
Mechanics of Advanced Materials and Structures, 14:227–244, 2007
Copyright c© Taylor & Francis Group, LLC
ISSN: 1537-6494 print / 1537-6532 online
DOI: 10.1080/15376490600790221

On Fracture Criteria for Mixed-Mode Crack Propagation
in Functionally Graded Materials

Jeong-Ho Kim
Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut, USA

Glaucio H. Paulino
Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign,
Newmark Laboratory, Urbana, Illinois, USA

This paper addresses mixed-mode crack growth in two-
dimensional functionally graded materials, and assesses the pre-
dictive capability of some fracture criteria on both crack growth
direction and crack initiation condition. Automatic simulation of
mixed-mode crack propagation in homogeneous and functionally
graded materials is performed by means of the finite element
method in conjunction with a remeshing algorithm. Crack growth
simulation consists of iterative procedures for the calculation of
mixed-mode stress intensity factors by means of the interaction in-
tegral method, determination of crack growth direction and crack
initiation, and local automatic remeshing along the crack path.
The present approach requires a user-defined crack increment at
the beginning of the simulation. Crack trajectories obtained by the
present simulation are compared with available experimental
results.
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1. INTRODUCTION
Functionally graded materials (FGMs) are multifunctional

composites involving spatially varying volume fractions of
constituent materials, thus providing a graded microstructure,
macroproperties [1–4]. Recently, FGMs have been applied to
many applications: thermal barrier coatings [5, 6]; first-wall
composites in nuclear fusion and fast breeder reactors [7]; piezo-
electric and thermoelectric devices, and high-density magnetic
recording media and position-measuring devices [8–11]; graded
refractive index materials [12]; thermionic converters [13]; den-
tal and other implants [14–17]; fire retardant doors [18]; solid
oxide fuel cells [19, 20] and other applications [2, 3].
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Due to multifunctional capabilities, FGMs have been inves-
tigated for various damage and failure mechanisms under me-
chanical or thermal loads, and static, dynamic or fatigue loads,
etc. Lin et al. [21] investigated mode I fracture of aluminium al-
loy 2124/SiC FGMs considering a crack parallel to the material
gradation. Carpenter et al. [22] performed fracture testing and
analysis of a layered functionally graded Ti/TiB beam subjected
to three-point bending. Rousseau and Tippur [23] performed
experimental and numerical investigations on crack growth in
an epoxy/glass FGM beam subjected to four-point bending.
Lambros et al. [24] and Abanto-Bueno and Lambros [25] inves-
tigated mode I crack growth in FGMs subjected to fixed-grip
loading. Their FGMs were fabricated by selective controlled
ultraviolet (UV) irradiation on ethylene carbon monoxide
co-polymer (ECO). Jin et al. [26, 27] investigated elastic-plastic
mode I crack growth in TiB/Ti FGMs by using three-dimensional
interface cohesive elements. Kim and Paulino investigated two-
dimensional mixed-mode crack propagation in FGMs using
the finite element method and interaction integrals and also
considered non-proportional loading [28]. Zhang and Paulino
used cohesive zone models to simulate two-dimensional mixed-
mode dynamic crack propagation in FGMs [29]. Moon et al.
[30] investigated crack growth resistance (R-curve) behavior of
multilayer graded alumina-zirconia FGMs considering a crack
parallel to the material gradation. Neubrand [31] performed
experimental and theoretical investigations on the R-curve for
Al/Al2O2 FGMs under mechanical loading. Fujimoto and Noda
[32] investigated propagation of a single crack in a partially
stabilized zirconia (PSZ) and T1-6A1-4V FGMs under transient
thermal loads. Noda et al. [33] extended the investigation to two
interacting edge cracks in FGMs. Uzun et al. [34] investigated
fatigue crack growth of 2124/SiC/l0p single-core bulk FGMs
considering mechanical loading. Forth et al. [35] investigated
three-dimensional mixed-mode fatigue crack growth behavior
of Ti-6A1-4V β-STOA FGM considering mechanical loadings.

This paper focuses on two-dimensional mixed-mode crack
propagation in FGMs using the finite element method (FEM)
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with mesh refinement techniques, and compares the perfor-
mance of some fracture criteria in predicting crack trajectory
and crack initiation conditions for cracked FGMs. Local ho-
mogenization around the crack-tip region in FGMs allows one
to adopt existing fracture criteria, which have been widely used
for homogeneous materials. Such criteria include the maximum
hoop stress criterion [36], the maximum energy release rate cri-
terion [37, 38], the minimum strain energy density criterion [39],
the KII = 0 criterion [40], the so-called T -criterion (extension
of minimum strain energy density criterion) [41], the maximum
stress triaxiality criterion [42], the W -criterion (W = rp/a, the
ratio of plastic zone boundary size to half crack length) [43, 44],
and the R-criterion (R = rp/[a(σ/σYS)2] is a non-dimensional
elastic-plastic core region radius where σ denotes stress and σYS

denotes the yield stress of the material) [45]. In this paper, we
use and compare the first three fracture criteria.

The present approach uses a user-defined crack increment,
and it is provided at the beginning of each step. For homoge-
neous materials, Hori and Vaikuntan [46] proposed a formu-
lation to determine the curvature and length of a small crack
extension, and Fortino and Bilotta [47] proposed an algorithm
to evaluate the amount of crack growth based on the coupled
displacement-crack propagation rate problem. Integrated theo-
retical and experimental investigation on a crack increment in
FGMs (and other materials) is needed, but it is beyond the scope
of the present work.

This paper is organized as follows. Section 2 presents selected
fracture criteria. Section 3 explains strategy for automatic crack
propagation in FGMs. Section 4 presents the interaction inte-
gral method for evaluating mixed-mode stress intensity factors
(SIFs). Section 5 provides some numerical examples.

Finally, Section 6 presents some conclusions of this work.

2. FRACTURE CRITERIA
The asymptotic stresses for a crack in linear elastic FGMs

are given by (see Figure 1)
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where K I and KII denote mode I and II SIFs, respectively. The
singularity (r−1/2) and angular functions for FGMs are the same
as for homogeneous materials, which provides a basis of lo-
cal homogenization [48, 49]. Thus local homogenization allows
the use of fracture criteria, which have been widely used for
homogeneous materials (see Figure 2). Figure 3 shows a fracture

FIG. 1. Cartesian (x1, x2) and polar (r, θ) coordinates originating from the
crack tip in a general FGM under traction (t) and displacement boundary con-
ditions. The crack initiation angle is θ0, and �a denotes the crack extension.

FIG. 2. Local homogenization [71] near the crack tip in an FGM. A locally
homogenized material is subjected to the K -field of the crack in FGMs.

FIG. 3. Fracture locus involving mode I and II SIFs and fracture toughness
K I c . Note that both K I and KII are normalized with respect to K I c .
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locus involving mode I and II SIFs, and fracture toughness K I c.
If the crack driving force is big enough for crack-tip fields to
reach the fracture envelope, then the crack grows.

The fracture locus can be obtained by experiments, theoret-
ical fracture criteria, or combination of both. In this paper, we
focus on local homogenization-based theoretical fracture crite-
ria such as the maximum hoop stress [36], the maximum energy
release rate [37] and the minimum strain energy density [39] cri-
teria. The three criteria are briefly reviewed below, with simple
adaptations for nonhomogeneous materials and FGMs.

2.1. Maximum Hoop Stress
Erdogan and Sih [36] proposed the maximum hoop stress

criterion. They postulated that the crack will grow in the direc-
tion along which the maximum hoop stress σθθ occurs (i.e., the
shear stress σrθ is zero). Therefore the crack initiation angle θ0

is obtained from

∂σθθ/∂θ = 0, ∂2σθθ/∂θ2 < 0 ⇒ θ = θ0. (2)

Substitution of σθθ from Eq. (1) into Eq. (2) leads to [36]

cos
θ0

2
[K I sin θ0 + KII(3 cos θ0 − 1)] = 0 (3)

Once the crack initiation angle is determined, the crack initiation
condition is obtained as [36]
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For pure mode I, when KII and θ0 are all equal to zero, K I can
be replaced by the mode I fracture toughness function K I c(x).
Therefore

√
2πr (σθθ) = K I c(x). (5)

Substitution of Eq. (5) into Eq. (4) yields the crack initiation
condition [36]:
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2.2. Maximum Strain Energy Release Rate
Hussain et al. [37] proposed the maximum strain energy re-

lease rate criterion for homogeneous materials. They postulated
that the crack subjected to combined loads will grow in the di-
rection along which the strain energy release is maximum and
the crack will start to grow when the maximum strain energy
release rate reaches a critical value. The energy release rate for

FIG. 4. Crack-tip discretization for a crack in a nonhomogeneous material.

combined mode I and mode II loading in FGMs is given by

G = K 2
I + K 2

II

E∗
tip

, (7)

where E∗
tip = Etip for plane stress and Etip/(1 − ν∗

tip) for plane
strain. Equation (7) is obtained by assuming that a crack under
mixed-mode loading moves along its own plane. However, in
general, the crack grows in a direction which is not parallel to
its initial tangent plane. Hussain et al. [37] obtained an elasticity
solution for a straight main crack and a branch crack extended
at an arbitrary angle, and computed the energy release rate in
the limit as the propagation branch vanishes. The energy release
rate is given by [37]
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Then the crack initiation angle θ0 is obtained from

∂G(θ)/∂θ = 0, ∂2G(θ)/∂θ2 < 0 ⇒ θ = θ0. (9)

Once the crack initiation angle is determined, the crack initiation
condition is given by

G(θ0) = Gc(x), (10)

FIG. 5. I-FRANC2D automatic crack propagation algorithm for FGMs.
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FIG. 6. Example 1: A crack in a graded glass/epoxy beam subjected to four-
point bending: (a) geometry, boundary conditions, and three independent cracks
A (ξ = 0.17), B (ξ = 0.58) and C (ξ = 1.00) (Units: N, mm); (b) the complete
mesh configurations for cracks A, B, and C; (c) mesh detail using 12 sectors
(S12) and 4 rings (R4) around the crack tip.

where Gc(x) is the critical energy release rate function given by

Gc(x) = K 2
I c(x)

E∗
tip

(11)

2.3. Minimum Strain Energy Density
Sih [39] proposed the minimum strain energy density crite-

rion for homogeneous materials. The local strain energy density
is given by [39]

dW
d A

= 1

r
S, (12)

FIG. 7. Example 1: Variations of Young’s modulus E (MPa) and Poisson’s
ratio ν along the graded region (0 ≤ ξ ≤ 1).

where d A is the volume of the differential element d A = rdθdr ,
and S is the strain energy density factor given by [39]

S = d11 K 2
I + 2d12 K I KII + d22 K 2

II, (13)

where the parameters dij are functions of the angle θ given by
[39]

d11 = 1
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FIG. 8. Example 1: Variation of fracture toughness K I c (MPa
√

m) along the
graded region (0 ≤ ξ ≤ 1).
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FIG. 9. Example 1: Experimental results for crack trajectories and crack initiation angles (θ0) of the crack in an FGM beam reported by Rousseau and Tippur
[23]: (a) ξ = 0.17; (b) ξ = 0.58; (c) ξ = 1.00.

The criterion postulates that the crack will grow in the di-
rection where S is the minimum. Therefore the crack initiation
angle θ0 is obtained as

∂S(θ) = 0, ∂2S(θ)/∂θ2 > 0 ⇒ θ = θ0. (15)

Once the crack initiation angle is determined, the crack initiation
condition is given by

S(θ0) = Sc(x), (16)

where Sc(x) is the critical strain energy density factor given by

Sc(x) = κtip − 1

8μtip
K2

IC(x). (17)

FIG. 10. Example 1: Numerical results for crack trajectories and crack initiation angles (θ0) of the crack in an FGM beam ((σθθ)max criterion): (a) ξ = 0.17;
(b) ξ = 0.58; (c) ξ = 1.00.

3. STRATEGY FOR AUTOMATIC CRACK
PROPAGATION
Crack propagation in FGMs is performed by means of the

I-FRANC2D (Illinois-FRANC2D) code. The code is based on
the FRANC2D (FRacture ANalysis Code 2D) [50, 51], which
was originally developed at Cornell University. The extended
capabilities of I-FRANC2D consist of graded elements to dis-
cretize nonhomogeneous materials (see Figure 4), and fracture
parameters such as SIFs for predicting crack initiation angle and
determining crack growth in FGMs. The computer code uses
quarter-point six-node triangular (T6qp) elements to capture the
stress singularity of O(r−1/2), and it controls mesh refinement
around the crack tip in both radial (rings) and hoop (sectors)
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FIG. 11. Example 1: finite element discretization and remeshing during crack propagation considering ξ = 0.17 and �a = 1 mm ((σθθ)max criterion): (a) Initial
step; (b) Final step (Step 16).

directions during crack propagation (see Figure 4). This capa-
bility allows the definition of crack-tip templates for the local
mesh [28].

Finite element simulation of automatic crack propagation in
the I-FRANC2D code involves a series of steps. Each step in-
volves an automatic crack propagation cycle as illustrated in
Figure 5. The I-FRANC2D code utilizes a direct stiffness FEM
approach within the framework of linear elasticity. After the
linear finite element analysis involving a crack, the code com-
putes mixed-mode SIFs using the interaction integral method
[49, 52–54]. The computed SIFs are used to predict crack growth
direction based on fracture criteria (e.g., maximum hoop stress,
maximum energy release rate, or minimum strain energy density
criteria) . The SIFs and fracture toughness are used to determine
crack growth condition. When the new crack tip location is de-
termined according to the user-defined crack increment, the code
deletes elements along the incremental crack path, updates crack
geometry, and performs automatic local remeshing. The details
on crack propagation procedures for homogeneous materials and
remeshing schemes are found in [55].

4. THE INTERACTION INTEGRAL: STRESS INTENSITY
FACTORS
The interaction integral (M-integral1) method is an accurate

scheme to evaluate stress intensity factors in FGMs [49, 52–
54]. The auxiliary fields and the relationship between SIFs and
M-integral are explained below.

1Here, the so-called M-integral should not be confused with the
M-integral (conservation integral) of Knowles and Sternberg [56],
Budiansky and Rice [57], and Chang and Chien [58]. Also, see the
book by Kanninen and Popelar [59] for a review of conservation inte-
grals in fracture mechanics.

The interaction integral uses auxiliary fields, such as dis-
placements (uaux ), strains (εaux ), and stresses (σaux ) suitable
for mixed-mode SIFs. There are various choices for the aux-
iliary fields for FGMs. Here a non-equilibrium formulation is
adopted, which uses displacement and strain fields developed
for homogeneous materials, and employs the non-equilibrium
stress fields given by [49, 60]

σaux = C(x)εaux , (18)

where C(x) is the stiffness tensor. The auxiliary displacement,
strain and stress fields are chosen as [61]:
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where K aux
I and K aux

II are the auxiliary mode I and mode II SIFs,
respectively, and μtip is the shear modulus at the crack tip. The
representative functions g I (θ) and gII(θ) can be found in many
references, e.g., [62].

The interaction integral is derived from the path-independent
J -integral [63] for two admissible states (actual and auxiliary)
of a cracked elastic FGM body and it is given by [49]
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where the underlined term is a non-equilibrium term, which
appears due to non-equilibrium of the auxiliary stress fields,
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and must be considered to obtain converged path-independent
solutions. The last term is due to material nonhomogeneity and
involves the material gradient.

The relationship between J-integral and the mode I and mode
II SIFs is given by

Jlocal = (
K 2

I + K 2
II

)/
E∗

tip, (22)

where E∗
tip = Etip for plane stress and Etip/(1 − ν2

tip) for plane
strain. For two admissible fields, which are the actual (u, ε, σ)
and auxiliary (uaux , εaux , σaux ) fields, one obtains [64]

J s
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(
K I + K aux

I

)2 + (
KII + K aux

II

)2

E∗
tip

= Jlocal + J aux
local + Mlocal, (23)

FIG. 12. Example 1: Numerical results for crack trajectories and crack initiation angles (θ0) of the crack in an FGM beam considering �a = 1 mm for all the
steps ((σθθ)max criterion): (a) ξ = 0.00; (b) ξ = 0.10; (c) ξ = 0.17; (d) ξ = 0.40; (e) ξ = 0.50; (f) ξ = 0.58; (g) ξ = 0.80; (h) ξ = 1.00.
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where Jlocal is given by Eq. (22), J aux
local is given by

J aux
local = [(

K aux
I

)2 + (
K aux

II

)2]
/E∗

tip (24)

and Mlocal is given by
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(
K I K aux

I + KII K aux
II

)
/E∗

tip. (25)

The mode I and mode II SIFs are evaluated as follows:

K I = M (1)
local E

∗
tip/2,

(
K aux
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II = 0.0

)
, (26)

KII = M (2)
local E

∗
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(
K aux

I = 0.0, K aux
II = 1.0

)
. (27)

The relationships of Eqs. (26) and (27) are the same as those for
homogeneous materials [64] except that, for FGMs, the material
properties are evaluated at the crack-tip location [53, 65, 66].

5. NUMERICAL EXAMPLES
Fracture analysis and crack propagation are conducted using

the FEM code I-FRANC2D. The geometry is discretized with
isoparametric graded elements [67]. The specific elements used
in the numerical simulations consist of singular quarter-point
six-node triangles (T6qp) for crack-tip discretization, eight-node
serendipity elements (Q8) for a circular region around crack-
tip elements, and regular six-node triangles (T6) in a transition
zone of Q8 elements. For the calculation of SIFs by means of
the interaction integral, we use a crack-tip region discretization
involving 12 sectors (S12) and 4 rings (R4) at each step of crack
propagation as recommended by Kim and Paulino [53]. This
discretization defines the invariant crack tip template. Quasi-

FIG. 13. Example 1: (a) comparison of crack trajectories obtained by using the maximum hoop stress [36], maximum energy release rate [37], and minimum
strain energy density [39] criteria. The crack initiation angles at the initial step obtained by (σθθ)max, (Gθθ)max, and (Sθθ)min are θ0 = 6.98◦, 6.98◦, and 7.64◦,
respectively; (b) sensitivity of the crack trajectory with respect to the crack increment �a, and comparison of solutions obtained with �a = 0.5 mm, 1.0 mm, and
2.0 mm using the maximum hoop stress criterion.

static automatic mixed-mode crack propagation in FGMs are
performed in the following examples:

(1) A crack in a graded glass/epoxy beam subjected to four-point
bending

(2) Two cracks emanating from holes in a plate under tension
(3) Branched cracks in a plate under tension

In order to validate the numerical results, we adopt the ex-
perimental data reported by Rousseau and Tippur [23]. The first
example involves mixed-mode crack propagation in a graded
glass/epoxy beam [23] under four-point loading. The second
example involves two cracks emanating from holes in a plate
under tension. The last example involves two branched cracks
in a plate under tension and it is motivated by the crack branching
phenomenon [68–70].

5.1. A Crack in a Graded Glass/Epoxy Beam Subjected
to Four-Point Bending

Rousseau and Tippur [23] investigated crack growth behavior
of a crack normal to the material gradient in a graded glass/epoxy
subjected to four-point bending, and applied displacement con-
trolled loading at a cross-head speed of 0.25 mm/min using In-
stron Universal Testing Machine. The FGM beam was made of
solid A-glass spheres of mean diameter 42 μm dispersed within
a slow curing epoxy matrix, and was fabricated by using gravity
assisted casting technique with two-part slow curing epoxy and
uncoated solid glass sphere fillers.

Figure 6(a) shows specimen geometry and boundary condi-
tions (BCs) considering three independent cracks A, B, and C,
which are located at ξ = 0.17, 0.58, and 1.00, respectively, Fig-
ure 6(b) shows the complete mesh configurations for the three
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cracks, and Figure 6(c) shows mesh detail using 12 sectors (S12)
and 4 rings (R4) around the crack tip.

The typical mesh discretization consists of 1067 Q8, 155 T6,
and 12 T6qp elements, with a total of 1234 elements and 3725
nodes. The following data are used for the FEM analyses:

plane stress,

a/W = 0.25, t = 6 mm, P = Pcr (a + n�a, X). (28)

where n refers to the number of crack propagation increments,
and X = (X1, X2).

FIG. 14. Example 2: An FGM plate with two cracks emanating from holes: (a) geometry and BCs; (b) complete finite element mesh; (c) mesh details of two
crack tips; (d) zoom of the left crack tip showing mesh of 12 sectors (S12) and 4 rings (R4) elements.

Figures 7 and 8 illustrate variations of Young’s modulus E
and Poisson’s ratio ν and fracture toughness K I c in the graded
material region, respectively. The numerical values of material
properties at interior points in the graded region are illustrated
in Table 1.

Due to the lack of information on the critical load Pcr and load
history in [23], here the critical load is calculated at each step
based on fracture criteria, and applied the calculated critical load
to the corresponding step. Notice that there is no effect of the
load magnitude on the crack trajectory within the framework of
linear elastic analysis. Table 2 shows the critical load Pcr , SIFs,
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TABLE 1
Example 1: Material properties (Young’s modulus E , Poisson’s

ratio ν, and fracture toughness K I c) at interior points in the
graded region

ξ E(MPa) ν K I c (MPa
√

m)

0.00 3000 0.35 1.2
0.17 3300 0.34 2.1
0.33 5300 0.33 2.7
0.58 7300 0.31 2.7
0.83 8300 0.30 2.6
1.00 8600 0.29 2.6

and the phase angle ψ = tan−1(KII/KI) calculated using the
maximum hoop stress criterion at the initial step considering the
three crack locations ξ = 0.17, 0.58, and 1.00. As ξ increases,
the mode-mixity K I /KII decreases.

Figures 9(a), 9(b), and 9(c) show experimental results re-
ported by Rousseau and Tippur [23] for crack trajectories and
crack initiation angles (θ0) of the crack located at ξ = 0.17,
ξ = 0.58, and ξ = 1.00, respectively. Figures 10(a), 10(b), and
10(c) show present numerical results for crack trajectories and
crack initiation angles (θ0) for the corresponding cracks. These
numerical results are obtained by considering the maximum
hoop stress criterion [36] and a crack increment �a = 1 mm.
There is reasonable agreement in crack initiation angles and
crack trajectories between numerical and experimental results.
Figure 11 shows finite element discretization and remeshing for
initial, intermediate and final steps of crack propagation consid-
ering the crack located at ξ = 0.17 and �a = 1 mm. One can
observe that local mesh is refined around the crack tip at each
step.

In order to investigate the effect of initial crack location on
crack trajectory, cracks located at various locations in a graded
beam are considered. Figure 12 shows numerical results for
crack trajectories and crack initiation angles (θ0) considering
various crack locations (0 ≤ ξ ≤ 1) and �a = 1 mm. Notice
that, as the crack location changes from ξ = 0.0 to ξ = 1.0,
the crack initiation angle θ0 increases up to about 6.98◦ at

TABLE 2
Example 1: Numerical results for the critical load Pcr , SIFs,

and phase angle ψ = tan−1(KII/K I )) at the initial step
considering the three crack locations: ξ = 0.17, 0.58, and

1.00. ((σθθ)max criterion)

K I KII ψ =
ξ Pcr (N) (MPa

√
m) (MPa

√
m) tan−1(KII/K I )

0.17 249.3 2.088 −0.127 −3.480
0.58 298.0 2.695 −0.094 −1.997
1.00 289.9 2.598 −0.013 −0.286

FIG. 15. Example 2: comparison of crack trajectories between homogeneous
and graded plates. For a graded plate, the upper-limit load, which is required
for both cracks to propagate, is considered for each step of crack propagation
((Gθθ)max criterion, �a = 0.5 mm).

ξ = 0.17, and then decreases. For homogeneous beam with
the crack ξ = 0.5, the crack initiation angle is zero because of
symmetry, but, for a graded beam investigated here, it is nonzero.

In order to compare the three fracture criteria, i.e., (σθθ)max,
(Gθθ)max, and (Sθθ)max criteria, Figure 13(a) shows crack tra-
jectories obtained by using the maximum hoop stress [36], the
maximum energy release rate [37], and the minimum strain en-
ergy density [39] criteria. There is not much difference in crack
trajectories. Moreover, the crack initiation angles at the initial
step obtained by maximum hoop stress [36], minimum strain
energy density [39], and maximum energy release rates [37]

FIG. 16. Example 2: crack trajectory for cracks in a graded plate. The lower-
limit load, which is required for the crack with higher crack driving force to
propagate, is considered for each step of crack propagation ((Gθθ)max criterion,
�a = 0.5 mm).
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FIG. 17. Example 2: critical load (σcr ) versus crack extension history for
homogeneous and graded plates ((Gθθ)max criterion, �a = 0.5 mm).

criteria are θ0 = 6.98◦, θ0 = 6.98◦, and θ0 = 7.64◦, respec-
tively. To investigate the effect of the crack increment �a on
crack trajectory, Figure 13(b) shows comparison of crack tra-
jectories obtained by considering �a = 0.5 mm, 1.0 mm, and
2.0 mm and using the maximum hoop stress criterion. There is
not much difference in the crack trajectory for the crack incre-
ments �a considered here. However, inappropriate large values
of the crack increment may lead to accumulative deviation of
crack trajectory.

5.2. Two Cracks Emanating from Holes in a Plate
under Tension

This example investigates the interaction of two cracks em-
anating from holes in a plate. Figure 14(a) shows specimen
geometry and BCs; Figure 14(b) shows the complete mesh con-
figuration; Figure 14(c) shows mesh detail of two cracks; and
Figure 14(d) shows zoom of the left crack tip region showing
mesh of 12 sectors (S12) and 4 rings (R4) elements.

FIG. 18. Example 2: History of SIFs (K I and KII versus crack extension for
the homogeneous plate ((Gθθ)max criterion, �a = 0.5 mm).

FIG. 19. Example 2: History of SIFs (K I and KII) versus crack extension
for the graded plate considering the upper-limit load ((Gθθ)max criterion, �a =
0.5 mm).

The typical mesh discretization consists of 1964 Q8, 302 T6,
and 24 T6qp elements, with a total of 2290 elements and 6827
nodes. The following data are used for the FEM analyses:

plane stress,

a = 2 mm, t = 6 mm, σ = σcr (a + n�a, X) (MPa).

(29)

Here material properties are adopted from the first example.
For the homogeneous beam, the material properties of epoxy are
used (see Table 1). For the graded beam, material gradation in
the X2 direction is considered, and the graded region −18.5 mm
≤ X2 ≤ 18.5 mm corresponds to the graded region 0 ≤ ξ ≤ 1
in the first example (cf. Figures 7 and 8).

FIG. 20. Example 2: History of SIFs (K I and KII) versus crack extension
for the graded plate considering the lower-limit load ((G)max criterion, �a =
0.5 mm).
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FIG. 21. Example 2: finite element discretization in the final step of crack propagation considering �a = 0.5 mm ((Gθθ)max criterion): (a) Homogeneous case;
(b) the lower-limit load of FGM case. The final discretization of the upper-limit load case is similar to that for the homogeneous case, and thus is not shown here.

Figure 15 shows comparison of crack trajectories obtained
for the homogeneous plate with those for the graded plate us-
ing the maximum energy release rates criterion [37]. For the
homogeneous plate, crack trajectories for the left and right
crack tips are symmetric. For the graded plate, the upper-
limit load (σupper

cr ), which is required for both cracks to prop-
agate, is considered for each step of crack propagation (�a =
0.5 mm). Due to material gradation, two cracks propagate to-
ward the compliant part of graded plate, and the symmetry breaks
down.

Figure 16 shows crack trajectories obtained by using the max-
imum energy release rates criterion [37] for the graded plate
considering the lower-limit load (σlower

cr ) at each step, which is
required for the crack with higher crack driving force to prop-
agate. As observed in Figure 16, only the left crack propagates

FIG. 22. Example 2: Comparison of critical load histories obtained using
(Gθθ)max, (σθθ)max, and (Sθθ)min criteria for the upper-limit load case of FGMs.

and the right crack is shielded. This indicates that the crack driv-
ing force of the left crack is higher than that for the right crack
for the entire step of crack propagation.

Figure 17 shows history of critical load (σcr ) versus crack
extension for homogeneous and graded plates (�a = 0.5 mm)
using the maximum energy release rates criterion [37]. Due to
higher fracture toughness in FGMs, the critical load at the initial
step for the graded plate is higher than that for the homoge-
neous case. The critical load considering lower-limit case of the
graded plate decreases with the increasing steps. However, the
critical load considering the upper-limit case of the graded plate
decreases up to step 10 (crack extension 5 mm) due to the in-
teraction between two cracks and increases thereafter, which is
also observed in the homogeneous case.

FIG. 23. Example 2: Comparison of crack trajectories obtained using
(Gθθ)max, (σθθ)max, and (Sθθ)min criteria for the upper-limit load case of FGMs.
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Figure 18 shows history of SIFs K I and KII versus crack
extension for the homogeneous plate (�a = 0.5 mm) using the
maximum energy release rates criterion [37]. The SIFs for both
crack tips are identical because of symmetry. Figures 19 and 20
show history of SIFs (K I and KII) versus crack extension for the
graded plates considering the upper-limit and lower-limit loads,
respectively. For both upper and lower limit load cases, due
to higher fracture toughness and subsequent increased critical
loads, one observes increased mode I SIF for both crack tips.
Moreover, for the lower-limit load case, as observed in Figure
16, the right crack tip does not propagate, and mode II SIF for

the right crack tip is positive. For both homogeneous and graded
materials, crack grows such that KII tend to oscillate around zero
(i.e., KII = 0 criterion).

Figure 21 shows finite element discretization in the final step
of crack propagation considering �a = 0.5 mm for the homoge-
neous case and the lower-limit load of FGM case, respectively.
The final discretization of upper-limit load case is similar to that
for the homogeneous case, and thus is not shown here.

Figures 22 and 23 compare critical load histories and crack
trajectories, respectively, obtained using (Gθθ)max, (σθθ)max, and
(Sθθ)min criteria for the upper-limit load case of FGMs. There is

FIG. 24. Example 3: An FGM plate with branched cracks: (a) geometry and BCs; (b) complete finite element mesh; (c) mesh details using 12 sectors (S12) and
4 rings (R4) elements.
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FIG. 25. Example 3: comparison of crack trajectories between homogeneous
and graded plates ((Gθθ)max criterion, �a = 1.5 mm).

not much difference in critical load history and crack trajectory
calculated by using the three fracture criteria.

5.3. Branched Cracks in a Plate under Tension
This example investigates branched cracks extending from

the existing crack tip. Figure 24(a) shows specimen geometry
and BCs; Figure 24(b) shows the complete mesh configuration;
and Figure 24(c) shows mesh detail of forked cracks using 12
sectors (S12) and 4 rings (R4) elements.

The typical mesh discretization consists of 1644 Q8, 212 T6,
and 24 T6qp elements, with a total of 1880 elements and 5605

FIG. 26. Example 3: History of critical load (σcr) versus crack extension for
homogeneous and graded plates ((Gθθ)max criterion, �a = 1.5 mm).

FIG. 27. Example 3: History of SIFs (K I and KII) versus crack extension for
the homogeneous plate ((Gθθ)max criterion, �a = 1.5 mm).

FIG. 28. Example 3: History of SIFs (K I and KII) versus crack extension
for the graded plate considering the upper-limit load ((Gθθ)max criterion, �a =
1.5 mm).

FIG. 29. Example 3: History of SIFs (K I and KII) versus crack extension
for the graded plate considering the lower-limit load ((Gθθ)max criterion, �a =
1.5 mm).
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nodes. The following data are used for the FEM analyses:

plane stress,

a = 3 mm, b = 1.5 mm, t = 6 mm,

σ = σcr (a + n�a, X) (MPa). (30)

Here again material properties are adopted from the first ex-
ample, and the material gradation is identical to the second ex-
ample. For the homogeneous beam, the material properties of
epoxy are used (see Table 1). For the graded beam, material gra-
dation in the X2 direction is considered, and the graded region
−18.5 mm ≤ X2 ≤ 18.5 mm corresponds to the graded region
0 ≤ ξ ≤ 1 in the first example (cf. Figures 7 and 8).

Figure 25 shows comparison of crack trajectories obtained for
the homogeneous plate with those for the graded plate (�a =
1.5 mm) using the maximum energy release rates criterion [37].
As observed for the upper-limit load in the previous example, due
to material gradation, two cracks propagate toward the compliant
part of graded plate, and the symmetry breaks down. As observed
for the lower-limit load case in Figure 25, only the lower crack
propagates and the upper crack is shielded. This indicates that
the crack driving force of the lower crack is higher than that for
the upper crack for the entire step of crack propagation.

Figure 26 shows history of critical load (σcr ) versus crack
extension for homogeneous and graded plates (�a = 1.5 mm)
using the maximum energy release rates criterion [37]. Due to
higher fracture toughness in FGMs, the critical load for the

FIG. 30. Example 3: finite element discretization in the final step of crack propagation considering �a = 0.5 mm for forked cracks ((Gθθ)max criterion):
(a) Homogeneous case; (b) the upper-limit load of FGM case; (c) the lower-limit load of FGM case.
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FIG. 31. Example 3: Comparison of critical load histories obtained using
(Gθθ)max, (σθθ)max, and ((Sθθ)min criteria for the upper-limit load case of FGMs.

graded plate at each step is higher than that for the homoge-
neous case. One observes that the critical loads for all cases
decrease with each step of propagation.

Figure 27 shows history of SIFs K I and KII versus crack ex-
tension for the homogeneous plate (�a = 1.5 mm) using the
maximum energy release rates criterion [37]. The SIFs for both
crack tips are identical because of symmetry. Figures 28 and
29 show history of SIFs K I and KII versus crack extension for
the graded plates considering the upper-limit and lower-limit
loads, respectively. For both upper and lower limit load cases,
due to higher fracture toughness and subsequent increased crit-
ical loads, one observes increased mode I SIF for both crack
tips. Moreover, for the upper-limit load case, as observed in Fig-

FIG. 32. Example 3: Comparison of crack trajectories obtained using
(Gθθ)max, (σθθ)max, and ((Sθθ)min criteria for the upper-limit load case of FGMs.

ure 28, mode I SIF for the lower crack tip increases rapidly at
the final step because it is near to the boundary. For the lower-
limit load case, as observed in Figure 29, the upper crack tip
does not propagate, and both mode I and II SIFs for the up-
per crack tip rapidly decreases at the early steps. Figure 30
shows finite element discretization in the final step of crack
propagation considering �a = 1.5 mm for the homogeneous
case, the upper-limit and the lower-limit loads of FGM case,
respectively.

Figures 31 and 32 compare critical load histories and crack
trajectories, respectively, obtained using (Gθθ)max, (σθθ)max, and
(Sθθ)min criteria for the upper-limit load case of FGMs. As ob-
served before, there is not much difference in critical load his-
tory and crack trajectory calculated by using the three fracture
criteria.

6. CONCLUSIONS
This paper investigates mixed-mode fracture behavior of

FGMs by performing automatic simulation of crack propaga-
tion by means of the finite element method. Based on local
homogenization, the maximum hoop stress [36], maximum en-
ergy release rate [37] and minimum strain energy [39] criteria
are used, and predict crack initiation angles well in comparison
with experimental results [23]. Crack trajectories obtained by
the three fracture criteria are similar to each other for the con-
sidered crack growth examples, and agree well with available
experimental results for homogeneous and FGMs.

For two interacting cracks under symmetry boundary con-
ditions, there exists symmetry in terms of fracture parameters
characterizing crack-tip fields and crack growth behavior, and
thus there is no competition between two cracks for homoge-
neous materials. However, for graded materials, the symmetry
breaks down due to material gradation, and thus the crack-tip
fields in one crack tip is different from those for the other. This
may allow propagation of one crack and shielding of the other
crack under certain critical loads, which range in between the
critical loads for the two crack tips.

The present approach uses user-defined crack increment that
is specified at the beginning of simulation. The crack increment
is related to material behavior, and need be thoroughly investi-
gated with experiments.
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