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Abstract
Recently, the functionally graded material (FGM) concept has been explored
in piezoelectric materials to improve properties and to increase the lifetime of
bimorph piezoelectric actuators. For instance, elastic, piezoelectric, and/or
dielectric properties may be graded along the thickness of a piezoceramic.
Thus, the gradation of piezoceramic properties influences the performance of
piezoactuators. The usual FGM modelling using traditional finite element
formulation and discretization into layers gives a highly discontinuous stress
distribution, which is undesirable. In this work, we focus on
nonhomogeneous piezoelectric materials using a generalized isoparametric
formulation based on the graded finite element concept, in which the
properties change smoothly inside the element. This approach provides a
continuum material distribution, which is appropriate to model FGMs. Both
four-node quadrilaterals and eight-node quadrilaterals for piezoelectric
FGMs were implemented using the graded finite element concept. A closed
form two-dimensional analytical model of piezoelectric FGMs is also
developed to check the accuracy of these finite elements and to assess the
influence of material property gradation on the behavior of piezoelectric
FGMs. The paper discusses and compares the behavior of piezoelectric
graded elements under four loading conditions with respect to the analytical
solutions (derived in this work) considering exponential variation of elastic,
piezoelectric, and dielectric properties separately. The analytical solutions
provide benchmark problems to verify numerical procedures (such as the
finite element method and the boundary element method).

1. Introduction

Piezoelectric materials have a wide range of applications,
especially in the field of sensors and actuators. Functionally
graded materials (FGMs) are special materials that possess
continuously graded properties and are characterized by
spatially varying microstructures created by nonuniform
distributions of the reinforcement phase as well as by
interchanging the role of reinforcement and matrix (base)
materials in a continuous manner (Suresh and Mortensen
1988, Miyamoto et al 1999). The smooth variation of
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properties may offer advantages such as local reduction of
stress concentration and increased bonding strength. Recently,
this concept has been explored in piezoelectric materials to
improve properties and to increase the lifetime of bimorph
piezoelectric actuators (Ballato et al 2001, Zhu and Meng
1995). These actuators have attracted significant attention
due to their simplicity and reliability. Usually, elastic,
piezoelectric, and dielectric properties are graded along the
thickness of an FGM piezoceramic (see figure 1). This
gradation can be achieved by stacking piezoelectric composites
of different compositions on top of each other (Zhu and Meng
1995, Qiu et al 2003, Chen et al 2003). Each lamina can be
composed of a piezoelectric material or a composite made of
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Figure 1. Smooth property variation for FGM piezoceramics.

piezoelectric material and a non-piezoelectric material. Many
studies have been conducted on FGM piezoactuators (Zhu and
Meng 1995, Zhifei 2002, Ying and Zhifei 2005, Elka et al
2004, Shi and Chen 2004, Almajid et al 2001, Taya et al 2003,
Huang et al 2007, Yang and Xiang 2007).

As the applications of FGM piezoelectrics advance, new
modelling techniques are also developed for such materials.
The usual FGM modelling using traditional finite element
(FE) formulation and discretizing the FGM into layers gives
a discontinuous stress distribution (Almajid et al 2001,
Taya et al 2003), which is problematic (Kim and Paulino
2002). Here we focus on the finite element method for
nonhomogeneous piezoelectric materials using a generalized
isoparametric formulation based on graded finite elements
as developed by Santare and Lambros (2000) and Kim and
Paulino (2002). In this approach, the properties change
smoothly inside the element. Such an FE approach has
been applied to perform different types of FGM analyses.
The graded finite element concept for dynamic modeling was
discussed by Banks-Sills et al (2002) and for wave propagation
modeling by Santare et al (2003) and Zhang and Paulino
(2007). Chakraborty and Gopalakrishnan (2003) employed
the spectral finite element method based on graded finite
elements to analyse the wave propagation behavior in an FGM
beam subjected to either thermal or mechanical high frequency
impulse loading. Finally, Thamburaj et al (2003) conducted
studies on damage propagation in FGMs using graded finite
elements.

In this work, four-node quadrilaterals (Q4) and eight-node
quadrilaterals (Q8) for piezoelectric FGMs are implemented
using the graded finite element concept. A two-dimensional
(2D) analytical model of piezoelectric FGMs is also developed
to check the accuracy of these finite elements, and to
understand the influence of material property gradation in
the behavior of piezoelectric FGMs. The paper discusses
and compares the behavior of piezoelectric graded elements
under various loading conditions with respect to the analytical
solutions derived in this work. The examples consider two-
dimensional models with the plane strain assumption, and
four types of loading conditions. The elastic, piezoelectric,
and dielectric properties are graded separately, considering
exponential variations. Quantities such as displacement,
electric potential, stress, strain, and electric field are
investigated in the context of the examples.

This paper is organized as follows. In section 2,
an analytical 2D model for FGM piezoceramics is derived
based on mechanical and piezoelectric constitutive equations.
Exact solutions for displacement, electric potential, stress,
electric field, and electric displacement are presented. A
brief description of the generalized isoparametric graded finite
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Figure 2. Bar subjected to uniform strain (ε0) in the x-direction and
open-circuit electrical conditions (Q = 0). Electrodes are located at
surfaces z = 0 and z = h.

element formulation for FGM piezoceramics is addressed in
section 3. In section 4, a comparison between numerical and
analytical solutions is described. Finally, in section 5, some
conclusions are inferred.

2. Some exact solutions for nonhomogeneous
piezoelectricity

Exact solutions for piezoelectric FGMs are derived, which
can be used as reference solutions for checking the finite
element simulations based on the graded finite element concept
(described ahead) and to provide insight into the influence of
material property gradation on the behavior of piezoelectric
materials. These solutions are an extension of those obtained
by Kim and Paulino (2002) for purely elastic FGMs, and follow
the same methodology and model concept.

We consider a piezoelectric FGM bar of infinite length
(in the x-direction) and finite width (h) polarized in the z-
direction, as shown in figure 2, under generalized plane strain
conditions subjected to various load conditions. There are
electrodes in the upper and lower part of the bar. The
piezoelectric material is orthotropic (transversely isotropic)
and it is polarized along the z-direction (see figure 2). An
exponential material variation for elastic, piezoelectric, and
dielectric properties are considered separately, and analytical
solutions for stresses, strains, displacements, and electric
potential are developed.

Starting with the linear piezoelectric constitutive equa-
tions (Ikeda 1996), we have

σ = cEε − eE

D = etε + εSE
(1)

where cE , e, and εS denote the stiffness, piezoelectric, and
dielectric tensor properties of the medium, respectively. The
quantities σ , ε, D, and E denote the stress tensor, strain
tensor, electrical displacement vector, and electric field vector,
respectively. Moreover

ε = ∇symu; E = −∇φ, (2)

where u is the displacement field, φ is the electric potential in
the piezoelectric medium, ∇ denotes the gradient operator and
∇sym its symmetric part.

For a piezoelectric material from the 6mm class (Ikeda
1996) polarized in the local 3 (i.e. z) direction, the piezoelectric
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constitutive equations (1) can be written in the form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

σx y

σyz

σxz

Dx
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0 0 0 0 0 cE
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0 0 0 0 e15 0 −εS
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0 0 0 e15 0 0 0 −εS
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⎥
⎥
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⎥
⎥
⎦

×

⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3)

Considering a plane strain assumption for the piezoelectric
medium (Ikeda 1996), i.e. εx y = εyz = εyy = 0 and
Ey = 0, one simplifies the piezoelectric constitutive equations
as follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σxx

σzz

σxz

Dx

Dz

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎣

cE
11 cE

13 0 0 e1

cE
13 cE

33 0 0 e33

0 0 cE
44 e15 0

0 0 e15 −εS
11 0

e31 e33 0 0 −εs
33

⎤

⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εxx

εzz

εxz

−Ex

−Ez

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (4)

Regarding the boundary conditions of the piezoelectric
bar, the lower electrode is always grounded (φ|z=0 = 0), the
x displacements are null along the edge x = 0, and the z
displacement is null in (x, z) = (0, 0). In addition, we have
the following:

Dx = 0; Ex = 0; εxz = 0;
σzz = 0 ⇒ σxz = 0.

(5)

Thus, additional conditions can be obtained from the Maxwell
equations, (Ikeda 1996) i.e.

∂ Dx

∂x
+ ∂ Dz

∂z
= 0 ⇒ ∂ Dz

∂z
= 0 ⇒ Dz = C = constant. (6)

From mechanical and electrical compatibility equations (Zhifei
2002), we obtain

Mechanical: ∂2εzz

∂x2
+ ∂2εxx

∂z2
= ∂2εxz

∂x∂z
⇒ ∂2εxx

∂z2
= 0

⇒ εxx = Az + B (7)

Electrical: ∂Ex

∂z
− ∂Ez

∂x
= 0 ⇒ ∂Ez

∂x
= 0 ⇒ Ez = f (z), (8)

Table 1. Cases investigated.

Section 2.1 Uniform strain and open-circuit electrical conditions
Section 2.2 Uniform strain and short-circuit electrical conditions
Section 2.3 Electrical charge excitation
Section 2.4 Electrical voltage excitation

and finally, considering electrical excitation (Elka et al 2004),
we get

∫

As

Dz dAs = −Q (electrical charge) or

∫ h

0
Ez dz = �φ (applied voltage difference),

(9)

where As is the surface electrode area and h is the thickness of
the piezoelectric bar.

Based on the governing equations and the definition of
the actual boundary value problem (involving both mechanical
and electrical variables), we obtain the solution for the electric
potentials and displacements in the graded piezoelectric
domain (see figures 1 and 2). Exponential material variations
are adopted for the following elastic, piezoelectric, and
dielectric properties only:

cE
11 = c0E

11 e(βz); cE
13 = c0E

13 e(βz);
cE

33 = c0E
33 e(βz);

(10)

e31 = e0
31e(γ z); e33 = e0

33e(γ z);
εs

33 = ε0s
33e(αz);

(11)

The cases investigated are summarized in table 1. The
solutions are obtained by considering material variations of
elastic, piezoelectric, and dielectric properties, separately, for
all cases. Cases 2.1 and 2.2 consider a bar subjected to
uniform strain (ε0) in the x-direction and open-circuit electrical
conditions (Q = 0) or short-circuit electrical conditions
(�φ = 0), respectively. Cases 2.3 and 2.4 consider a
bar subjected to electrical charge excitation per area (Qs)
or electrical voltage excitation (Vs), respectively, and no
mechanical load.

The analytical results considering material gradation are
presented only for case 2.1. For other cases (2.2, 2.3, and
2.4), only the results for homogeneous material (no material
gradation) are presented. The corresponding Maple programs
that generated these solutions are presented in appendix B.
For cases 2.2, 2.3, and 2.4, due to the complex mathematical
expressions, only the corresponding Maple programs are
presented in appendix B. These analytical results are compared
with FE simulation results in section 4 obtained using Q4 and
Q8 elements.

2.1. Uniform strain and open-circuit electrical conditions

In the first case the bar is subjected to uniform strain (ε0) in the
x-direction and open-circuit electrical conditions (Q = 0) (see
figure 2). Thus, from equations (6) and (9)

Q = 0 ⇒
∫

As

Dz dAs = 0 ⇒
∫

As

C dAs = 0 ⇒ C = 0

⇒ Dz = 0. (12)
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Then, substituting (12) in equation (4), we obtain

εxx = ε0 ⇒
{

σxx

0
0

}

=
⎡

⎣

cE
11 cE

13 e31

cE
13 cE

33 e33

e31 e33 −εs
33

⎤

⎦

{
ε0

εzz

−Ez

}

⇒
⎧
⎨

⎩

−cE
11ε0

−cE
13ε0

−e31ε0

⎫
⎬

⎭
=

⎡

⎣

−1 cE
13 e31

0 cE
33 e33

0 e33 −εs
33

⎤

⎦

{
σxx

εzz

−Ez

}

. (13)

The equation system (13) is solved for σxx , εzz , and Ez

considering separately an exponential material variation for the
elastic, piezoelectric, and dielectric properties. The quantities
uz and φ are also obtained from εzz = ∂u/∂z and Ez =
−∂φ/∂z, respectively.

The corresponding solution for homogeneous material (no
material variation) is given by the following expressions:

σxx =

−ε0[−cE
33(e31)

2−cE
33cE

11ε
s
33+(cE

13)
2εs

33+2e31e33cE
13−cE

11(e33)
2]

cE
33ε

s
33 + (e33)2

εzz = −ε0(e33e31 + cE
13ε

s
33)

cE
33ε

s
33 + (e33)2

Ez = ε0(−cE
33e31 + cE

13e33)

cE
33ε

s
33 + (e33)2

uz = −ε0(e33e31 + cE
13ε

s
33)z

cE
33ε

s
33 + (e33)2

φ = −ε0(−cE
33e31 + cE

13e33)z

cE
33ε

s
33 + (e33)2

.

(14)

The above solution recovers the solution of Kim and Paulino
(2002) when there is no piezoelectric effect. Considering an
exponential material variation for the elastic property only, one
obtains the following solution:

σxx = − e(βz)ε0

c0E
33 e(βz)εs

33 + (e33)
2

× [
e(βz)

(
c0E

13

)2
εs

33 − (e31)
2 c0E

33 + 2e31e33c0E
13

− c0E
11 e(βz)c0E

33 εs
33 − c0E

11 (e33)
2
]

εzz = −ε0(c0E
13 e(βz)εs

33 + e31e33)

c0E
33 e(βz)εs

33 + (e33)
2

Ez = e(βz)ε0(−c0E
33 e31 + c0E

13 e33)

c0E
33 e(βz)εs

33 + (e33)
2

uz = − ε0

βe33c0E
33

× [
e31βzc0E

33 − log(c0E
33 e(βz)εs

33 + (e33)
2)e31c0E

33

+ log(c0E
33 e(βz)εs

33 + (e33)
2)c0E

13 e33
]

φ = −ε0 log
[
c0E

33 e(βz)εs
33 + (e33)

2
]
(−c0E

33 e31 + c0E
13 e33)

βc0E
33 εs

33

.

(15)

For an exponential material variation of the piezoelectric
property only, the solution is:

z

x

h

L/2    
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Figure 3. Bar subjected to uniform strain (ε0) in the x-direction and
short-circuit electrical conditions (�φ = 0).

σxx = ε0

(e0
33)

2e(2γ z) + εs
33cE

33

× [−2e(2γ z)e0
33cE

13e0
31 + e(2γ z)(e0

31)
2cE

33 − (cE
13)

2εs
33

+ cE
11(e

0
33)

2e(2γ z) + cE
11cE

33ε
s
33

]

εzz = −ε0(e0
33e(2γ z)e0

31 + cE
13ε

s
33)

(e0
33)

2e(2γ z) + εs
33cE

33

Ez = e(γ z)ε0(e0
33cE

13 − e0
31cE

33)

(e0
33)

2e(2γ z) + εs
33cE

33

uz = 1

2

ε0

γ cE
33e0

33

× [
log((e0

33)
2e(2γ z) + εs

33cE
33)c

E
13e0

33 − log((e0
33)

2e(2γ z)

+ εs
33cE

33)e
0
31cE

33 − cE
132γ ze0

33

]

φ = −
ε0 tan−1

(
e0

33e(γ z)
/√

εs
33cE

33

)
(e0

33cE
13 − e0

31cE
33)

γ e0
33

(√

εs
33cE

33

) .

(16)

Finally, for an exponential material variation of the dielectric
property only, the solution is

σxx = − ε0

(e33)2 + ε0s
33e(αz)cE

33

× [
2cE

13e33e31 − (e31)
2cE

33 + (cE
13)

2ε0s
33e(αz)

− cE
11(e33)

2 − cE
11cE

33ε
0s
33e(αz)

]

εzz = −ε0

[
e33e31 + cE

13ε
0s
33e(αz)

]

(e33)2 + ε0s
33e(αz)cE

33

Ez = ε0(cE
13e33 − e31cE

33)

(e33)2 + ε0s
33e(αz)cE

33

uz = − ε0

αcE
33e33

× [
log((e33)

2 + ε0s
33e(αz)cE

33)c
E
13e33

− log((e33)
2 + ε0s

33e(αz)cE
33)e31cE

33 + e31αzcE
33

]

φ = ε0

α(e33)2

× [
log((e33)

2 + ε0s
33e(αz)cE

33)c
E
13e33 − cE

13αze33

− log((e33)
2 + ε0s

33e(αz)cE
33)e31cE

33 + e31αzcE
33

]
.

(17)

2.2. Uniform strain and short-circuit electrical conditions

In the second case, the bar is subjected to uniform strain (ε0) in
the x-direction and short-circuit electrical conditions (�φ = 0)
(see figure 3).
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Figure 4. Bar subjected to electrical charge excitation per area (Qs)
and no mechanical load.

z

x
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φs L/2    

8
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Figure 5. Bar subjected to electrical voltage excitation (Vs ) and no
mechanical load.

Thus, the extra boundary condition considered from
equation (9) is

�φ = 0 ⇒
∫ h

0
Ez dz = �φ = 0. (18)

Moreover, considering equations (4) and (6), one obtains

εxx = ε0; Dz = C ⇒
{

σxx

0
C

}

=
⎡

⎣

cE
11 cE

13 e31

cE
13 cE

33 e33

e31 e33 −εs
33

⎤

⎦

×
{

ε0

εzz

−Ez

}

⇒
⎧
⎨

⎩

−cE
11ε0

−cE
13ε0

−e31ε0 + C

⎫
⎬

⎭

=
⎡

⎣

−1 cE
13 e31

0 cE
33 e33

0 e33 −εs
33

⎤

⎦

×
{

σxx

εzz

−Ez

}

. (19)

The equation system (19) is solved for σxx , εzz , and Ez , and
then uz and φ are obtained.

The corresponding solution for homogeneous material (no
material variation) is

σxx = −
[−cE

11cE
33 + (cE

13)
2
]
ε0

cE
33

εzz = −cE
13ε0

cE
33

Ez = 0

uz = −cE
13ε0z

cE
33

φ = 0.

(20)

x

y

z

Finite element 
domain

Figure 6. Continuous material distribution using a graded finite
element.

L=10mm

h=
5m

m

x

z

Figure 7. FE model used in the simulations (20 × 10 mesh).
Boundary conditions and applied loads are changed according to
figures 2–5.

An exponential material variation for either the elastic,
piezoelectric, or dielectric properties is considered separately.
For instance, considering an exponential material variation for
the elastic property, one obtains the following solution:

σxx = −
[(

c0E
13

)2 − c0E
11 c0E

33

]
ε0e(βz)

c0E
33

εzz = −c0E
13 ε0

c0E
33

Ez = 0

uz = −c0E
13 ε0z

c0E
33

φ = 0.

(21)

Note that only the stress function is affected by material
gradation. The solution considering exponential variation of
the piezoelectric property is too complex to show, and only the
Maple program, written to obtain it, is presented in appendix B.
We notice that, in this case, the variation of the dielectric
property does not influence the solution, which is identical to
the homogeneous case.

2.3. Electrical charge excitation

In the third case, the bar is subjected to electrical charge
excitation per area (Qs) and no mechanical load (see figure 4).
From equations (6) and (9), we obtain

Q = Qs As ⇒
∫

As

Dz dAs = Qs As ⇒
∫

As

C dAs = Qs As

⇒ C = Qs ⇒ Dz = Qs . (22)
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(a) (b)

(c)

(e)

(d)

Figure 8. Comparison between numerical and analytical results for a bar with exponential variation of elastic properties subjected to
normalized uniform strain (ε0 = 1) in the x-direction, and open-circuit electrical conditions (Q = 0). All quantities are evaluated at the nodal
locations: (a) stress σx x ; (b) strain εzz ; (c) electric field Ez ; (d) displacement uz; (e) voltage φ.

The boundary condition provides (Kim and Paulino 2002)

∫ h

0
σxx dz = 0;

∫ h

0
σxx z dz = 0. (23)

Thus, from (4) and (7), we obtain
{

σxx

0
Qs

}

=
⎡

⎣

cE
11 cE

13 e31

cE
13 cE

33 e33

e31 e33 −εs
33

⎤

⎦

{ Az + B
εzz

−Ez

}

⇒
⎧
⎨

⎩

−cE
11 (Az + B)

−cE
13 (Az + B)

−e31 (Az + B) + Qs

⎫
⎬

⎭
=

⎡

⎣

−1 cE
13 e31

0 cE
33 e33

0 e33 −εs
33

⎤

⎦

×
{

σxx

εzz

−Ez

}

. (24)

The equation system (24) together with equations (23) are
solved for σxx , εzz , and Ez, and then, uz and φ are
obtained. The corresponding homogeneous solution (no
material variation) obtained is

σxx = 0

εzz = (−e33cE
11 + cE

13e31)QS

−cE
33(e31)2+2e31e33cE

13+(cE
13)

2εS
33−cE

33cE
11ε

S
33−cE

11(e33)2

Ez = ((cE
13)

2 − cE
33cE

11)QS

−cE
33(e31)2+2e31e33cE

13+(cE
13)

2εS
33−cE

33cE
11ε

S
33−cE

11(e33)2
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(a) (b)

(c)

(e)

(d)

Figure 9. Comparison between numerical and analytical results for a bar with exponential variation of piezoelectric properties subjected to
normalized uniform strain (ε0 = 1) in the x-direction, and open-circuit electrical conditions (Q = 0). All quantities are evaluated at the nodal
locations: (a) stress σx x ; (b) strain εzz ; (c) electric field Ez ; (d) displacement uz; (e) voltage φ.

uz = (−e33cE
11 + cE

13e31)QSz

−cE
33(e31)2+2e31e33cE

13+(cE
13)

2εS
33−cE

33cE
11ε

S
33−cE

11(e33)2

φ =
− ((cE

13)
2 − cE

33cE
11)QSz

−cE
33(e31)2+2e31e33cE

13+(cE
13)

2εS
33−cE

33cE
11ε

S
33−cE

11(e33)2
.

(25)

The other solutions that consider exponential variation
of either elastic, piezoelectric, or dielectric properties are too
complex to show, and only the Maple program, written to
obtain them, is presented in appendix B.

2.4. Electrical voltage excitation

In the fourth case, the bar is subjected to electrical voltage
excitation (Vs) and no mechanical load (see figure 5).

From equation (9)
∫ h

0
Ez dz = Vs . (26)

The boundary condition provides (Kim and Paulino 2002)
∫ h

0
σxx dz = 0;

∫ h

0
σxx z dz = 0, (27)
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Figure 10. Comparison between numerical and analytical results for a bar with exponential variation of dielectric properties subjected to
normalized uniform strain (ε0 = 1) in the x-direction, and open-circuit electrical conditions (Q = 0). All quantities are evaluated at the nodal
locations: (a) stress σx x ; (b) strain εzz ; (c) electric field Ez ; (d) displacement uz; (e) voltage φ.

Considering equations (4), (6), and (7), we obtain

Dz = C ⇒
{

σxx

0
C

}

=
⎡

⎣

cE
11 cE

13 e31

cE
13 cE

33 e33

e31 e33 −εs
33

⎤

⎦

{ Az + B
εzz

−Ez

}

⇒
⎧
⎨

⎩

−cE
11 (Az + B)

−cE
13 (Az + B)

−e31 (Az + B) + C

⎫
⎬

⎭
=

⎡

⎣

−1 cE
13 e31

0 cE
33 e33

0 e33 −εs
33

⎤

⎦

×
{

σxx

εzz

−Ez

}

. (28)

The equation system (28) together with equations (27) are
solved for σxx , εzz , and Ez , and then, uz and φ are
obtained. The corresponding homogeneous solution (no

material variation) obtained is

σxx = 0

εzz = (−e33cE
11 + cE

13e31)VS

(−cE
11cE

33 + (cE
13)

2)h

Ez = −VS

h

uz = (−e33cE
11 + cE

13e31)VSz

(−cE
11cE

33 + (cE
13)

2)h

φ = VSz

h
.

(29)
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(a) (b)

Figure 11. Comparison between numerical and analytical results for a bar with exponential variation of elastic properties subjected to
normalized uniform strain (ε0 = 1) in the x-direction and short-circuit electrical conditions (�φ = 0). All quantities are evaluated at the
nodal locations: (a) stress σx x ; (b) displacement uz .

Again, the other solutions that consider exponential
variation of either elastic, piezoelectric, or dielectric properties
are too complex to show, and only the Maple program, written
to obtain them, is presented in appendix B.

3. Generalized isoparametric piezoelectric graded
finite element

The FGM piezoelectric actuators designed here operate in
quasi-static or low-frequency environments where inertia
effects can be ignored. The weak formulation of the
equilibrium equations of the piezoelectric medium considering
linear piezoelectricity is mature and it is given by, for example,
(Lerch 1990)
∫

�

ε(u)t cEε(v) d� +
∫

�

(∇φ)t etε(v) d� =
∫

�t

t · v d�

∫

�

ε(u)t e∇ϕ d� −
∫

�

(∇φ)t εS∇ϕ d� =
∫

�d

dϕ d�

for u, φ ∈ V and ∀v,∀ϕ ∈ V,

(30)

where
t = σ · n and d = D · n, (31)

are the mechanical traction and electrical charge, respectively;
n is the normal vector to the surface and

V = {v = vi ei , ϕ with v = 0 on �u

and ϕ = 0 on �φ, i = 1 or 3},
� is the domain of the piezoelectric medium (however, it may
also contain non-piezoelectric materials), v and ϕ are virtual
displacements and virtual electric potential, respectively. The
index i assumes values 1 or 3 because the problem is
considered in the 1–3 plane (or x–z plane). The piezoceramic
is polarized in the local 3 (i.e. z) direction (see figure 2).

From the underlying FE formulation, the matrix
formulation of the balance equations for the piezoelectric
medium is given by (Naillon et al 1983)

[
Kuu Kuφ

Kt
uφ −Kφφ

] {
U
Φ

}

=
{

F
Q

}

�⇒ [K] {U} = {Q} , (32)

where Kuu , Kuφ , and Kφφ denote the stiffness, piezoelectric,
and dielectric matrices, respectively, and F, Q, U, and

Φ are the nodal mechanical force, nodal electrical charge,
nodal displacements, and nodal electric potential vectors,
respectively. However, in the case of FGM piezoceramics
the (macro) properties change continuously inside the
piezoceramic domain, which means that they can be described
by some continuous function of position x in the piezoceramic
domain, that is

cE = cE(x); e = e(x);
εS = εS(x).

(33)

From the mathematical definitions of Kuu , Kuφ , and Kφφ , the
material properties must remain inside the matrix integrals
and be integrated together by using the graded finite element
concept (Kim and Paulino 2002). Properties are continuously
interpolated inside each finite element based on property values
at each finite element node. It is known that any attempt to
approximate the continuous change of material properties by
a stepwise function, where a property value is assigned for
each finite element, may result in less accurate results with
undesirable discontinuities of the stress and strain fields (Kim
and Paulino 2002).

In the generalized isoparametric piezoelectric graded finite
element, the material properties cE , e, and εS (e.g. at each
Gaussian integration point) can be interpolated from the nodal
material properties of the element using isoparametric shape
functions, which are the same for spatial coordinates (x, y):

cE =
m∑

i=1

Ni

(
cE

)

i ; e =
m∑

i=1

Ni (e)i ;

εS =
m∑

i=1

Ni

(
εS

)

i ,

(34)

as illustrated by figure 6, and m is the number of element nodes.
Four-node quadrilaterals (Q4) and eight-node quadrilater-

als (Q8) for FGM piezoelectrics are implemented in this work
using the graded finite element concept. Thus, a fully isopara-
metric formulation is developed in the sense that the same
shape functions are applied to interpolate the unknown dis-
placements and electric potentials, the geometry, and the ma-
terial properties. Therefore, the actual variation of the material
properties may be approximated by the element interpolation
functions (e.g. a certain degree of polynomial functions).
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Figure 12. Comparison between numerical and analytical results for a bar with exponential variation of piezoelectric properties subjected to
normalized uniform strain (ε0 = 1) in the x-direction and short-circuit electrical conditions (�φ = 0). All quantities are evaluated at the
nodal locations: (a) stress σx x ; (b) strain εzz ; (c) electric field Ez ; (d) displacement uz ; (e) voltage φ.

4. Numerical results

The actual choice of properties and boundary value problems
in this section is guided by the analytical solutions derived in
section 2. Here, the results from FE simulations are compared
with the analytical solutions obtained in section 2. The basic
properties described below are adopted, together with the
exponential material gradation used in the previous analytical
formulation. For the remaining parameters the following
values are specified:

ε0 = 1; Q = 10−6 C; VS = 100 V;

h = 5 × 10−3 m; β = 85 m−1; γ = 322 m−1;

c0E
11 = 7.9 × 1010 N m−2; c0E

13 = 5 × 1010 N m−2;

c0E
33 = 7.3 × 1010 N m−2;

e0
33 = 3.2 C m−2; e0

31 = −1.1 C m−2;

α = 106 m−1; ε0s
33/ε0 = 1000.

The σxx stress, Ez electric field, normalized uz

displacements, and φ electric potential voltage values, are
the quantities of interest for comparison purposes. The FE
model used in the simulations with corresponding boundary
conditions is described in figure 7. The length L is equal to
2h = 10−2 m. The domain is discretized with 20×10 elements
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Figure 13. Comparison between numerical and analytical results for a bar with exponential variation of elastic properties subjected to
electrical charge excitation per area (Qs ) and no mechanical load. All quantities are evaluated at the nodal locations: (a) stress σx x ; (b) strain
εzz ; (c) electric field Ez; (d) displacement uz ; (e) voltage φ.

under the plane strain assumption. For all examples, 2 × 2
Gauss quadrature is employed. All the numerical stress values
reported here are nodal values extrapolated directly from the
Gauss points and without any averaging. A simple FE code
was implemented in MATLAB to obtain the results presented
in this section.

4.1. Uniform strain and open-circuit electrical conditions

In the first case, the bar is subjected to normalized uniform
strain (ε0 = 1) due to a displacement equal to L (thus, unit
strain) in the x-direction, and open-circuit electrical conditions
(Q = 0). For an exponential variation of elastic properties,

figures 8(a)–(e) show both analytical and numerical solutions
(Q4 and Q8 elements) for σxx , εzz , Ez, uz , and φ, evaluated at
the nodal points, respectively, versus z. Figures 9 and 10(a)–(e)
present analogous comparison for an exponential variation of
piezoelectric and dielectric properties, respectively. According
to equations (5) and (7), the stress σxx is uniform in the x-
direction and thus, graphs of figures 8–10 are valid for the
entire range of x coordinates (0 � x � L). The deformed
shapes for these three cases are similar, however, when material
gradation is considered either with electrical potential or
charge excitation, then bending occurs, as described below.

We notice that the material gradation affects the σxx , εzz ,
and Ez distributions, which assume constant values in the
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Figure 14. Comparison between numerical and analytical results for a bar with exponential variation of piezoelectric properties subjected to
electrical charge excitation per area (Qs ) and no mechanical load. All quantities are evaluated at the nodal locations: (a) stress σx x ; (b) strain
εzz ; (c) electric field Ez; (d) displacement uz ; (e) voltage φ.

homogeneous case (see equation (14)). The exponential elastic
and piezoelectric property gradations cause the stress σxx to
increase, while the dielectric property gradation causes the
stress σxx to decrease with z-direction. The εzz distribution
increases with z-direction for piezoelectric property gradation
and decreases with z-direction for elastic and dielectric
property gradations. The Ez distribution increases with z-
direction for elastic and piezoelectric property gradations,
and decreases for dielectric property gradation. A highly
nonlinear distribution of σxx , εzz , and Ez is observed for the
piezoelectric property gradation. This nonlinearity seems to be
less pronounced for elastic and dielectric property gradations.
Thus, we conclude that piezoelectric property gradation seems

to have a stronger influence than elastic and dielectric property
gradations in this problem.

The Q4 elements are able to represent the σxx distribution
for elastic property gradation, however, a strong inter-element
discontinuity appears for piezoelectric and dielectric property
gradations. No discontinuity is observed for uz and φ

distributions for all property gradations, and their values are
quite close to the corresponding analytical values. However,
a discontinuity is observed for εzz and Ez distributions in all
cases when using Q4 elements. The Q8 elements are able to
represent σxx , εzz , and Ez distributions for all cases without
discontinuity. All Q8 numerical results are quite close to the
corresponding analytical values.
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Figure 15. Comparison between numerical and analytical results for a bar with exponential variation of dielectric properties subjected to
electrical charge excitation per area (Qs ) and no mechanical load. All quantities are evaluated at the nodal locations: (a) stress σx x ; (b) strain
εzz ; (c) electric field Ez; (d) displacement uz ; (e) voltage φ.

4.2. Uniform strain and short-circuit electrical conditions

In the second case, the bar is subjected to normalized
uniform strain (ε0 = 1) due to a displacement equal to
L (thus, unit strain) in the x-direction and short-circuit
electrical conditions (�φ = 0). Figures 11(a) and (b) show
analytical and numerical (Q4 and Q8 elements) solutions for
σxx and uz , evaluated at the nodal locations, respectively,
versus z, considering an exponential variation of elastic
properties. The electric potential φ and the electric field
Ez are not plotted because constant values equal to zero
inside the piezoceramic are obtained as a result for this
case. The strain εzz is also not plotted because a constant
value equal to the homogeneous case is obtained, as expected

from equation (21). Figures 12(a)–(e) present analogous
comparison for an exponential variation of piezoelectric
properties, however, including the plots of εzz , φ, and Ez (in
addition to σzz and uz). The graphs for an exponential variation
of dielectric properties are not shown because, as mentioned in
section 2, they do not influence the solutions of σxx , uz, φ,
and Ez for this load case, which have the same solutions as in
the homogeneous case (no material variation). The deformed
shapes for these three cases are similar.

The elastic property gradation affects mainly the σxx

distribution, while the piezoelectric property gradation affects
all quantities. A highly nonlinear distribution of σxx , εzz , Ez ,
and φ is observed for the piezoelectric property gradation.
This nonlinearity is less pronounced for the elastic property
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(a) (b)

(c)

Figure 16. Comparison between numerical and analytical results of stress values (σx x ) evaluated at the element centroid for a bar subjected to
electrical charge excitation per area (Qs ) and no mechanical load: (a) exponential variation of elastic properties; (b) exponential variation of
piezoelectric properties; (c) exponential variation of dielectric properties.

gradation. The stress σxx value increases with z-direction
for both property gradations (i.e. elastic and piezoelectric),
as in the previous example. The electric field Ez increases
with z-direction for the piezoelectric property gradation. As
shown in figure 12(e), the φ distribution has a parabolic shape,
indicating high voltages inside the piezoceramic even though
short-circuit electrical conditions are imposed. This situation
is quite different from homogeneous and elastic property
gradation cases, in which the electric potential is null inside the
piezoceramic. Again, we conclude that piezoelectric property
gradation has a stronger influence than the elastic and dielectric
property gradations.

The Q4 elements are able to represent the σxx , εzz , and
Ez distributions for elastic property gradation, however, a
strong inter-element discontinuity appears for the piezoelectric
property gradation. No discontinuity is observed for uz and
φ distributions for all property gradations and their values
are quite close to the corresponding analytical values. The
Q8 elements are able to represent the σxx , εzz , and Ez

distributions for all cases without discontinuity, as in the
previous example. Again, all Q8 numerical results are quite
close to the corresponding analytical values.

4.3. Electrical charge excitation

In the third case, the bar is subjected to electrical charge
excitation per area (Qs) and no mechanical load. Analytical

and numerical solutions for σxx , εzz , Ez , uz , and φ,
evaluated at nodal locations, versus the z-coordinate, are
shown in figures 13(a)–(e), respectively, considering an
exponential variation of elastic properties. Additional
comparisons are presented in figures 14 and 15(a)–(d) for an
exponential variation of piezoelectric and dielectric properties,
respectively.

The comparative σxx stress distribution indicates that
there is bending of the FGM piezoceramic, especially for the
piezoelectric property gradation case. In this instance, the
bending deformation configuration is different from those for
the elastic and dielectric property gradation cases. Compare
figure 14(a) with 13(a) and 15(a), respectively. A nonlinear
distribution of σxx and a slightly nonlinear distribution for uz

with z-direction is observed for all property gradations. A
nonlinear distribution of Ez with z-direction is observed for the
piezoelectric property gradation case. The variation of other
quantities is almost linear with the z-direction. The strain εzz

value increases with z-direction for the piezoelectric property
gradation case and decreases for the elastic and dielectric
property gradation cases. Moreover, the electric field Ez

increases with z-direction for elastic property gradation and
decreases for piezoelectric and dielectric property gradations.

The σxx numerical results calculated using the Q4 element
show strong inter-element discontinuity for all property
gradations. The stress distribution evaluated at the element
centroid also does not match the analytical value for all
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Figure 17. Comparison between numerical and analytical results for a bar with exponential variation of elastic properties subjected to
electrical voltage excitation (Vs ) and no mechanical load. All quantities are evaluated at the nodal locations: (a) stress σx x ; (b) strain εzz ;
(c) electric field Ez; (d) displacement uz ; (e) voltage φ.

property gradations as shown in figures 16(a)–(c). This
stress distribution discontinuity seems to be compatible with
what is reported by Kim and Paulino (2002) when modeling
non-piezoelectric FGMs subjected to a load parallel to the
property gradation direction. By applying an electrical charge
excitation, a similar situation seems to occur. A discontinuity
also occurs for the distribution of εzz and Ez calculated using
Q4 elements. No discontinuity is observed for the distribution
of uz and φ for all property gradations and their values are quite
close to the corresponding analytical values. However, Q8
elements are able to represent the distribution of σxx , εzz , and
Ez for all cases without discontinuity and matching analytical
results, as in the previous examples.

4.4. Electrical voltage excitation

Finally, in the fourth case investigated, the bar is subjected
to electrical voltage excitation (Vs) and no mechanical load.
Analytical and numerical solutions for σxx , εzz , Ez , uz ,
and φ, evaluated at nodal locations, versus the z-coordinate,
are shown in figures 17(a)–(e), respectively, considering
an exponential variation of elastic properties. Additional
comparisons are presented in figures 18 and 19(a)–(e) for an
exponential variation of piezoelectric and dielectric properties,
respectively.

Similarly to the previous example, by analysing the
σxx stress distribution for all cases, we can notice that
bending occurs due to the property gradation. Again, the
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Figure 18. Comparison between numerical and analytical results for a bar with exponential variation of piezoelectric properties subjected to
electrical voltage excitation (Vs ) and no mechanical load. All quantities are evaluated at the nodal locations: (a) stress σx x ; (b) strain εzz ;
(c) displacement uz ; (d) voltage φ.

bending occurs differently for piezoelectric property gradation
in relation to elastic and dielectric property gradations. A
nonlinear distribution of σxx with z-direction is observed for
all property gradations. A nonlinear distribution of uz and Ez

occurs for the piezoelectric property gradation. The variation
of other quantities is almost linear with z-direction. The strain
εzz value decreases with z-direction for piezoelectric property
gradation, and increases for elastic and dielectric property
gradations. The electric field Ez increases with z-direction for
piezoelectric and dielectric property gradations, and decreases
for elastic property gradation.

Again, a strong discontinuity of the σxx numerical results
calculated using the Q4 element can be observed for all
property gradations. The stress distribution evaluated at the
element centroid also does not match the analytical results

for all property gradations, as shown in figures 20(a)–(c).
This behavior is compatible with the behavior observed in the
previous example. Inter-element discontinuities for εzz and Ez

also occurs using Q4 elements. No discontinuity is observed
for the distributions of uz and φ for all property gradations,
and their values are quite close to the corresponding analytical
results. The Q8 elements are able to represent σxx , εzz , and Ez

distributions for all cases without discontinuity and matching
analytical results, as in the previous examples.

5. Conclusions

A finite element method for nonhomogeneous piezoelectric
materials using a generalized isoparametric formulation based
on the graded finite element concept has been investigated.
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Figure 19. Comparison between numerical and analytical results for a bar with exponential variation of dielectric properties subjected to
electrical voltage excitation (Vs ) and no mechanical load. All quantities are evaluated at the nodal locations: (a) stress σx x ; (b) strain (εzz);
(c) electric field Ez; (d) displacement uz ; (e) voltage φ.

Through this approach the properties change smoothly inside
the element providing a continuum material distribution, which
is appropriate to model FGMs. Four-node quadrilaterals (Q4)
and eight-node quadrilaterals (Q8) for piezoelectric FGMs
have been implemented.

An analytical model has been derived based on mechanical
and piezoelectric constitutive equations in order to verify the
accuracy of finite element simulations and to understand the
influence of material property gradation in the behavior of the
piezoelectric FGM. As an overall observation, the exponential
gradation of elastic, piezoelectric, and dielectric properties
causes change in stress and electric potential distribution inside
the piezoceramic domain, which in turn, can influence the
FGM piezoactuator performance.

The behavior of graded piezoelectric elements under vari-
ous loading conditions with respect to the analytical solutions
has been discussed and compared. The examples consider two-
dimensional models with the plane strain assumption. To ad-
dress the influence of material property variation, the elastic,
piezoelectric, and dielectric properties have been graded sepa-
rately, considering exponential variation; and quantities such as
displacement, electric potential, stress, electric field, and elec-
tric displacement have been obtained. Several domains with
continuously nonhomogeneous materials are considered under
fixed grip (open and short-circuit conditions), electrical charge
excitation, and electrical voltage excitation.

The stress (σxx ) and strain (εzz) results show that the
graded Q4 element is not able to represent the fields properly,
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(a) (b)

(c)

Figure 20. Comparison between numerical and analytical results of stress values (σx x ) evaluated at the element centroid for a bar subjected to
electrical voltage excitation (Vs ) and no mechanical load: (a) exponential variation of elastic properties; (b) exponential variation of
piezoelectric properties; (c) exponential variation of dielectric properties.

giving strong discontinuities for some load cases, even though
displacement (uz) and electric potential (φ) are obtained with
reasonable accuracy. However, the Q8 element is able to model
the FGM piezoceramic behavior accurately, giving smooth
and accurate stress, strain, and electric field profiles. One
should be careful when using graded elements with linear
shape functions, such as Q4, as they may lose accuracy for
calculation of stress, strain, and electric field, mainly when
the electrical or mechanical loads are parallel to the material
gradient direction. A similar conclusion was reached by Kim
and Paulino (2002) for non-piezoelectric FGM materials.
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Appendix A. Nomenclature

List of Symbols:
(.)x , (.)y, (.)z x-component, y-component,

z-component
(x, z) coordinate system
A, B, C variables
AS surface electrode area
cE elastic tensor
cE

i j coefficient of elastic tensor cE

c0E
i j coefficient of elastic tensor cE of basic

material
d distributed electrical charge
Di electric displacement component
D electrical displacement vector
e piezoelectric tensor
ei j coefficient of piezoelectric tensor e

e0
i j coefficient of piezoelectric tensor e of

basic material
e(·) exponential function
ei unit vector
E electrical field
Ei electric field component
f (·) function
F nodal mechanical force
h thickness
n normal vector
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Q electrical charge
Qs applied electrical charge
Q nodal electrical charge
{Q} force and electrical charge vector
Kuu stiffness matrix
Kuφ piezoelectric matrix
Kφφ dielectric matrix
[K] system matrix
L length
log(·) log function
tan−1(·) inverse tangent function
m number of element nodes
NI (x) finite element shape function
t traction
u displacement field
ui and vi node i horizontal and vertical

displacement, respectively,
U nodal displacements
{U} displacement and electrical

degrees of freedom vector
v virtual displacement
V space
Vs applied electrical voltage
x position coordinate vector
� difference operator
α coefficient of exponential material

variation of elastic property
β coefficient of exponential material

variation of piezoelectric property
γ coefficient of exponential material

variation of dielectric property
εS

i j coefficient of dielectric tensor εS

ε0S
i j coefficient of dielectric tensor εS of basic

material
εS dielectric tensor
εi j strain component
ε(u) strain
ε0 applied uniform strain
φ electric potential
Φ nodal electric potential vector
�t surface of applied mechanical traction
�d surface of applied electrical voltage
�u surface of prescribed displacements
�φ surface of prescribed electrical

degrees of freedom
ϕ virtual electric potential
σi j stress component
∇sym symmetric part of gradient operator
σ stress tensor
� domain
∇φ gradient of electrical potential
∇ gradient operator

Appendix B. Maple Programs

The following codes were run with Maple 7.0. Only a few basic
Maple operations such as linear system solution, integration
and substitution, are employed, and thus it is likely that,
with relatively minor changes, these scripts would work with

other symbolic computation systems. The naming of variables
follows the notation in the paper fairly closely, and we hope
that the codes are self-explanatory.

B.1. Bar subjected to uniform strain (ε0) in the x-direction
and open-circuit electrical conditions (Q = 0)

B.1.1. Exponential elastic property gradation.
restart;

with(linalg);
c13:=c013*exp(beta*z);
c33:=c033*exp(beta*z)
c11:=c011*exp(beta*z);
AA:=array([[-1,c13,e31],[0,c33,e33],
[0,e33,-eps33]]);

FF:=array([-c11*eps0,
-c13*eps0,-e31*eps0]);

UU:=linsolve(AA,FF);
sigmaxx:=simplify(UU[1]);
epszz:=simplify(UU[2]);
Ez:=-simplify(UU[3]);
uz:=simplify(int(epszz,0..z));
phi:=simplify(int(-Ez,0..z));

B.1.2. Exponential piezoelectric property gradation.
Substitute the third, fourth, and fifth lines of the program

above by

e31:=e031*exp(g*z);
e33:=e033*exp(g*z);

B.1.3. Exponential dielectric property gradation.
Substitute the third, fourth, and fifth lines of the program

above by

eps33:=eps033*exp(alpha*z);

B.2. Bar subjected to uniform strain (ε0) in the x-direction
and short-circuit electrical conditions (�φ = 0)

B.2.1. Exponential elastic property gradation.
restart;

with(linalg);
c13:=c013*exp(beta*z);
c33:=c033*exp(beta*z);
c11:=c011*exp(beta*z);
AA:=array([[-1,c13,e31],[0,c33,e33],
[0,e33,-eps33]]);

FF:=array([-c11*eps0,-c13*eps0,
-e31*eps0+C]);

UU:=linsolve(AA,FF);
Ez:=-UU[3];
eq1:=simplify(int(Ez,z=0..h));
sol:=solve({eq1=0},{C});
sigmaxx:=UU[1];
epszz:=simplify(UU[2]);
epszzn:=simplify(subs(sol,epszz));
Ezn:=simplify(subs(sol,Ez));
sigmaxxn:=simplify(subs(sol,sigmaxx));
uz:=simplify(int(epszzn,0..z));
phi:=simplify(int(-Ezn,0..z));
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B.2.2. Exponential piezoelectric property gradation. Substi-
tute the third, fourth, and fifth lines of the program above by

e31:=e031*exp(g*z);
e33:=e033*exp(g*z);

B.2.3. Exponential dielectric property gradation. Substitute
the third, fourth, and fifth lines of the program above by

eps33:=eps033*exp(alpha*z);

B.3. Bar subjected to electrical charge excitation per area
(Qs) and no mechanical load

B.3.1. Exponential elastic property gradation.
restart;

with(linalg);
c13:=c013*exp(beta*z);
c33:=c033*exp(beta*z);
c11:=c011*exp(beta*z);
AA:=array([[-1,c13,e31],[0,c33,e33],
[0,e33,-eps33]]);

FF:=array([-c11*(A*z+B),-c13*(A*z+B),
-e31*(A*z+B)+QS]);

UU:=linsolve(AA,FF);
sigmaxx:=UU[1];
epszz:=UU[2];
Ez:=-UU[3];
eq1:=int(sigmaxx,z=0..h);
eq2:=int(sigmaxx*z,z=0..h);
sol:=solve({eq1=0,eq2=0},{A,B});
epszzn:=simplify(subs(sol,epszz));
Ezn:=simplify(subs(sol,Ez));
sigmaxxn:=simplify(subs(sol,sigmaxx));
uz:=simplify(int(epszzn,z=0..z));
phi:=simplify(int(-Ezn,z=0..z));

B.3.2. Exponential piezoelectric property gradation. Substi-
tute the third, fourth, and fifth lines of the program above by

e31:=e031*exp(g*z);
e33:=e033*exp(g*z);

B.3.3. Exponential dielectric property gradation. Substitute
the third, fourth, and fifth lines of the program above by

eps33:=eps033*exp(alpha*z);

B.4. Bar subjected to electrical voltage excitation (Vs) and no
mechanical load

B.4.1. Exponential elastic property gradation.
restart;

with(linalg);
c13:=c013*exp(beta*z);
c33:=c033*exp(beta*z);
c11:=c011*exp(beta*z);
AA:=array([[-1,c13,e31],[0,c33,e33],
[0,e33,-eps33]]);

FF:=array([-c11*(A*z+B),-c13*(A*z+B),
-e31*(A*z+B)+C]);

UU:=linsolve(AA,FF);
sigmaxx:=UU[1];
epszz:=UU[2];
Ez:=-UU[3];
eq1:=int(sigmaxx,z=0..h);
eq2:=int(sigmaxx*z,z=0..h);
eq3:=int(-Ez,z=0..h);
sol:=solve({eq1=0,eq2=0,eq3=VS},{A,B,C});
epszzn:=simplify(subs(sol,epszz));
sigmaxxn:=simplify(subs(sol,sigmaxx));
Ezn:=simplify(subs(sol,Ez));
uz:=simplify(int(epszzn,z=0..z));
phi:=simplify(int(-Ezn,z=0..z));

B.4.2. Exponential piezoelectric property gradation. Substi-
tute the third, fourth, and fifth lines of the program above by

e31:=e031*exp(g*z);
e33:=e033*exp(g*z);

B.4.3. Exponential dielectric property gradation. Substitute
the third, fourth, and fifth lines of the program above by

eps33:=eps033*exp(alpha*z);
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