Simplified Solution for Periodic Thermal Discontinuities
in Asphalt Overlays Bonded to Rigid Pavements
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Abstract: This work investigates the elastic fields which develop in an overlay bonded to a rigid substrate when the system is subjected
to thermally induced stress. A two-dimensional solution of the displacement field is derived for periodic discontinuities distributed in a hot
mix asphalt overlay bonded to a rigid pavement, where the length of the pavement before cracking develops is much larger than its layer
thickness. A series form solution is obtained, requiring calibration due to the limitation of the basis functions used. The formulation allows
thermal cracks of variable depth to be considered, and its accuracy is verified through comparisons with numerical solutions obtained with
ABAQUS. Energy release rates are calculated from the model for top-down plane strain cracking and three-dimensional channeling. By
comparing the energy release rates with the fracture toughness of the overlay, conditions for crack initiation and an estimation of crack
depth for a given temperature change can be estimated. Although several simplifying assumptions are made in the current approach, it is
shown to be more general and therefore more widely applicable as compared to existing closed-form solutions. The solutions are valuable
to the pavement analyst who seeks to understand the general mechanisms of thermally induced pavement deterioration and for the

researcher wishing to perform early stage verification of more complex pavement models.
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Introduction

A concrete pavement which has been rehabilitated with an asphalt
overlay can be generally described as an overlay/substrate system
(Bozkurt 2002; Bozkurt and Buttlar 2002; Kim and Buttlar 2002).
These systems are also common in the electronic packaging and
protective coating industries, as described by Hutchinson and Suo
(1992), Freund and Suresh (2003), Huang et al. (2003), and
Zhang and Huan (2004). When these systems are subjected to an
ambient temperature change, thermal cracking may initiate on the
overlay surface and propagate toward the interface, often with a
uniform crack spacing pattern (Shenoy et al. 2001), and occasion-
ally with very devastating effects [Figs. 1(a and b)]. Advances
in design and maintenance of these material systems require the
direct consideration of material discontinuities as part of the
structural analysis process.

Hot mix asphalt (HMA) pavements are typically overlay/
substrate systems with one or more asphalt concrete layers con-
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structed upon either: granular aggregate layers; compacted soil
layers (sometimes cement- or pozzolanically stabilized), or, in
case of pavement rehabilitation; existing Portland cement con-
crete slabs. Various empirical and “mechanistic-empirical” mod-
els (Fromm and Phang 1972; Hass et al. 1987; Roque et al. 1995)
have been proposed, in which various field observations and labo-
ratory experiments were conducted to predict crack spacing in
asphalt pavements.

One of the most popular applications of HMA overlays is in
the rehabilitation of Portland cement concrete (PCC) pavements.
PCC pavements can be classified into four types: jointed plain
concrete pavement (JPCP), jointed reinforced concrete pavement
(JRCP), continuous reinforced concrete pavement (CRCP), and
prestressed concrete pavement (PCP) (Huang 2003). When HMA
surfaces are laid over CRCP and PCP base courses, thermal
cracking is the primary contributor to the transverse cracking
of HMA surfaces in cold climates. Another contributor to trans-
verse cracking of HMA surfaces is reflective cracking, which is
especially prevalent in JPCP and JRCP pavements with shorter
joint spacing [Fig. 1(a)]. Since reflective cracks often occur more
rapidly than thermal cracks, a thermal cracking analysis in this
case may be of secondary importance. Furthermore, frequent re-
flective cracks would tend to limit the amount of tensile stress
available for thermal crack development between these cracks.
However, for JRCP pavements with longer joint spacing (over
15 m), and for CRCP and PCP pavements, where slab length is
much larger than the width of the pavements, transverse thermal
cracks may develop between existing reflective cracks and may
represent a major form of overlay deterioration in cold climates
[Fig. 1(b)].

This work studies low temperature cracking in PCC pave-
ments with HMA overlays, particularly JRCP pavements with
longer joint spacing (greater than 15 m), CRCP and PCP, where
the PCC layer is relatively stiff compared to the HMA overlay. As
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Fig. 1. Asphalt overlay bonded to rigid substrate with nearly
uniformly distributed cracks: (a) field observation of asphalt
pavement with sealed reflective cracks (right lane); (b) field
observation of asphalt pavement with thermal cracks (left lane); (c)
elevation view of pavement model with periodic discontinuities; and
(d) typical section between two cracks

seen in Fig. 1(b), these asphalt surfaces may undergo thermal
cracking after several winters, particularly in very cold climates.
With the decrease of temperature, the asphalt overlay undergoes
contractive deformation, inducing tensile stress. When the strain
energy in the asphalt overlay reaches a value that it is higher than
fracture toughness (i.e., maximum fracture resistance) of the as-
phalt material, transverse cracks may initiate at the surface and
propagate across the width and through the depth of the pave-
ment, often with roughly uniform (periodic) crack spacing. Dur-
ing crack initiation and propagation, strain energy is dissipated as
fracture energy, such that tensile stress in the overlay in the vi-
cinity of the crack is relieved. With the further decrease of tem-
perature, new cracks may continuously initiate in a similar
manner.

Although the aforementioned empirical models have been
shown to provide reasonable predictions of crack spacing in as-
phalt pavements, the thermal stress distribution in pavements, a
dominant factor controlling thermal crack development, has not
been directly investigated in those models. To analyze the elastic
fields of pavements, the finite-element method has been widely

used to calculate the local stress and strain (Yang and Lin 1995;
Shalaby et al. 1996; Davids and Turkiyyah 1997; Waldhoff et al.
2000). Since the quality of numerical simulations depends on the
quality of meshing (e.g. discretization aspects), it is not straight-
forward to extend the results to general cases. Thus, analytical
solutions are a valuable tool for researchers for model verifica-
tion, and ultimately, to gain a better insight into mechanical re-
sponses and damage mechanisms in pavements.

Shen and Kirkner (1999), Timm et al. (2003), and Chen and
Baker (2004), respectively, developed a one-dimensional (1D)
model to predict tensile stress distribution in a pavement with
frictional constraint. The frictional force from the substrate is bal-
anced by a uniform tensile stress along the thickness of the over-
lay. Because the frictional forces reside at the bottom of the
pavement, considerable shear stress will be induced along the
bottom of the overlay, but vanishes along the free surface. Since a
1D model can neither solve the shear stress distribution in the
overlay nor consider the temperature field along the thickness, a
two-dimensional (2D) model is necessary to accurately describe
the thermal stress distribution.

Beuth (1992) presented solutions for fully and partially
cracked film problems for elastic films bonded to elastic sub-
strates with one crack and showed that when an overlay is fully
bonded to a rigid substrate, the crack tips will stop within the
overlay. Hong et al. (1997) developed a model to predict the crack
spacing and crack depth in highway pavements assuming that the
effect of a crack in the overlay could be described by an increase
in effective compliance. Xia and Hutchinson (2000) and Shenoy
et al. (2001), respectively, investigated crack patterns in overlays
and proposed an elastic solution in the integral form using dislo-
cation solutions as the weight functions in the integrals, namely,
kernel functions.

Yin et al. (2005) presented an explicit elastic solution for an
overlay resting on a granular base considering frictional boundary
condition and fully thermal discontinuities. In this paper, we will
investigate the elastic fields due to partial-depth cracks in a HMA
overlay bonded to a rigid pavement and subjected to a tempera-
ture change. When an HMA overlay is placed on a PCC pave-
ment, the HMA is more compliant than the substrate and thus the
substrate can be modeled as perfectly rigid. At low temperatures,
the HMA can be approximated as linear elastic. The purpose of
this study is to model existing thermally induced transverse
cracks, initiated at the free surface and periodically distributed.
Other discontinuities, such as reflective cracks and fatigue cracks
are not considered in the current study.

During the derivation, the general solution for the displace-
ment field is derived for the 2D overlay in a series form, which is
calibrated using the crack opening displacement on the overlay
surface. The convergence characteristics of the solution is then
presented. Comparisons of the solution with those obtained by
finite-element simulations are presented, which demonstrate the
accuracy of the proposed model. Using this solution, one can
easily calculate the energy release rates for top-down plane strain
cracking and three-dimensional (3D) channeling, which propa-
gates transverse to the direction of traffic. Comparing the energy
release rates with the fracture toughness of the overlay, one can
predict the crack depth and likelihood for crack initiation under
given temperature change.

Formulation

Consider an infinitely long overlay (thickness 4, Young’s modulus
E, and Poisson’s ratio v) resting on a rigid substrate, which is
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subjected to an ambient temperature change 7, as illustrated in

Fig. 1(c). Because the overlay and the substrate have different

thermal expansion coefficients, whose difference is defined as

0= O — Oleubstrates @ T€S1dual stress is induced in the overlay as
E

(fo:—]_vOLT (1)

Here the plane strain condition is considered for the overlay sub-
jected to isotropic thermal strain. In this paper, only the tensile
stress, i.e., 0,>0, is considered. The thermal strain of the sub-
strate can be simply disregarded by treating it as a perfectly rigid
body. With the increase of o, uniformly spaced discontinuities
with spacing of 2\ will form in the overlay and the stress will be
redistributed. For a compliant overlay on a rigid substrate, cracks
may not cross the full depth of the overlay, and the crack tips stop
within the overlay (Beuth 1992). Here the length of the disconti-
nuities is denoted as a. Assuming a periodic boundary condition,
identical elastic fields will reside in each section between discon-
tinuities. Considering the marked section, one can set up the co-
ordinates with the origin at the center of the bottom of the overlay
as seen in Fig. 1(d).

The overlay is assumed to be fully bonded to the rigid sub-
strate and the bottom of the overlay is assumed to remain in
plane. Because the thickness of the overlay is much smaller than
its length, the top surface is free, and assuming that no debonding
occurs along the interface between the overlay and the substrate,
the top surface of the overlay is also assumed to remain in plain
during temperature changes. Thus, it is assumed that all points of
a plane normal to the y direction remain the same plane after
deformation, i.e.

wy(x,y) = u,(y) 2

Because the upper surface is free, the thermal strain in the y
direction is not constrained. Thus, it is assumed that the stress in
the y direction is zero, i.e.

o, (x,y) =0 (3)

For this plane strain problem, the constitutive relation reads

o =Ee+ 00, Ty =Py 4)
where
E=E/(1-1%), w=E2(1+v)] (5)
and
Ex Uy Yay= Uy (6)

Here u,,=0 is used to solve for v,,. Considering the equilibrium
condition in x direction, one can write

Eux,xx + p‘”x,yy = 0 (7)

Using the method of separation of variables, one can obtain the
general solution as

u,(x,y) = (A, + Aye™")[B,sin(dy/h) + Bocos(dy/h)] (8)
where coefficients A, A,, B, and B, will be decided by the

boundary conditions and d=\E/ uc.
From the symmetry of the geometry and the free upper sur-
face, it is written

u0,y)=0; u,(x,h))=0 9)

Using the above boundary conditions, one can simplify Eq. (8) as

u,(x,y) = B sinh(cx/h)cos[d(1 — y/h)] (10)

Along the bottom of the overlay, the displacement is fixed due to
the rigid substrate, i.e.

u,(x,0)=0 (11)
Substituting Eq. (10) into Eq. (11), one can derive

T _
with i=1,2,.... Then, the displacement field is written as
N
u,(x,y) = >, B;sinh(cpe/h)cos[d/(1 — y/h)] (13)

i=1

Here N can be a large number, whose value depends on the con-
vergence of the solution, which will be discussed later; and
B; (i=1,2,...,N) is the displacement component corresponding
to the basis function. Considering the boundary condition of the
end, one can know that the tensile stress above the discontinuity
tip is zero due to the free surface and that the displacement field
under the discontinuity tip is zero due to the symmetric boundary
condition, which yields the following:

N
h
S Biecosh(c\/h)cos[di(1 — yih)]+ —2=0, for h—a=<y=h
i=1 E
(14)
and

N
2 B;sinh(c;Nh)cos[d;(1 —y/h)]=0, for 0=y<h-a
i=1

(15)

This boundary condition cannot be rigorously satisfied at every
point by a selection of a finite number of functions in Eq. (13).
Here a piecewise function is defined to describe the error as

N
h
S Be.cosh(eMh)cos[d(1 — )]+ —2 h—a=y=h
E

i=1

e=y »
' Bisinh(c,\h)cos[d (1 - y/h)]

i=1

0=y<h-a

(16)

Since there are N unknowns as B;, N weight functions are used
to establish weighted residual equations posed as follows:

h
f e(y)cos[d,(1 —=y/h)]dy=0, i=1,2,...,N (17)
0

From the above N equations, one can solve for B;. Substitution of
Eq. (16) into Eq. (17) provides

A B;=f (18)
where
" ho o da
fi=- J —2 cos[d{(1 - y/h)]dy=-—"sin = (19)
h-a E Ed;, h

and
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h
A,-j=fh cjcosh(c;Nh)cos[d,(1 — y/h)]cos[d,(1 — y/h)]dy

h-a
+ f sinh(c;N/h)cos[d;(1 — y/h)]cos[d,(1 — y/h)]dy
(20)
For i #j,A;; is given by

1[ h (di=d)a  h
Aif=_ Sin +
© 2ldi-d; h d;+

1

A A
X [cjcosh<£’—> - sinh(EL)]
h h

and for i=j,A;; is given by

4 N k- A
Aj= % cosh<i> +—4 sinh(EhL)

C(di+ dj)a]
Sin
d, h

J

2 h 2
h 2d,; by by
+ —sin A qcosh(ff—) - sinh(i)
4d,”" 3 3

From Eq. (18), B, can be determined, after which the displace-
ment field in Eq. (13) can be obtained, from which the stress
fields can easily be derived as

N —
o= h’c’ cosh(ca/h)cos[di(1 = yi)] +o,  (21)

and

B,
Toy= 2 “f sinh(cx/h)sin[d,(1 - y/h)] (22)

i=1

Because the error function in Eq. (16) is piecewise, and the two
assumptions of Egs. (2) and (3) are used, the series form solution
with a limited number of basis functions in Eq. (13) may not
approach the exact solution. The convergence and accuracy of the
solution are explored in the following section.

Convergence and Calibration

To show the convergence of the proposed solution, the displace-
ment field changing with the discontinuity spacing and disconti-
nuity depth is investigated when using a finite number of
functions in Eq. (13). In the numerical simulations, v=0.2 and
h=1 are used. Fig. 2 shows the displacement field distribution
along the cracked end for N/h=4.0. In Fig. 2(a), the overlay is
fully cracked. Notice that when N=3 the results are very close to
those obtained for N=10, which indicates that the solution con-
verges very rapidly. However, for a partial-depth crack with
a/h=0.4, Fig. 2(b) shows that the solution converges more
slowly. When N is large, the displacement under the crack tip will
converge to zero, although the rate of convergence is slow. As a
minimal requirement, it is suggested to let N>h/(2a)+1 so that
the piecewise boundary condition along the cracked end will be
minimally embodied. For instance, in the case of the example
shown in Fig. 2(b), the minimal requirement is N>2.25. The
curve for N=1 (N<3), which is a monotonically decreasing func-
tion, cannot illustrate the piecewise boundary condition with a
connection point at y=0.6. Fig. 2(c) shows the displacement field
distribution along the fully cracked end for a smaller crack spac-
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Fig. 2. Convergence of the solution as a function of crack depth
and crack spacing: (a) a=h; A=4h; (b) a=0.4h; N=4h; and (c)
a=h; N\=h

ing (\/h=1.0). It can be observed that the convergence speed is
somewhat slower than that for A\/h=4.0 in Fig. 2(a) but the dif-
ference is relatively small. Thus, the crack spacing only has a
minor effect on the rate of convergence.

Fig. 3 illustrates the convergence of the solution along the
boundary condition. The results for normalized discontinuity
depths a/h=1,0.6, and 0.2 are presented. A large number of func-
tions are used as N=80. The thicker curves show the solutions
from Egs. (13) and (21), whereas the thinner curves with circles
represent the calibrated results, which will be elaborated upon
later. In Fig. 3(a), the displacement field under the discontinuity
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The thinner curves with circles denote the calibrated results.
v=0.2, h=1, A=4, N=80
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Fig. 3. Elastic fields along cracked end: (a) displacement field;
(b) stress field. Thicker curves represent original modeling results;
thinner curves with circles represent calibrated results.

tip is apparently zero but that above the discontinuity tip is nega-
tive; whereas, in Fig. 3(b), the stress along the cracked surface
is zero but that under the discontinuity tip is tensile as predicted.
In addition, in Fig. 3(b), it can be observed that the stress is
very high in the neighborhood of the discontinuity tip due to
the singularity at the discontinuity tip. However, a nonphysical
fluctuation of the stress under the discontinuity tip is also seen
in Fig. 3(b). This is a result of the fact that the assumptions in
Eqgs. (2) and (3) cannot be exactly satisfied, and thus the stress
distribution cannot be exactly described by the set of the basis
functions in Eq. (13). To calibrate this model, one can construct a
multiplier k on all of the displacement components B; by normal-
izing the crack mouth opening displacement (CMOD) on the
overlay surface. Then the actual displacement components are
written as

From Eq. (13), one can write CMOD as

N
8(a) = D, 2kB;sinh(c,\/h) (24)

i=1

Shenoy et al. (2001) showed that when the crack spacing
is larger than five times of the thickness of the overlay, i.e.,
N/h>2.5, the effect of the crack spacing on CMOD can be dis-
regarded. Fitting the curve for «=-0.99 and N/h>2.5 given by
Shenoy et al. (2001), one can obtain the CMOD as

v=1/3, E

/E=199

suhstlrate

0.5+ © Shenoy et al. (2001) for ¥h>2.5
0.0 —— Eq. (23) for fitted curve ]
. T T

0.0 0.2 of4 ' 016 ' 0.8 1.0
a’h

Fig. 4. Normalized crack opening displacement on overlay surface
as function of crack depth a/h

_ ajfa a_ hag
8(a)-0.2456(h)(h 2.574)<h 9.777) - (25)

Fig. 4 illustrates the comparisons of the fitted function with
the data presented by Shenoy et al. (2001). It is noted that
the above equation is approximately obtained for v=1/3 and
Eqpswae/ E=199 (Shenoy et al. 2001). Clearly, the substrate is
so much stiffer than the overlay that it can be assumed as
rigid. Beuth (1992) and Xia and Hutchinson (2000) showed that
Poisson’s ratio has only a minor effect and can be disregarded.
Comparing Eq. (24) with Eq. (25), one can obtain

a\la a hoy
k=-01228{ — |\ = =2.574 |\ = =9.777 | ———
h/\h h

E, Bsinh(c,\/h)

i=1
(26)

Substituting Egs. (23) into (13), one can find that the calibrated
solution not only satisfies the displacement boundary condition
under the discontinuity tip as zero but also provides an accurate
displacement for CMOD. Thus, this calibrated solution will give
a good prediction of the displacement field. In Fig. 3(a), the cali-
brated results are of higher value than the original modeling
results for all the three depths. However, a nonzero stress
along the cracked free surface is produced due to this calibration.
In Fig. 3(b), it is seen that along the cracked surface, the tensile
stresses are constant but different for the three depths.

Model Verification and Discussion

To verify the proposed model, comparisons are made with the
finite-element method (FEM) simulations by ABAQUS. Due to
the symmetry of the problem, only half of the section is modeled,
using 10,890 four-node quadrilateral elements under plane strain
conditions. The mesh and the boundary condition are shown in
Fig. 5. In the numerical simulation, the following parameters are
used: v=0.2; h=1; and \=4.

Because thermal cracks are generally assumed to initiate at the
surface, Fig. 6 presents a comparison of the proposed prediction
with the FEM simulation results for elastic fields along the sur-
face of the overlay for different crack depths. The following
features can be observed:
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Fig. 5. Finite-element mesh used to model half of section between
two cracks. Bottom nodes are fixed, while x-directional
displacements along the two ends are constrained, except for the
cracked, free surface.

* In Fig. 6(a), the displacement field is zero at the symmetric
point, decreases along with x, and reaches the minimum at the
cracked end. The proposed model is in good agreement with
the FEM results.

 For the full crack with a/h=1 in Fig. 6(b), the stress on the
surface of the overlay monotonically decreases along with x
and reaches the minimum with negative values at the cracked
end. The proposed model is in good agreement with the FEM
results.

 For the partial-depth crack with a/h=0.6 or 0.2 in Fig. 6(b),
the proposed predictions of the tensile stress along the surface
still monotonically decrease with x; whereas the FEM results
reach a minimum at a peak point and then increase to zero at
the end. The proposed model cannot capture the nonmonotonic
tendency in the neighborhood of the cracked end, but never-
theless matches well with the FEM results in the region of
highest tensile stress, which is of primary interest in analyzing
crack spacing.

In the neighborhood of the crack tip, because the basis func-
tion in Eq. (13) does not reflect the inflection point of the stress
distribution, it is impossible to find a solution from the set of basis
functions that both satisfies the stress boundary condition and
provides a good prediction for the displacement field. Using the
calibration in Eq. (23), one can obtain a good agreement with
FEM results for the displacement field but the stress-free bound-
ary condition is not exactly satisfied at the cracked end. In
summary, for the case where response away from the free end
is needed, i.e., for determining crack spacing, this method works
very well. However, for the case where the stress distribu-
tion close to the discontinuity is desired, this solution is not
recommended.

With an increase of the thermal loading, a crack will initiate
at a flaw on the surface of the overlay and would be expected to
propagate in two modes: top-down plane strain cracking toward
the interface and 3D channeling across the overlay, as illustrated
in Figs. 7(a) and 7(b), respectively. For plane strain cracking,
using Egs. (13), (21), and (22) with the calibrated displacement
components in Eq. (23), one can obtain the elastic fields in the
section of the overlay. Considering the periodic distribution of the
elastic fields in Fig. 1(b), one can expand the solution of the
section to all other sections, and then calculate the path-
independent J integral along a counterclockwise contour line. For
instance, it is computed along a line with four segments as seen in
Fig. 7(a): S;:y=0 and x is from 0 to 2\; S,:x=2\ and y is from
0 to h; S3:y=h and x is from 2\ to 0; and S;:x=0 and y is from
h to 0. Thus, the energy release rate for top-down plane strain
cracking is calculated. For 3D channeling, the energy release rate
can be calculated as the work done to close the crack opening
displacement for unit length of the channeling advance. For a
given crack depth, if crg is applied along the crack surface, it can
be exactly closed. Therefore, the energy release rate (Beuth 1992)
can be written as

v=0.2, h=1, A=4, N=80
T T T T
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Fig. 6. Comparisons of elastic fields along top of overlay: (a)
displacement field; (b) stress field. Symbols denote FEM results;
curves represent closed-form solutions.
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Fig. 7. Schematic illustration of thermal cracking in asphalt overlays:
(a) top-down plane strain cracking; (b) three-dimensional channeling

44 / JOURNAL OF TRANSPORTATION ENGINEERING © ASCE / JANUARY 2007

Downloaded 24 Aug 2009 to 192.17.146.2. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



0.5
0.44 e ]
<
%~ 0.3 -
g
B
(LB 0.2+ -
0.1+ /| ——Plane cracking | : %
A 4 - — ~3-D channeling !
/4 a,: a; a;
0.0#— , - %
0.0 0.2 0.4 0.6 0.8 1.0
a’h

Fig. 8. Energy release rates for plane strain cracking and
three-dimensional channeling

0 rh o N
Bh
- & f 3(y)dy =— 2= 22 Ginh(eNh)sin(d,alh)
2a),_, a d

i=1 i
(27)

Fig. 8 illustrates the energy release rates for plane strain crack-
ing and 3D channeling. It can be seen that the local maximum
energy release rates g; and g, exist at @, and a, for 2D cracking
and 3D channeling, respectively. This is similar to the results of
Beuth (1992) for a single crack and Shenoy et al. (2001) for
periodic cracks. From this figure, one can see that when the crack
depth is small, given a thermal loading the crack driving forces
for both modes are small, and the crack will not initiate. If the
thermal loading is so large that the driving force is larger than the
fracture toughness, plane cracking will occur. Because the driving
force increases with the crack depth for a<a,, the cracking
quickly propagates until the crack depth becomes larger than a;.
Thus, when the crack depth is smaller than a,, the cracking is
unstable. When a; <a <as, further loading is needed to make the
crack to propagate toward the interface. Before a> a3, because
the crack driving force for plane strain cracking is larger than that
for 3D channeling, the crack may stop within the overlay in the
width direction. However, when a;=a, channeling cracks will
propagate first under thermal loading. Thus, the crack will fully
cross the overlay. With the increment of the loading, it is more
difficult for cracks to propagate toward the interface, but as the
stress in the overlay keeps increasing, a new crack will initiate
and thus the stress will be relaxed again. It should be noted that
Fig. 8 shows that the energy release rate for plane strain cracking
is reduced to zero at a/h=0.95, whereas Beuth (1992) predicted it
to be zero at a/h=1.0. This difference comes from the numerical
truncations and the effect of the Poisson’s ratio of the overlay.

Conclusions and Future Work

An analytical model is proposed to investigate thermal cracking
in asphalt overlaid rigid pavements. Using the boundary and load-
ing conditions, one can obtain a series form solution for the elas-
tic field. Comparisons of the solution with the FEM simulations
show that the proposed model provides a good prediction of the
elastic fields except for the neighborhood of the crack tip. Using
this solution, the energy release rates can be calculated for plane
strain cracking and 3D channeling. Comparing the energy release

rates with the fracture toughness of the overlay, one can predict
the crack depth and crack initiation for a given temperature
change.

In the current work, the material of the overlay is limited to
linear elasticity. However, asphalt pavement materials typically
exhibit viscoelastic behavior even at low temperatures. Thus, a
viscoelastic constitutive model is ultimately needed. In addition,
the temperature distribution in the thickness direction of the pave-
ment varies along with the ambient temperature change, and thus
the effect of a nonlinear temperature gradient needs to be further
studied. Ultimately, field validation of the approach will be re-
quired. It should be noted that though this study is motivated by
the thermal cracking in asphalt pavements and overlays, this
method is applicable for other overlay/substrate structures such as
protective coatings.
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