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Abstract
The concept of a functionally graded material (FGM) is useful for
engineering advanced piezoelectric actuators. For instance, it can lead to
locally improved properties, and to increased lifetime of bimorph
piezoelectric actuators. By selectively grading the elastic, piezoelectric,
and/or dielectric properties along the thickness of a piezoceramic, the
resulting gradation of electromechanical properties influences the behavior
and performance of piezoactuators. In this work, topology optimization is
applied to find the optimum gradation and polarization sign variation in
piezoceramic domains in order to improve actuator performance measured in
terms of selected output displacements. A bimorph-type actuator is
emphasized, which is designed by maximizing the output displacement or
output force at selected location(s) (e.g. the tip of the actuator). The
numerical discretization is based on the graded finite element concept such
that a continuum approximation of material distribution, which is appropriate
to model FGMs, is achieved. The present results consider two-dimensional
models with a plane-strain assumption. The material gradation plays an
important role in improving the actuator performance when distributing
piezoelectric (PZT5A) and non-piezoelectric (gold) materials in the design
domain; however, the performance is not improved when distributing two
types of similar piezoelectric material. In both cases, the polarization sign
change did not play a significant role in the results. However, the optimizer
always finds a solution with opposite polarization (as expected).

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Piezoelectric microdevices have a wide range of applications in
precision mechanics, nanopositioning and micromanipulation
apparatus. Functionally graded materials (FGMs) are special
materials that possess continuously graded properties and are
characterized by spatially varying microstructures created by
nonuniform distributions of the reinforcement phase as well as
by interchanging the role of reinforcement and matrix (base)

materials in a continuous manner (Suresh and Mortensen 1988,
Miyamoto et al 1999). The smooth variation of properties
may offer advantages such as increased bonding strength and
local control of the electrical field. Recently, this concept
has been explored in piezoelectric materials to improve the
properties and to increase the lifetime of piezoelectric actuators
(Ballato et al 2001, Zhu and Meng 1995, Qiu et al 2003).
These actuators have attracted significant attention due to
their simplicity, usefulness, and reliability. Usually, elastic,
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Figure 1. Finding the optimum gradation variation in FGM
piezoceramics.

piezoelectric, and dielectric properties are graded along the
thickness of an FGM bimorph piezoactuator (see figure 1).
This gradation can be achieved by stacking piezoelectric
composites of different compositions on top of each other
(Zhu and Meng 1995, Qiu et al 2003, Chen et al 2003).
Each lamina can be composed by a piezoelectric material or
a composite made of both piezoelectric material and non-
piezoelectric material. Due to their relevance, several studies
have been conducted on FGM actuators (Zhu and Meng
1995, Zhifei 2002, Ying and Zhifei 2005, Elka et al 2004,
Shi and Chen 2004, Almajid et al 2001, Taya et al 2003).
Another example of a piezoactuator that can take advantage
of the FGM concept is the rainbow-type actuator (Haertling
1994). Previous studies (Almajid et al 2001, Taya et al 2003)
have shown that the gradation of piezoceramic properties can
have a significant influence on the performance of bimorph
piezoactuators, such as generated output displacements. This
suggests that optimization techniques can be applied to take
advantage of selective property gradation variation in order to
improve FGM piezoactuator performance.

Topology optimization is a powerful structural optimiza-
tion method that seeks an optimal structural topology design by
determining which points of space should be solid and which
points should be void (i.e. no material) inside a given domain
(Sigmund 2000). However, the binary (0–1) design is an ill-
posed problem and a typical way to seek a solution consists of
relaxing the problem by defining a material model that allows
for intermediate (composite) property values (Torquato 2002).
In this sense, the relaxation yields a continuous material de-
sign problem that no longer involves a discernible connectiv-
ity. Typically, it is an improperly formulated (ill-posed) topol-
ogy optimization problem for which no optimum solution ex-
ists (0–1 design). A feasible topology solution can be obtained
by applying penalization coefficients to the material model to
recover the 0–1 design (and thus, a discernible connectivity),
and some gradient control of material distribution, such as a
filter (Bendsøe and Sigmund 2003).

The relaxed problem is strongly related to the FGM design
problem, which essentially seeks a continuous transition of
material properties. The 0–1 design problem needs complexity
control (such as a filter) and does not admit intermediate
values of design variables, while the FGM design problem
does not need complexity control and does admit solutions
with intermediate values of the material field. This approach
is explored in the present paper.

In this work, topology optimization is applied to find the
optimum gradation and polarization sign variation in FGM
piezoceramics to achieve improved piezoactuator performance
measured in terms of output displacements. A bimorph-type
actuator design is considered. Accordingly, the optimization

problem is posed as finding the optimized piezoelectric
property gradation and polarization sign variation (see figure 1)
that maximizes the output displacement or output force at
the tip of a bimorph actuator while minimizing the effects of
movement coupling. The optimization algorithm combines
the finite element method with sequential linear programming
(SLP). The finite element method is based on the graded finite
element concept where the properties change smoothly inside
the element. The material model is implemented based on
both the solid isotropic material with penalization (SIMP)
model (Bendsøe and Sigmund 2003) and the continuum
approximation of material distribution (CAMD) (Matsui and
Terada 2004) where fictitious densities are interpolated at each
finite element. This approach provides a continuum material
distribution, which is appropriate to model FGMs (Kim
and Paulino 2002). The present results consider gradation
between either two different piezoceramic properties or a
non-piezoelectric (such as gold) and a piezoelectric material,
and consider two-dimensional models with a plane-strain
assumption.

This paper is organized as follows. In section 2, a brief
introduction to the numerical modeling of FGM piezoceramics,
considering graded finite elements, is presented. In section 3,
the continuous topology optimization method together with the
adopted material model, and also the problem formulation of
FGM piezoactuator design, are described. In section 4 and
appendix A, the numerical implementation and the sensitivity
analysis for the design problem, respectively, are discussed. In
section 5, a projection technique for material gradation control
is given. In section 6, the design of an optimized FGM bimorph
type piezoactuator is provided. Finally, in section 7, some
conclusions are inferred.

2. Functionally graded piezoelectric finite element
model

The FGM piezoelectric actuators designed here operate in
quasi-static or low-frequency environments where inertia
effects can be ignored. The weak formulation of the
equilibrium equations of the piezoelectric medium considering
linear piezoelectricity is mature and it is given by Lerch (1990)∫

�

ε(u)tcEε(v) d� +
∫

�

(∇φ)tetε(v) d� =
∫

�t

t · v d�

∫
�

ε(u)te∇ϕ d� −
∫

�

(∇φ)tεS∇ϕ d� =
∫

�d

dϕ d�

for u, φ ∈ V and ∀v,∀ϕ ∈ V

(1)

where
t = σ · n; d = D · n (2)

are the mechanical traction and electrical charge, respectively,
n is the normal vector to the surface,

V = {v = vi ei , ϕ with v = 0 on �u

and ϕ = 0 on �φ, i = 1 or 3},
� is the domain of the medium (it may contain piezoelectric
and non-piezoelectric materials), and ∇ is the gradient
operator. The superscript ‘t’ denotes transpose, v and ϕ are
virtual displacements and electric potential, respectively, u is
the displacement field, and φ is the electric potential in the
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Figure 2. General load cases used for calculation of the mean transduction and coupling constraint (cases a1, a2, and c, respectively), and
mean compliance (case b). Here, Ei = −∇φi denotes the electrical field associated with load case i .

piezoelectric medium. The index i assumes a value 1 or 3
because the problem is considered in the 1–3 plane. The
piezoceramic is polarized in the local 3-direction (see figure 2).

The matrix formulation of the equilibrium equations for
the piezoelectric medium is given by Naillon et al (1983)

[
Kuu Kuφ

Kt
uφ −Kφφ

]{
U
Φ

}
=

{
F
Q

}
�⇒ [K]{U} = {Q} (3)

where Kuu , Kuφ , and Kφφ denote the stiffness, piezoelectric,
and dielectric matrices, respectively, and F, Q, U, and
Φ are the nodal mechanical force, nodal electrical charge,
nodal displacements, and nodal electric potential vectors,
respectively. However, in the case of FGM piezoceramics
the properties change continuously inside the piezoceramic
domain, which means that they can be described by some
continuous function of position x in the domain, that is,

cE = cE(x); e = e(x); εS = εS(x). (4)

From the mathematical definitions of Kuu , Kuφ , and Kφφ ,
these material properties must remain inside the matrix
integrals and be integrated together by using the graded finite
element concept (Kim and Paulino 2002) where properties are
continuously interpolated inside each finite element based on
property values at each finite element node. An attempt to
approximate the continuous change of material properties by
a stepwise function where a property value is assigned for
each finite element may result in less accurate results with
undesirable discontinuities of the stress and strain fields (Kim
and Paulino 2002).

When a non-piezoelectric conductor material and a
piezoceramic material are distributed in the piezoceramic
domain, the electrode positions are not known a priori, as
discussed below. Therefore, the electrical excitations are
given by an applied electric field (∇φ = constant), and thus,
equation (1) becomes (Carbonari et al 2007),

∫
�

ε(u)tcEε(v) d� =
∫

�t

t · v d� −
∫

�

(∇φ)tetε(v) d�

∫
�

ε(u)te∇ϕ d� =
∫

�

(∇φ)tεS∇ϕ d� +
∫

�d

dϕ d�

for u, φ ∈ V and ∀v,∀ϕ ∈ V .

(5)

In this case, all electrical degrees of freedom are
prescribed in the FE problem, and equation (3) is rewritten as

[Kuu] {U} = {F} − [
Kuφ

] {Φ} (6)

[
Kt

uφ

] {U} = {Q} + [
Kφφ

] {Φ} (7)

as {Φ} is prescribed. Thus, the mechanical and electrical
problems are decoupled, and only equation (6) needs to be
directly solved. Essentially, the optimization problem is
based on the mechanical problem and, as a consequence, the
dielectric properties do not influence the design.

3. Topology optimization

The basic topology optimization framework used in this work
is based on the formulation described in detail by Carbonari
et al (2007), which is extended here to the FGM piezoelectric
actuators. It is a continuous topology optimization formulation
where a continuum distribution of the design variable inside the
finite element is considered through interpolation by means of
a continuous function. In this case, the design variables related
to the material distribution are defined for each node instead
of each finite element as usual. This formulation, known as
the ‘Continuous Approximation of Material Distribution’ or
CAMD (Matsui and Terada 2004), appears to be robust and
also fully compatible with the FGM concept.

We are interested in a continuous distribution of
piezoelectric materials in the design domain. Additionally, the
polarization sign in the piezoelectric domain must be taken into
account to increase design flexibility. This can be achieved
by defining a design variable ρ1 related to the sign of the
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piezoelectric property e, and thus, to the polarization sign of
the piezoelectric material (Carbonari et al 2007). As shown
later, the inclusion of the polarization sign in the optimization
process significantly improves the design and performance of
the final actuator. The following adopted material models are
based on a simple extension of the traditional SIMP model
(Bendsøe and Sigmund 2003):

CH = ρ1C1 + (1 − ρ1)C2 (8)

eH = (2ρ2 − 1)pe [ρ1e1 + (1 − ρ1)e2] (9)

where ρ1 is a pseudo-density function describing the amount
of material at each point of the domain, which is given by

• ρ1 = 1.0 denotes piezoelectric material type 1;
• ρ1 = 0.0 denotes piezoelectric material type 2.

The design variables can assume different values at
each finite element node. The mixture material parameters
CH and eH are stiffness and piezoelectric tensor properties,
respectively. The tensors Ci and ei are related to the stiffness
and piezoelectric properties for piezoelectric material type i
(i = 1, 2), respectively. These are the properties of basic
materials that are distributed in the piezoceramic domain to
form the FGM piezocomposite.

The design variable ρ2 is related to the polarization sign
in the piezoceramic domain. Its value should tend to zero
or unity, indicating that the polarization is either negative or
positive, respectively. The penalization factor pe is an odd
number that is applied to avoid intermediate values of ρ2

as we are interested only in positive or negative polarization
signs. Thus, the above material model allows the algorithm
not only to optimize the material distribution but also to
choose a suitable polarization (positive or negative) at each
point (see equation (9)). In this work, we consider two signs
for the polarization (negative or positive). For the bimorph-
type actuator, the mechanical interaction between the two
piezoceramic domains with opposite polarizations generate
bending strains. The article by Chen and Roytburd (2007)
discusses the influence of polarization on longitudinal strains
(but not bending).

The dielectric properties are not considered because a
constant electric field is applied to the design domain as
electrical excitation. As explained in section 4, this approach
decouples the electrical and mechanical problems eliminating
the influence of dielectric properties in the optimization
problem. Eventually, the piezoelectric material type 2 can be
substituted by a non-piezoelectric material (elastic material,
such as gold, for example), and in this case e2 = 0.
For a domain discretized into finite elements, equations (8)
and (9) are considered for each element node, and the material
properties inside each finite element are given by a function
ρ1 = ρ1(x), according to the CAMD concept, where x
denotes the Cartesian coordinates. This formulation leads to
a continuous distribution of material in the design domain
which is ideal for the FGMs. Thus, by finding nodal
values of the unknown ρ1 function, we obtain (indirectly) the
optimum material distribution functions, which are described
by equation (4).

The theoretical formulation for piezoelectric actuator
design optimization by topology optimization is briefly

revisited here considering an electrical field excitation. The
goal is to design a device that generates the maximum
output displacement considering a fixed piezoceramic domain.
However, in this work, the piezoceramic domain is not fixed
and the piezoceramic electrodes are not known ‘a priori’.
Thus, to address this problem, an electric field (Ei ) is applied
to the domain as electrical excitation. Essentially, the objective
function is defined in terms of generated output displacements
for a certain applied electric field to the design domain.
The mean transduction (L2(u1, φ1)) concept is related to the
electromechanical conversion represented by the displacement
generated in region �t2 in a specified direction due to an
input electrical excitation in the medium. Thus, the larger
L2(u1, φ1), the larger the displacement generated in this region
in the t2-direction due to an applied electric field to the medium
(in this work, E1 is prescribed). The mean transduction is given
by Silva et al (2000)

L2(u1, φ1) =
∫

�t2

t2u1 d� +
∫

�d2

d2φ1 d� =
∫

�t2

t2u1 d�

(10)
and d2 = 0 in this problem, where d2 is the distributed
electrical charge at the output displacement region associated
with the load case shown in figure 2(a2). Therefore, the
maximization of output displacement generated in a region
�t2 is obtained by maximizing the mean transduction quantity
(L2(u1, φ1)). The general load cases considered for calculation
of mean transduction are shown in cases (a1) and (a2) of
figure 2.

The piezoactuator must resist reaction forces generated
(in region �t2 ) by the body that the piezoactuator is trying
to move or grab. Therefore, the mean compliance must be
minimized to provide enough stiffness (see figure 2(b)). The
mean compliance is calculated by considering the load case
described in case (b) of figure 2, where traction t3 = −t2 is
applied to region �t2 and the electric field is kept null inside
the medium (E3 = 0). Thus, it is given by Silva et al (2000)

L3(u3, φ3) =
∫

�t2

t3u3 d�. (11)

The displacement coupling constraint is obtained by
minimizing the absolute value of the corresponding mean
transduction related to the undesired generated displacement.
This minimizes an undesired displacement generated when an
electric field is applied. Therefore, the mean transduction
L4(u1, φ1) related to the displacement normal to the desired
displacement at �t2 must be minimized (see figure 2(c)), and
it is calculated by using equation (10), however, considering a
traction t4, normal to t2, on region �t2 (Carbonari et al 2005),
as described in case (c) of figure 2.

To combine the mean transduction, mean compliance
maximization, and coupling constraint minimization, a multi-
objective function is constructed to find an appropriate optimal
solution that can incorporate all design requirements. Thus, the
following multi-objective function is proposed:

F (ρ1, ρ2) = w ∗ ln [L2(u1, φ1)]

− 1
2 (1 − w) ln

[
L3(u3, φ3)

2 + βL4(u1, φ1)
2
]

(12)

where w and β are weight coefficients (0 � w � 1,
β > 0). The value of the coefficient w allows control
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of the contributions of mean transduction (equation (10)) in
relation to mean compliance (equation (11)), and displacement
coupling constraint function in the design. The value of the
β coefficient allows control of the contribution of coupling
constraint function. The final general optimization problem is
defined as

Maximize: F(ρ1, ρ2)

ρ1(x), ρ2(x)

subject to: t3 = −t2 (�t3 = �t2)

t4 · t2 = 0 (�t4 = �t2)

a(u1, v1) + b(φ1, v1) = Lt (t1, v1)

b(ϕ1, u1) − c(φ1, ϕ1) = Ld(d1, ϕ1)

for u1, φ1 ∈ Va and ∀v1,∀ϕ1 ∈ Va

a(u2, v2) + b(φ2, v2) = Lt (t2, v2)

b(ϕ2, u2) − c(φ2, ϕ2) = 0
for u2, φ2 ∈ Vb and ∀v2,∀ϕ2 ∈ Vb

a(u3, v3) + b(φ3, v3) = Lt (t3, v3)

b(ϕ3, u3) − c(φ3, ϕ3) = Ld(d3, ϕ3)

for u3, φ3 ∈ Vc and ∀v3,∀ϕ3 ∈ Vc

a(u4, v4) + b(φ4, v4) = Lt (t4, v4)

b(ϕ4, u4) − c(φ4, ϕ4) = 0
for u4, φ4 ∈ Vb and ∀v4,∀ϕ4 ∈ Vb

0 � ρ1(x) � 1
0 � ρ2(x) � 1
�(ρ1) = ∫

S ρ1 dS − �1 � 0

(13)

where

a(u, v) =
∫

�

ε(u)tcEε(v) d�

(φ, v) =
∫

�

(∇φ)t etε(v) d�

c(φ, ϕ) =
∫

�

(∇φ)t εS∇ϕ d�

Lt (t, v) =
∫

�t

t · v d�

Ld (d, ϕ) =
∫

�d

dϕ d�

(14)

and

Va = {v = vi ei , ϕ with v = 0 on �u and

∇ϕ = ∇ϕS in S, i = 1 or 3}
Vb = {v = vi ei , ϕ with v = 0 on �u, i = 1 or 3}
Vc = {v = vi ei , ϕ with v = 0 on �u, and

∇ϕ = 0 in S, i = 1 or 3}.
Here S denotes the design domain, � denotes the volume

of piezoceramic type 1 material in the design domain, and �1

denotes the upper-bound volume constraint defined to limit the
maximum amount of material type 1. The other constraints
are equilibrium equations for the piezoelectric medium (see
section 2) considering different load cases. These equations
are solved separately from the optimization problem. They
are stated in the problem to indicate that, whatever topology is
obtained, it must satisfy the equilibrium equations. The present
notation follows closely the one by Bendsøe and Kikuchi
(1988).

4. Numerical implementation

The continuum distribution of design variable ρ1(x) is given by
the function (Matsui and Terada 2004, Rahmatalla and Swan
2004):

ρ1(x) =
nd∑

I=1

ρ1I NI (x) (15)

where ρ1I is a nodal design variable, NI is the finite element
shape function that must be selected to provide non-negative
values of the design variables, and nd is the number of nodes
at each finite element. The design variable ρ1I can assume
different values at each node of the finite element. The
additional design variable ρ2(x) is assumed to be uniform
inside each finite element, and, in the discretized form,
becomes the design variable ρ2e.

Due to the definition of equation (15), the material
property functions (equations (8) and (9)) also have a
continuum distribution inside the design domain. Thus,
considering the mathematical definitions of the stiffness and
piezoelectric matrices of equation (3), the material properties
must remain inside the integrals and be integrated together by
means of the graded finite element concept (Kim and Paulino
2002).

By means of the FE matrix formulation of equilibrium
(see equation (3)), the mean transduction (see equation (10))
and the mean compliance (see equation (11)) can be calculated
numerically using the following expressions (Silva et al 2000):

L2(U1,Φ1) = {U1}t{F2} + {Φ1}t{Q2} = {U1}t{F2}
= {U1}t[Kuφ]{Φ2} − {Φ1}t[Kφφ]{Φ2} (16)

L3(U3,Φ3) = {U3}t{F3} + {Φ3}t{Q3} = {U3}t{F3}
= {U3}t[Kuu]{U3} + {U3}t[Kt

uφ]{Φ3}. (17)

Notice that {Φ1}t{Q2} = 0 (because {Q2} = 0) and
{Φ3}t{Q3} = 0 (because {Φ3} = 0). The expression for
L4(U1,Φ1) is equal to equation (16) by substituting {F2} by
{F4} and {Q2} by {Q4}. The finite element equilibrium, equa-
tion (3), is solved considering four-node isoparametric finite
elements under plane-strain assumptions.

A relevant problem to be solved is how to define the
piezoceramic electrodes. In previous design optimization
problems for piezoelectric actuators (Silva et al 2000,
Carbonari et al 2005), the piezoceramic domain remains fixed
and only the coupling structural domain (elastic material) is
changed. Thus, the position of electrodes is known. However,
if non-piezoelectric (such as gold) and piezoelectric material
are distributed in the design domain the position of the
piezoceramic electrodes cannot be defined ‘a priori’ because
the piezoceramic location is not known in the design domain.
To circumvent this problem, we consider the electrical problem
independently for each finite element by defining a pair of
electrodes at each finite element. Thus, each finite element has
its own electrical degrees of freedom, as illustrated by figure 3,
in which ui and vi denote the node i horizontal and vertical
displacements, respectively, and φi j denotes the j th potential
at the i th node (Carbonari et al 2007).

As illustrated by figure 3, each finite element has four
electrical degrees of freedom given by [φa, φb, φc, φd] (nodes
are ordered counterclockwise starting from the upper right
corner of each finite element) considering that one of the
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Figure 3. Finite elements with their corresponding electrical degrees
of freedom. Here, ui and vi denote the node i horizontal and vertical
displacement, respectively, and φi j denotes the j th potential at the i th
node.

electrodes is grounded. Electrical voltage φ0 is applied to
the two upper nodes, and thus, the four electrical degrees
of freedom are specified at each finite element as follows
([φ0, φ0, 0, 0]). This is equivalent to applying a constant
electrical field along the 3-direction in the design domain (see
figure 3).

The discretized form of the final optimization problem is
stated as

Maximize: F(ρ1I, ρ2e)

ρ1I, ρ2e

subject to {F3} = −{F2} (�t3 = �t2)

{F4}t{F2} = 0 (�t4 = �t2)

[K1]{U1} = {Q1} [K2]{U2} = {Q2}
[K3]{U3} = {Q3} [K2]{U4} = {Q4}
0 � ρ1I � 1 I = 1 . . . Ndes

0 � ρ2e � 1 e = 1 . . . NEL∑Ndes
i=1 ρ1IVI − �1 � 0

(18)

where VI denotes the volume associated with each finite
element node, which is equal to the finite element volume.
The parameter Ndes denotes the number of nodes in the design

Figure 5. Flow chart of optimization procedure (LP means linear
programming).

domain, which is equal to the number of design variables in this
work, and NEL is the number of elements in the piezoceramic
design domain. The matrices [K1] and [K3] are reduced forms
of the matrix [K2] considering non-zero and zero prescribed
voltage degrees of freedom in the domain, respectively. The
initial domain is discretized by finite elements and the design
variables are the values of ρ1I and ρ2e defined at each node or
at each finite element, respectively. The boundary conditions
for the piezoceramic domain for load cases (a1), (a2), (b), and
(c) of figure 2 are shown in figure 4.

A flow chart of the optimization algorithm describing
the steps involved is shown in figure 5. The software
was implemented using the C language. Mathematical
programming using Sequential Linear Programming (SLP) is
applied to solve the optimization problem, which is appropriate
when there are a large number of design variables, and
different objective functions and constraints (Vanderplaatz

(a1) (a2)

(b) (c)

Figure 4. General electrical boundary conditions for the design domain: (a1) and (a2) mean transduction; (b) mean compliance; (c) coupling
constraint function.
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Figure 6. Projection technique adapted to the CAMD concept.
Notice that the projection cone is centered at a nodal point.

1984, Hanson and Hiebert 1981). The linearization of the
problem at each iteration requires the sensitivities (gradients)
of the multi-objective function and constraints. These
sensitivities depend on gradients of mean transduction and
mean compliance functions in relation to ρ1I and ρ2e (derived
in appendix A).

Suitable moving limits are introduced to assure that the
design variables do not change by more than 5–15% between
consecutive iterations. A new set of design variables ρ1I

and ρ2e is obtained after each iteration, and the optimization
continues until convergence is achieved for the objective
function. The value of the penalization coefficient pe is set
equal to 1 (Kögl and Silva 2005) (see equation (9)).

5. Projection of material distribution

The CAMD approach ensures a continuous material distribu-
tion across elements. However, it does not provide a general
control of the gradient of material distribution. Topology op-
timization filters available in the literature (Bendsøe and Sig-
mund 2003) to control material distribution allow only an im-
plicit control of the material gradation. Thus, in this work, we
introduce a new layer of design variables and apply projection
functions (Guest et al 2004) on top of the CAMD to have an
explicit control of the material gradation. This projection tech-
nique is applied only to design variable ρ1, which is associated
to the control of material gradation.

Let yn denote all design variables associated with nodes,
and ρ1n the values of material density at the nodes. Assume
that the required change of material density must occur over
a minimum length scale rmin. By means of the projection
function ( f ), ρ1n can be obtained from yn as follows (assuming
that four-node element is used):

ρ1n = f (yn), (19)

where f is the projection function defined as follows:

ρ1i = f (y j) =
∑

j∈Si
y j W ri j∑

j∈Si
W ri j

, (20)

where ri j is the distance between nodes j and i :

ri j = ‖x j − xi‖, (21)

and Si is the set of nodes in the domain under the influence of
node i , which consists of a circle of radius rmin with center at

Figure 7. Bimorph design domain.

Figure 8. Bimorph design domain divided into horizontal layers.
Design variables ρ1I and ρ2e are defined for each interfacial layer and
each layer, respectively.

node i . The weight function W (see equation (20)) is defined
as follows:

W (ri j ) =
⎧⎨
⎩

rmin − ri j

rmin
if x j ∈ Si

0 otherwise.
(22)

Figure 6 illustrates the idea of the projection technique. As
a consequence, the topology optimization problem definition
must be revised accordingly.

6. FGM bimorph-type piezoactuators

The design of FGM bimorph-type piezoactuators is presented
to illustrate the proposed method. A bimorph actuator is
made of plates (or shells) composed by at least two layers of
piezoelectric material, usually with opposite polarization. It
may also contain layers of non-piezoelectric materials. An
FGM bimorph has graded piezoceramics in the lower and
upper layers. Here we use the name bimorph associated with
the fact that we have two domains with opposite polarization.

The idea is to simultaneously distribute two types of
piezoelectric material or a non-piezoelectric (in this case, gold)
and a piezoelectric material. The design domain (for all results)
is shown in figure 7. The adopted discretization consists of
10 500 finite elements (a rectangle discretized by a 500 ×
21 mesh). The bimorph is essentially a piezoelectric cantilever-
type actuator. The design domain is divided into 21 horizontal
layers and design variables ρ1I and ρ2e are considered for
each interfacial layer and each layer, respectively, as described
in figure 8. Thus, there are 22 design variables ρ1I and 21
design variables ρ2e. The mechanical and electrical boundary
conditions are shown in figure 7. Notice that the electrical
field is applied to the entire design domain; however, the
location of the actual piezoceramic region is not known ‘a
priori’. Figure 9 illustrates three possible situations that may
occur during the optimization regarding the distribution of
piezoceramic material (middle, outer or inner layers) in the
symmetric part of design domain. In this case, the gold
region will not be influenced by the electric field because the
piezoelectric effect is null (see equation (6)).
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(a) (b) (c)

Figure 9. Possible situations that may occur in the symmetric part of the design domain during the optimization: (a) piezoceramic region in
the middle layers; (b) piezoceramic region in the outer layers; (c) piezoceramic regions in the inner layers.

Table 1. Material properties of piezoceramic PZT5A (Ikeda 1996).

cE
11 (1010 N m−2) 12.1 e13 (C m−2) −5.4

cE
12 (1010 N m−2) 7.54 e33 (C m−2) 15.8

cE
13 (1010 N m−2) 7.52 e15 (C m−2) 12.3

cE
33 (1010 N m−2) 11.1

cE
44 (1010 N m−2) 2.30

cE
66 (1010 N m−2) 2.10

Table 1 presents the piezoelectric material properties
used in the simulations (for all examples). The Young’s
modulus and Poisson’s ratio of gold are equal to 83 GPa
and 0.44, respectively (Brady et al 1997). Two-dimensional
isoparametric finite elements under plane-strain assumption are
used in the finite element analysis.

For all examples, unless otherwise specified, the electric
field applied to the design domain is equal to 420 V mm−1

(see figure 7). The objective consists of maximizing the output
displacement at point A (see figure 7). The displacement
coupling constraint is not activated, and thus the coefficient
β is equal to zero in all cases. The initial value for design
variables (ρ1I) is equal to 0.45 in all cases, and ρ2e is equal
to 0.1. Thus, the optimization problem starts in the feasible
domain (all constraints satisfied). The projection technique is
applied only for design variable ρ1I. The results are shown by
plotting the pseudo-density gradation variation along layers.
Through material models described by equations (8) and (9),
the property gradation variation and polarization sign can be
obtained. For the examples of sections 6.1 and 6.2, the material
type 1 is PZT5A (see properties in table 1) and the material
type 2 is gold.

6.1. Influence of property gradation

In the first set of results, only property gradation (associated
with design variable ρ1I) is considered. Thus, the design
variables ρ2e are kept fixed and equal to 0.0 and 1.0 for the
half upper and half lower layers, respectively. A symmetry
constraint is imposed in the middle horizontal axis for the
pseudo-density distribution, otherwise an exactly symmetric
distribution cannot be guaranteed due to the influence of small
differences of sensitivity values in the final optimization result.
The topology optimization results obtained considering the
value of the weight coefficient w (see equation (12)) equal
to 0.2 or 1.0, and �1 equal to 50% or 100%, are shown in
figure 10. The value of rmin is set equal to 0.025 mm, 0.1 mm,
0.125 mm, and 0.15 mm for these results. By setting the value

Table 2. Displacements at point A (420 V mm−1 applied).

Bimorph (piezo/Au) uz (mm) w �1% rmin (mm)

Figure 10(a) 0.338 0.2 50 0.025a

0.341 0.2 50 0.1
0.343 0.2 50 0.125
0.343 0.2 50 0.15

Figure 10(b) 0.404 0.2 100 0.025a

0.419 0.2 100 0.1
0.430 0.2 100 0.125
0.432 0.2 100 0.15

Figure 10(c) 0.483 1.0 50 0.025a

0.466 1.0 50 0.1
0.454 1.0 50 0.125
0.439 1.0 50 0.15

Figure 10(d) 0.711 1.0 100 0.025a–0.15

Figure 12 0.341 0.2 50 0.025a

0.346 0.2 50 0.1

a Projection deactivated.

of rmin equal to 0.025 mm, which is equal to the element length,
the projection technique is deactivated in the design problem.
The optimization finished with the constraint �1 active for all
designs. For the case illustrated by figure 10(c), the associated
convergence curves of objective function, mean compliance,
and mean transduction are shown in figure11. The convergence
curves for the other results of figure 10 are similar.

Table 2 describes vertical displacement (uz) at point A (see
figure 7) considering 420 V mm−1 applied to the piezoceramic
domain for the bimorph designs. The X displacement is not
presented because it is almost zero due to the weak coupling
between horizontal (X ) and vertical (Z ) displacements.

From table 2, low values of w (0.2) correspond to a
stiff design, and the largest displacements are obtained for w

equal to 1.0 (see figure10(c)), as expected. For w equal to
0.2 and �1 equal to 50%, the method provides an interesting
graded solution with the lowest uz displacement. By increasing
the piezoceramic volume constraint (�1 equal to 100%) the
method does not use all the piezoceramic, and allocates some
gold in the upper and lower layers. For w equal to 1 and
�1 equal to 50%, we note that the method tries to keep
the piezoceramic material in the upper and lower layers and
gold in the center. This material distribution will depend on
the stiffness ratio between the piezoceramic and gold. The
projection technique (rmin > 0.025 mm) leads to a smooth
material gradation; however, for the result from figure 10(a)
regions with pure piezoceramic or pure gold are not obtained.
In addition, the projection technique seems to contribute to
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Figure 10. Optimal ρ1 values along layer numbers obtained by distributing piezoelectric and gold materials in the domain. A symmetry
constraint is imposed only for the cases without projection, i.e. rmin = 0.025 mm (which is equal to the element length): (a) w = 0.2 and
�1 = 50%; (b) w = 0.2 and �1 = 100%; (c) w = 1.0 and �1 = 50%; (d) w = 1.0 and �1 = 100%.

smooth the convergence curve, as shown in figure 11(b). The
increase of the gradation length scale (rmin) contributes to
increase the output displacement for results from figures 10(a)
and (b), and to decrease it for the result from figure 10(c).
For w equal to 1 and �1 equal to 100% (see figure 10(d)),
we obtain homogeneous piezoceramic as the solution, and the
largest output displacement (see table 2).

When the projection technique is not used, the
optimization algorithm tends to obtain a material gradation
with high property gradients, almost close to a 0–1 design,
even though no penalization is applied. These sharp
material gradations are difficult to manufacture. Thus, the
implementation of a property gradient control is important for
FGM manufacturing purposes.

6.2. Influence of property gradation and polarization sign

For the next set of results, both the property gradation variation
(ρ1I) and polarization sign change (ρ2e) are considered. No
symmetry constraint is imposed as the idea in this example
is not to limit the optimality range of the result, but to seek
an upper bound for the output displacement. The topology
optimization results are obtained considering the same values
of w, �1, and rmin parameters as in the previous example;
however, only the results for w = 0.2 and �1 equal to 50%
are shown in figure 12. Because the convergence curves are
similar to the previous results, they are not shown.

For all the results, a change in the polarization sign
is obtained from lower to upper layers (see for example,
figure 12), recovering the usual pattern of bimorph achieved
previously (see figure 10) showing that the change of

polarization sign is not as significant as material gradation. A
material gradation pattern similar to the previous results (see
figure 10) is obtained for all results. We notice that, by using
the projection technique (rmin > 0.025 mm), a symmetric
result is obtained, even though a symmetry constraint is not
explicitly imposed. This does not happen when the projection
technique is deactivated (rmin = 0.025 mm). These results
also show that a symmetric property gradation seems to be the
optimum solution.

6.3. Influence of property gradation considering piezoelectric
materials only

For the next examples, the material type 1 is piezoelectric
material (see properties in table 1) and the material type 2 is
also a piezoelectric material whose property values are given
by Almajid et al (2001):

C1 = 4.375 ∗ CTab1; e1 = 2.5 ∗ eTab1;
C2 = 0.1 ∗ CTab1; e2 = 0.6 ∗ eTab1.

(23)

Similarly to the previous example (see section 6.1), initially
only the property gradation is considered; that is, only design
variable ρ1I. Thus, the design variables ρ2e are kept fixed
and equal to 0.0 and 1.0 for the half upper and half lower
layers, respectively. A symmetry constraint is imposed in the
middle horizontal axis for the pseudo-density distribution. The
topology optimization results obtained considering the value of
w coefficient (see equation (12)) equal to 0.5 or 1.0, and �1

equal to 50% or 100%, respectively, are shown in figure 13.
The value of rmin is set equal to 0.025 mm and 0.1 mm for these
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(a) (b)

(c)

Figure 11. Convergence curves associated to figure 10(c) (w = 1.0 and �1 = 50%): (a) objective function; (b) mean compliance; (c) mean
transduction.

r
min

 = 0.025

r
min

 = 0.100

(a) (b)

Figure 12. Optimal ρ1 and ρ2 values along layer numbers obtained by distributing piezoelectric and gold materials in the piezoceramic
domain: w = 0.2 and �1 = 50%. No symmetry constraint is imposed and projection is applied to ρ1 only: (a) ρ1 values; (b) ρ2 values.

results. The results for w equal to 1.0, and �1 equal to 50%
or 100% are identical. Table 3 gives the vertical displacement
(uz) at point A (see figure 7) considering 420 V mm−1 applied
to the piezoceramic domain for the resulting bimorph designs.
The X displacement is not presented as it is almost zero, as
explained before. For the case illustrated by figure 13(a),
the associated convergence curves of objective function, mean
compliance, and mean transduction are shown in figures 14(a)–
(c), respectively. The convergence curves for the other results
of figure 13 are similar.

For w equal to 0.5 and �1 equal to 50% (figure 13 (a)),
the optimization algorithm places piezoceramic material type 1

(stiff material) in the upper and lower layers, and piezoceramic
material type 2 (soft material) in the center layers of the design
domain. Again, the projection technique (rmin > 0.025 mm)
leads to a smooth material gradation profile.

However, when considering �1 equal to 100% a
homogeneous material made of only piezoceramic type 1 is
obtained (see figure 13(b)). This happens because w equal
to 0.5 implies stiffer designs (see displacements in table 3),
and piezoceramic material type 1 is stiffer than piezoceramic
material type 2. For results considering w equal to 1.0, a
homogeneous material is also obtained, however, made only
of piezoceramic type 2. The parameter w equal to 1.0 implies
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(a) (b)

(c)

Figure 13. Optimal ρ1 values along layer numbers obtained by distributing piezoelectric materials type 1 and 2 in the piezoceramic domain.
A symmetry constraint is imposed: (a) w = 0.5 and �1 = 50%; (b) w = 0.5 and �1 = 100%; (c) w = 1.0 and �1 = 50% or 100%.

(a) (b)

(c)

Figure 14. Convergence curves associated to figure 13 (a) considering piezoelectric materials type 1 and type 2 (w = 0.5 and �1 = 50%):
(a) objective function; (b) mean compliance; (c) mean transduction.
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(a) (b)

(c)

Figure 15. Optimal ρ1 values along layer numbers obtained by distributing piezoelectric materials type 1 and 2 in the piezoceramic domain.
No symmetry constraint is imposed: (a) w = 0.5 and �1 = 50%; (b) w = 0.5 and �1 = 100%; (c) w = 1.0 and �1 = 50% or 100%.

Table 3. Displacements at point A (420 V mm−1 applied).

Bimorph (Piezo/Au) uz (mm) w �1% rmin (mm)

Figure 13(a) 0.392 0.5 50 0.025a

0.385 0.5 50 0.1
Figure 13(b) 0.407 0.5 100 0.025a or 0.1
Figure 13(c) 4.19 1.0 50 or 100 0.025a or 0.1

Figure 15(a) 0.389 0.5 50 0.025a

0.382 0.5 50 0.1
Figure 15(b) 0.385 0.5 100 0.025a

0.388 0.5 100 0.1
Figure 15(c) 3.57 1.0 50 or 100 0.025a

3.76 1.0 50 or 100 0.1

a Projection deactivated.

more flexible designs (see displacement in table 3). Thus,
in this case, the optimization chooses piezoceramic material
type 2, and 10 times larger displacement is obtained. Recall
that the volume constraint is defined for material type 1 only.

6.4. Influence of property gradation and polarization sign
considering piezoelectric materials only

For the next set of results, the property gradation variation
(ρ1I) and polarization sign change (ρ2e) are considered. No
symmetry constraint is imposed because the idea again is
not to limit the optimality range of the result, but to seek
an upper bound for the output displacement. The topology
optimization results are obtained considering the value of the
weight coefficient w (see equation (12)) equal to 0.5 or 1.0, �1

equal to 50% or 100%, and rmin equal to 0.025 mm (projection
deactivated) and 0.1 mm, as illustrated in figures 15 and 16.
Again, the results for w equal to 1.0, and �1 equal to 50%

or 100% are identical. Table 3 gives the vertical displacement
(uz) at point A (see figure 7) for the bimorph designs. The
convergence curves are similar to the previous results; thus,
they are not shown.

For all the results obtained, a change in the polarization
sign is obtained from lower to upper layers recovering the usual
pattern defined in the previous results (figure 13); however,
the change of polarization sign is slightly shifted from the
middle line (figure 16). This may be due to the fact that the
projection technique is not considered for design variable ρ2e.
This also shows that change of polarization sign does not play
a significant role in this problem. For w equal to 0.5, �1 equal
to 50%, and rmin equal to 0.1 mm (figure 15(a)), a symmetric
material gradation pattern equal to the previous result of
figure 13(a) is obtained; that is, the optimization algorithm
places the symmetrically piezoceramic material type 1 in the
upper and lower layers of the design domain. When the
projection technique is not active (rmin = 0.025 mm), the
material gradation is slightly asymmetric (see figure 15(a)) and
the displacement value is larger, as in the previous example.
By increasing the volume constraint (�1 equal to 100%), the
result without the projection technique suggests a material
variation; however, when the projection technique is applied,
a homogeneous piezoceramic material type 1 is obtained (see
figure 15(b)) like in the previous example (see figure 13(b)).
As expected, these are stiffer designs (see displacements in
table 3).

For w equal to 1.0 a homogeneous material is obtained
(no material gradation) for soft material (type 2), generating
a displacement 10 times larger than displacement for results
considering w equal to 0.5 (see figures 15(a) and (b)).
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(a) (b)

(c)

Figure 16. Optimal ρ2 values along layer numbers obtained by distributing piezoelectric materials type 1 and 2 in the piezoceramic domain.
No symmetry constraint is imposed: (a) w = 0.5 and �1 = 50%; (b) w = 0.5 and �1 = 100%; (c) w = 1.0 and �1 = 50% or 100%.
Although rmin values are provided, projection is applied to ρ1 only (and not ρ2).

Comparing the results from figures 13(b) (with symmetry
constraint) and 15(b) (without symmetry constraint), one
notices that both generate output displacements of the same
order; however, the one from figure 15(b) is smaller than the
one from figure 13(b). Moreover, in the case of figure 15,
a symmetric polarization sign distribution is not obtained,
suggesting that the optimization method got trapped in a local
minimum. The results from figures 13(c) and 15(c) are both
homogeneous and generate the largest displacement values.
The small difference of displacement values is due (again) to
the fact that the change of polarization sign is slightly shifted
from the middle line in figure 16(c) (also see figure 7) because
the projection technique is not applied for design variable ρ2e.

Thus, in this example, where two types of piezoelectric
material are distributed, it seems that the material gradation
does not play an important role as it occurs when piezoelectric
material and gold are distributed. The inclusion of the
polarization sign change (ρ2e) in this and previous examples
seems to guide the optimization to local minima solutions that
have worse performance than when only material gradation is
considered in the optimization. The projection technique helps
to avoid local minima results, such as asymmetric results.

7. Conclusions

Topology optimization designs of FGM bimorph actuators
are investigated with special emphasis on material gradation
and polarization sign change in actuator performance. The

topology optimization formulation allows the search for an
optimal gradation of piezoelectric material properties and
polarization sign in the design of FGM piezoelectric actuators
to enhance their performance in terms of output displacement.
The optimization problem allows the simultaneous distribution
of either two piezoelectric materials or a non-piezoelectric
(such as gold) and a piezoelectric material in the design
domain, as well as the polarization sign. The adopted material
model is based on the density method and it interpolates
fictitious densities at each finite element. The interpolation
is based on pseudo-densities defined as design variables
for each finite element node, which provides a continuum
material distribution in the domain. A projection technique
is implemented that allows explicit control of the material
gradation, which is very important when designing FGM
piezoelectric actuators and structures.

For the specific examples considered, the material grada-
tion plays an important role in increasing actuator performance
when distributing piezoelectric and non-piezoelectric material
(such as gold) in the design domain; however, the performance
is not improved when distributing two types of piezoelectric
material. In both cases, the inclusion of the polarization sign
change as a design variable in the optimization problem does
not play a significant role in the design problem, recovering
the usual pattern of polarization defined for bimorph-type ac-
tuators, which corresponds to a change in the polarization sign
from lower to upper layers. The projection technique helps to
avoid local minima results, and asymmetric results. This fea-
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ture is important for manufacturing purposes and can lead to
substantially improved design.

As future work, other FGM piezoactuators can be
optimized using the present approach, and different design
criteria can be considered. For instance, in this work, the
position of the electrodes is not defined in the domain when
distributing piezoceramic and gold materials. To circumvent
this problem, we have applied a constant electric field as
electrical excitation to obtain the design. To this effect, we
have constrained all electrical degrees of freedom and, as a
consequence, the mechanical and electrical problems become
decoupled. Thus, the dielectric properties do not influence
the design, which is a limitation of the present approach. To
address this problem, a potential alternative procedure consists
of applying electrical voltage and allowing for movement of
the electrode boundaries. In this case, the influence of the
dielectric properties in the design problem are explicitly taken
into account. Finally, computational simulation and design
should be done in conjunction with manufacturing of the
devices. The practical use of the present approach has the
potential to broaden the range of application of functionally
graded piezoelectric actuators in the field of smart structures.
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Appendix A. Sensitivity analysis using the adjoint
method

The gradient of the function F relative to the design variable
AI (either ρ1I or ρ2e) is obtained by differentiating equation
(12), which results in a expression that depends on the
sensitivities of mean transduction, mean compliance, and
coupling constraint function. The sensitivity of the mean
transduction considering electrical field excitation is obtained
by differentiating equation (16) (Carbonari et al 2005):

∂L2(U1,
1)

∂ AI
= {F2}t

{
∂U1

∂ AI

}
. (A.1)

Notice that ∂F2/∂ AI = 0 as it does not depend on design
variables because F2 is a unit dummy load. The sensitivity
∂U1/∂ AI is obtained by differentiating equation (6), resulting
in the following expression:

[Kuu]{U1} = {F1} − [Kuφ]{Φ1}
⇒ [Kuu]∂{U1}

∂ AI
= −∂[Kuφ]

∂ AI
{Φ1} − ∂[Kuu]

∂ AI
{U1}. (A.2)

In addition, notice that ∂F1/∂ AI = 0 as it does not depend
on design variables because F1 is an applied load. Moreover,
∂Φ1/∂ AI = 0 because all electrical voltage degrees of
freedom are prescribed. Thus,

∂L2(U1,
1)

∂ AI
= −{F2}t[Kuu]−1

×
{

∂[Kuφ]
∂ AI

{Φ1} + ∂[Kuu]
∂ AI

{U1}
}

= − {Λ}t
2

{
∂[Kuφ]
∂ AI

{Φ1} + ∂[Kuu ]
∂ AI

{U1}
}

; (A.3)

and [Kuu]{Λ}2 = {F2}. (A.4)

Therefore, the sensitivity can be obtained by solving the
adjoint problem (see equation (A.4)) and substituting {Λ}2

into equation (A.3). Actually, the same expressions are valid
for calculating the sensitivity of L4(U1,
1) by replacing the
subscript 2 by 4.

Similarly, the sensitivity of the mean compliance is given
by Silva et al (2000):

∂L3(U3,
3)

∂ AI
= −{Λ}t

3

{
∂[Kuφ ]
∂ AI

{Φ3} + ∂[Kuu]
∂ AI

{U3}
}

(A.5)

and [Kuu]{Λ}3 = {F3}. (A.6)

By means of equation (15), one obtains the derivatives
∂[Kuφ]/∂ρ1I and ∂[Kuu ]/∂ρ1I, which are given by

[
∂Kuu

∂ρ1I

]
=

NEL∑
e=1

∫
�e

Bt
u

∂CH

∂ρ

∂ρ

∂ρ1I
Bu d�e

=
n f∑

e=1

∫
�e

Bt
u

∂CH

∂ρ
NI (x)Bu d�e; (A.7)

[
∂Kuφ

∂ρ1I

]
=

n f∑
e=1

∫
�e

Bt
u

∂eH

∂ρ
NI (x)Bφ d�e (A.8)

where the standard finite element definitions of Kuu and Kuφ

are used. The parameter NEL is the total number of finite
elements, Bu is a function of the derivative of shape functions
defined in the literature (Cook et al 1989), n f is the number
of elements connected to node I (that is, the last summation is
performed considering only these elements), and ∂CH /∂ρ1 and
∂eH /∂ρ1 can be easily obtained by differentiating equations (8)
and (9), respectively. The derivatives ∂[Kuφ]/∂ρ2e and
∂[Kuu]/∂ρ2e are

[
∂Kuu

∂ρ2e

]
= 0 (A.9)

[
∂Kuφ

∂ρ2e

]
=

∫
�e

Bt
u

∂eH

∂ρ2e
Bφ d�e, (A.10)

because only element ‘e’ depends on the design variable ρ2e.
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Appendix B. Nomenclature

List of symbols:
(x, z) coordinate system
AI design variable
Bu, Bφ functions of the derivative of

shape functions
cE elastic tensor
CH elastic tensor for the mixture
C0 elastic tensor of basic material
Ci elastic tensor for material type i
d distributed electrical charge
D electrical displacement vector
e piezoelectric tensor
eH piezoelectric tensor for the mixture
ei piezoelectric tensor for material type i
ei unit vector
Ei electrical field associated with load case i
F nodal mechanical force
f (.) projection function f
F objective function
n normal vector
Q nodal electrical charge
{Q} force and electrical charge vector
Kuu stiffness matrix
Kuφ piezoelectric matrix
Kφφ dielectric matrix
[K] system matrix
L2(u1, φ1) mean transduction
L3(u3, φ3) mean compliance
L4(u1, φ1) coupling constraint function
NI (x) finite element shape function
Ndes number of nodes in the design domain
NEL total number of finite elements
n f number of elements connected to node I
ri j distance between nodes i and j
rmin minimum length
S design domain
t traction
u displacement field
ui and vi node i horizontal and vertical

displacement, respectively
U nodal displacements
{U} displacement and electrical degrees of

freedom vector
v virtual displacement
V space
Va space for load case 1
Vb space for load case 2
Vc space for load case 3
VI finite element volume
x position coordinate vector
yn design variable associated with node n
w general weight coefficient
W weight for projection function
β weight coefficient for coupling

constraint function
εS dielectric tensor
ε(u) strain
φ electric potential

φi j j th potential at the i th node
φa, φb, φc, φd electrical degrees of freedom in the

finite element
φ0 applied electrical voltage
Φ nodal electric potential vector
�u surface of prescribed displacements
�φ surface of prescribed electrical degrees

of freedom
�ti surface of applied mechanical

traction for load case i
�di surface of applied electrical voltage for

load case i
ϕ virtual electric potential
{Λ} auxiliary vector
� volume of design domain
�1 upper-bound volume constraint for

material type 1
ρ1 design variable to describe the type of

piezoelectric material
ρ2 design variable for the polarization (of the

piezoelectric material)
ρ1I nodal design variable related to

material distribution
ρ2e element design variable related to

polarization sign
σ stress tensor
� domain
�e element domain
∇φ gradient of electrical potential
∇ gradient operator
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