¼
d2 8d3d4 þ 3d2

3 � 3d1d5 � 2d2d5 þ 2d4d5 þ 8d2
4

� �
þ d1d4 4d4 þ d5ð Þ � d2

3d4

4d2 d2 þ d4ð Þ d1 3d2 þ 4d4 þ d5ð Þ þ d2 2d2 þ 2d3 þ 4d4 þ d5ð Þ � d2
3

� � ,

ð55Þ

in which

d1 ¼ a�
r3

60mB 1� vBð Þ
5� 3r2
� �

,

d2 ¼ bþ
r3

60mB 1� vBð Þ
5� 10vB þ 3r2
� �

,

d3 ¼
r3

4mB 1� vBð Þ
1� r2
� �

,

d4 ¼
r3

4mB 1� vBð Þ
vB � r2
� �

,

d5 ¼ �
r3

4mB 1� vBð Þ
5� 7r2
� �

ð56Þ
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and

a ¼ �
lA
� lB

2 mA � mBð Þ 3 lA
� lB

� �
þ 2 mA � mBð Þ

� �� 1

30mB 1� vBð Þ
,

b ¼
1

4 mA � mBð Þ
þ

4� 5vB

30mB 1� vBð Þ
. ð57Þ

Here, l is the first Lamé constant, and superscripts A and B denote the particle phase A

and the matrix phase B, respectively.
To integrate the pair-wise interaction of all other particles in the RVE on the central

particle, Eq. (20) is obtained, in which the tensors D and F are written as:

D 0ð Þ ¼

Z
D

3g xð Þ

4pa3
L 0;xð Þdx,

F 0ð Þ ¼

Z
D

e�x=d 3g xð Þ

4pa3
L 0; xð Þx2

3 dx. ð58Þ

Here, the volume element can be further written as dx ¼ x2dodx, where do is the surface
element on the unit sphere S centered at the origin of the coordinates. Because g(x) ¼ 0 for
xo2a, the above equation can be rewritten as

D 0ð Þ ¼

Z 1
2a

3g xð Þ

4par2

Z
S
L 0; xð Þdodx,

F 0ð Þ ¼

Z 1
2a

e�x=d 3g xð Þa

4pr4

Z
S
L 0; xð Þn2

3 dodx. ð59Þ

Using Eq. (54), it is derivedZ
S

Lijkl 0; xð Þdo ¼
4p
15

15c1 þ 10c3 þ c5ð Þdijdkl þ
4p
15

15c2 þ 10c4 þ c5ð Þ dikdjl þ dildjk

� �
(60)

and Z
S

Lijkl 0; xð Þn2
3 do ¼

4p
105

35c1 þ 14c3 þ c5 þ 2 7c3 þ c5ð Þ dI3 þ dK3ð Þ½ �dijdkl

þ
4p
105

35c2 þ 14c4 þ c5 þ 2 7c4 þ c5ð Þ dI3 þ dJ3ð Þ½ � dikdjl þ dildjk

� �
.

ð61Þ

Substituting Eqs. (60) and (61) into (59) gives Eqs. (21) and (22).

References

Aboudi, J., Pindera, M.-J., Arnold, S.M., 1999. Higher-order theory for functionally graded materials. Compos. B

30 (8), 777–832.

Agrawal, P., Gonlon, K., Bowman, K.J., Sun, C.T., Cichocki, F.R., Trumble, K.P., 2003. Thermal residual

stresses in co-continuous composites. Acta Mater. 51 (4), 1143–1156.

Balint, D.S., Hutchinson, J.W., 2005. An analytical model of rumpling in thermal barrier coatings. J. Mech. Phy.

Solids 53 (4), 949–973.



ARTICLE IN PRESS
H.M. Yin et al. / J. Mech. Phys. Solids 55 (2007) 132–160 159
Bao, G., Cai, H., 1997. Delamination cracking in functionally graded coating/metal substrate systems. Acta

Mater. 45 (3), 1055–1066.

Budiansky, B., 1965. On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids 13 (4),

223–227.

Buryachenko, V.A., Rammerstofer, F.G., 2001. Local effective thermoelastic properties of graded random

structure materix composites. Arch. App. Mech. 71 (4-5), 249–272.

Choi, S.R., Zhu, D., Miller, R.A., 2004. Mechanical properties/database of plasma-sprayed ZrO2-8wt% Y2O3

thermal barrier coatings. Int. J.App. Ceram. Technol. 1 (4), 330–342.

Cowin, S.C., Mehrabadi, M.M., 1995. Anisotropic symmetries of linear elasticity. App. Mech. Rev. 48 (5),

247–285.

Dao, M., Gu, P., Maewal, A., Asaro, R.J., 1997. A micromechanical study of residual stresses in functionally

graded materials. Acta. Mater. 45 (8), 3265–3276.

Drugan, W.J., 2000. Micromechanics-based variational estimates for a higher-order nonlocal constitutive

equation and optimal choice of effective moduli for elastic composites. J. Mech. Phys. Solids 48 (6–7),

1359–1387.

Drugan, W.J., 2003. Two exact micromechanics-based nonlocal constitutive equations for random linear elastic

composite materials. J. Mech. Phys. Solids 51 (9), 1745–1772.

Drugan, W.J., Willis, J.R., 1996. A micromechanics-based nonlocal constitutive equation and estimates of

representative volume element size for elastic composites. J. Mech. Phys. Solids 44 (4), 497–524.

Eischen, J.W., 1987. Fracture of nonhomogeneous materials. Int. J. Fract. 34 (1), 3–22.

Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc.

Roy. Soc. A 241 (1226), 376–396.

Eshelby, J.D., 1959. The elastic field outside an ellipsoidal inclusion. Proc. Roy. Soc. A 252 (1271),

561–569.

Hill, R., 1965. A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13 (4), 213–222.

Ishibashi, H., Tobimatsu, H., Matsumoto, T., Hayashi, K., Tomsia, A.P., Saiz, E., 2000. Characterization of

Mo–SiO2 functionally graded materials. Metell. Mater. Trans. A 31 (1), 299–308.

Ju, J.W., Chen, T.M., 1994. Effective elastic moduli of two-phase composites containing randomly dispersed

spherical inhomogeneities. Acta Mech. 103 (1–4), 123–144.

Karlsson, A.M., Hutchinson, J.W., Evans, A.G., 2002. A fundamental model of cyclic instabilities in thermal

barrier systems. J. Mech. Phy. Solids 50 (8), 1565–1589.

Kerner, E.H., 1956. The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc. B 69 (8),

808–813.

Kesler, O., Matejicek, J., Sampath, S., Suresh, S., Gnaeupel-Herold, T., Brand, P.C., Prask, H.J., 1998.

Measurement of residual stress in plasma-sprayed metallic, ceramic and composite coatings. Mater. Sci. Eng.

A 257 (2), 215–224.

Khor, K.A., Gu, Y.W., 2000. Thermal properties of plasma-sprayed functionally graded thermal barrier coatings.

Thin Solids Films 372 (1–2), 104–113.

Kim, J.H., Paulino, G.H., 2003. An accurate scheme for mixed-mode fracture analysis of functionally graded

materials using the interaction integral and micromechanics models. Int. J. Numer. Meth. Eng. 58 (10),

1457–1497.

Kingery, W.D., Bowen, H.K., Uhlmann, D.R., 1976. Introduction to Ceramics, second ed. Wiley, New York.

Kondoh, J., Shiota, H., Kawachi, K., Nakatani, T., 2004. Yttria concentration dependence of tensile strength in

yttria-stabilized zirconia. J. Alloys Compounds 365, 253–258.
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