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Abstract: The present multiscale investigation employs the initial and total fracture energy through a virtual internal pair-bond �VIPB�
model. The proposed VIPB model is an extension of the traditional virtual internal bond �VIB� model. Two different types of potentials,
a steep short-range potential and a shallow long-range potential, are employed to describe the initial and the total fracture energies,
respectively. The Morse potential function is modified for the virtual bond potential so that it is independent of specific length scales
associated with the lattice geometry. This feature is incorporated in the VIPB model, which uses both fracture energies and cohesive
strength. With respect to the discretization by finite elements, we address the element size dependence in conjunction with the J integral.
Parameters in the VIPB model are evaluated by numerical simulations of a pure tension test in conjunction with measured fracture
parameters. We also validate the VIPB model by predicting load versus crack mouth opening displacement curves for geometrically
similar specimens, and the measured size effect. Finally, we provide an example involving fiber-reinforced concrete, which demonstrates
the advantage of the VIPB model over the usual VIB model.
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Introduction

Interpreting structural behavior such as maximum load-bearing
capacity is a relevant issue for structures containing quasi-brittle
materials, especially concrete, because of their relatively large
fracture process zone. The relatively large fracture process
zone present in concrete results in the strength of a concrete beam
in a laboratory-sized specimen being different from the strength
of a concrete beam in an actual structure. This behavior is typi-
cally associated with the size effect �Bazant and Planas 1998;
Bazant 1999, 2000�. Therefore, in addition to experiments, appro-
priate physical assumptions and numerical techniques are neces-
sary to predict and/or simulate fracture behavior of quasi-brittle
materials.

One available numerical technique to simulate fracture behav-
ior of materials is the cohesive zone model �CZM�, which char-
acterizes the nonlinear fracture process zone ahead of a crack tip.
The concept was used by Barenblatt �1959� and Dugdale �1960�.
Hillerborg et al. �1976� expanded the concept to include concrete
with linearly decreasing softening by combining fracture mechan-
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ics and the finite-element method. Hillerborg et al. �1976� utilized
an equivalent nodal force, which corresponds to the linear
traction–separation relationship. Later, based on the universal ato-
mistic potential �Rose et al. 1981�, Xu and Needleman �1994�
introduced a cohesive surface element �the intrinsic CZM� for
simulating generalized fracture within a finite element setting.
This approach was extended to asphalt concrete by Paulino et al.
�2004� and Song et al. �2006a,b�, and to functionally graded ma-
terial systems by Zhang and Paulino �2005�. Recently, researchers
have adaptively inserted the cohesive surface elements, e.g. the
extrinsic CZM, to simulate crack propagation by using topologi-
cal data structures �Pandolfi and Ortiz 2002; Zhang et al. 2007�.

Another viable technique to characterize fracture behavior is
the virtual internal bond �VIB� model, which integrates the mac-
roscopic view of cohesive surfaces and the atomistic view of
cohesive bonding between discrete particles �Gao and Klein
1998�. Whereas the CZM separates fracture and elastic behaviors
into a cohesive surface element and a bulk element, respectively,
the VIB model represents both elastic and fracture behavior
within the framework of continuum mechanics via the Cauchy–
Born rule �Born 1940; Klein et al. 2001�. Gao and Ji �2003�
implemented the VIB modeling in nanomaterials demonstrating
transition of the fracture mechanism from classical linear elastic
fracture mechanics �LEFM� to homogeneous failure near the the-
oretical strength of solids. Moreover, Thiagarajan et al. �2004�
have investigated dynamic fracture behavior for a brittle material
under impact loading using the VIB model.

In order to characterize the relatively large fracture process
zone in quasi-brittle materials, two different fracture energies, the
initial fracture energy and the total fracture energy, are introduced
by employing the concept of the equivalent elastic crack model
�Bazant and Planas 1998; Shah et al. 1995�. Roesler et al. �2007a�
and Park �2005� have shown that both energies are essential
to characterize concrete fracture behavior. In order to consider
two fracture energies, a virtual internal pair-bond (VIPB) model
is proposed, which accounts for the relatively large fracture

process zone and the size effect for quasi-brittle materials. Addi-
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tionally, a modified Morse potential is utilized so that it is
independent of any lattice parameter. The VIPB model thus char-
acterizes essential macroscopic fracture parameters, i.e., fracture
energies (initial and total) and cohesive strength of the material.

This paper is organized as follows. In the next section, the
traditional VIB model formulation and a modified Morse poten-
tial function are presented for quasi-brittle materials. Then, the
concept of the VIPB model is described in conjunction with two
distinct fracture energies. The writers explain the determination of
material properties including element size dependencies, and ad-
dress verification and validation. Finally, the key findings of the
present work are summarized.

Virtual Internal Bond Model Formulation

The VIB model �Gao and Klein 1998; Klein and Gao 1998� de-
scribes continuum behavior based on the microscopic interactions
between particles within the concept of homogenization, as
shown in Fig. 1. The microscopic behavior is connected to the
macroscopic behavior by the Cauchy–Born rule, which results in
the strain energy function �Tadmor et al. 1996�. The VIB model
represents both elastic and fracture behavior within the frame-
work of continuum mechanics by using the macroscopic strain
energy function. In the following, the VIB model formulation is
reviewed, and a modified Morse bonding potential function,
which represents the microscopic interactions between particles,
is proposed.

Strain Energy Function in the VIB Model

The strain energy function in the VIB model is characterized by
the bonding potential function via the Cauchy–Born rule. The
Cauchy–Born rule is essentially a multiscaling assumption to con-
nect atomistic behavior in the microlength scale with continuum
behavior in the macrolength scale. Under this assumption, con-
tinuum behavior can be described by a single mapping function

Fig. 1. Schematic illustration of the original VIB model
�i.e., deformation gradient F�
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F =
�x

�X
�1�

from the undeformed configuration �Lagrangian coordinates,
X=XI� to the deformed configuration �Eulerian coordinates,
x=xi�. Therefore, the bonding potential U�l� is defined by a de-
formed virtual bond length l along a bond direction �

l = l0
�� · FTF� �2�

where l0=undeformed virtual bond length. Based on the bonding
potential, the strain energy function ��� is represented by the
summation of the bonding potential with a bond density D� over
domain �

� =� U�l�F��D�d� �3�

If the bond direction � is specified by a three-dimensional
spherical coordinate system, the strain energy function �3� is ex-
pressed by

� = �U�l�� �4�

where

�¯� =�
0

2� �
0

� �
0

l0

¯ D���,�,l0�sin �dl0d�d� �5�

and the bond direction vector is given as �
= �sin � cos � , sin � sin � , cos ��.

For a two-dimensional plane stress problem, the strain energy
function is expressed by

� = �U�l�� =�
0

2� �
0

l0

U�l�D���,l0�dl0d� �6�

and the bond direction vector is selected by the circular coordi-
nate system, �= �cos � , sin ��.

In this study, a two-dimensional constant bond density func-
tion, D�=D0, is considered, which illustrates an isotropic solid,
and has the same initial bond length �l0� over the domain. The
constant bond density function simplifies the strain energy func-
tion to

� = �U�l�� = D0�
0

2�

U�l�d� �7�

which is also suitable for numerical investigation of fracture
properties.

Constitutive Relation

From the determination of the strain energy function �7�, the con-
stitutive relation is formulated on the basis of continuum mechan-
ics. The Lagrangian strain E and the second Piola–Kirchhoff
stress tensor S are used for computing the stress and the material
modulus. The derivative of the strain energy with respect to the
Lagrangian strain provides the second Piola–Kirchhoff stress

SIJ =
��

�EIJ
= �l0

2U��l�
l

�I�J� �8�

Similarly, the material tangent modulus is obtained by the sec-
ond derivative of the strain energy function with respect to the

Lagrangian strain
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CIJKL =
�2�

�EIJ�EKL
= �l0

4	U��l�
l2 −

U��l�
l3 
�I�J�K�L� �9�

which satisfies the Cauchy symmetry

CIJKL = CIKJL �10�

in addition to the usual major and minor symmetries of elasticity.
Because of these symmetries, only one elastic property is neces-
sary. Therefore, the Cauchy symmetry is satisfied by the fourth-
order isotropic elasticity tensor whose Lame parameters �� ,�� are
the same �Thiagarajan et al. 2004�. Additionally, the VIB �or
VIPB� model is hyperelastic and does not account for dissipation
�unloading path is the same as the loading path�.

Virtual Bond Density Potential

The focus of the VIB model is the determination of the virtual
bond potential �U�l�� and the bond density function �D0�, which
describe both elastic behavior and fracture behavior. We define
the bond density potential 	 as the bond potential multiplied by a
bond density function

	�l� = D0U�l� �11�

Previous researchers �Gao and Klein 1998; Klein and Gao
1998; Zhang et al. 2002; Klein et al. 2001; Nguyen et al. 2004;
Thiagarajan et al. 2004� have employed a two-parameter �A ,B�
phenomenological cohesive law

	��l� = D0U��l� = A�l − l0�e−�l−l0�/B �12�

for the bond density potential in the VIB model implementation.
The constant A is related to the initial Young’s modulus, whereas
the constant B can be determined by the cohesive strength or by
the fracture energy. Thus, this potential function can only charac-
terize two material parameters: the initial elastic property and one
fracture property.

In this study, the generalized Morse function �Morse 1929;
Girifalco and Weizer 1959; Milstein 1973� is modified to repre-
sent the bond density potential and to characterize three macro-
scopic material parameters, specifically initial elastic modulus,
fracture energy, and the cohesive strength. The modified Morse

Fig. 2. Schematic illustration of the new VIPB model: �a� rela
�	=	1+	2�; �b� relationship from the steep short-range potential �	
potential function is proposed herein as
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	�l� = D0U�l� =
D

m − 1
�e−m
�l/l0−1� − me−
�l/l0−1�� �13�

The two exponents �m ,
� in the potential function can character-
ize two fracture parameters: the cohesive strength and the fracture
energy. The parameter D is associated with one elastic property,
i.e., Young’s modulus. Further, the potential function is indepen-
dent of the lattice parameter �l0� because the particle distance �l�
is normalized with respect to the lattice parameter �l0�, which is
not the case in the original Morse potential.

Computational Implementation

Numerical simulations of the VIB �or VIPB� model can be imple-
mented by using a commercial software, e.g. ABAQUS, with the
application of the user material �UMAT� subroutine. If the
software uses the Cauchy stress ��� rather than the second Piola–
Kirchhoff stress �S� for the stress update scheme, then we must
transform the second Piola–Kirchhoff stress into the Cauchy
stress with the known relationship �see, for example, Belytschko
et al. �2000��

� =
1

det�F�
FSFT �14�

Virtual Internal Pair-Bond Model

The fracture energy and the cohesive strength are basic quantities
to describe material fracture behavior. For quasi-brittle materials,
especially concrete, two different energies are necessary for ex-
plaining the size effect �Bazant and Becq-Giraudon 2002�. The
initial fracture energy �Gf� is size independent and is based pri-
marily on the peak load. The other quantity is the total fracture
energy �GF�, which is specimen size dependent. The proposed
VIPB model considers both fracture energies in order to capture
the measured size effect.

In the VIPB model, two bonding density potentials are con-
nected between two particles, as shown in Fig. 2�a�. One steep
short-range potential, 	1�l�, Fig. 2�b�, is related to the initial
fracture energy, and a longer-range shallower potential, 	2�l�,
Fig. 2�c�, is associated with the difference between the initial

ip between stress and bond length from the pair-bond potential
nd �c� relationship from the shallow long-range potential �	2�
tionsh

1�; a
fracture energy and the total fracture energy. The summation of
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each potential represents the bond density potential function of
the VIPB model as illustrated in Fig. 2�a�

	�l� = 	1�l� + 	2�l� �15�

where

	i�l� =
Di

mi − 1
�e−mi
i�l/l0−1� − mie

−
i�l/l0−1�� �i = 1,2� �16�

In this model, one bond density potential �	1�, represented by Gf,
is independent of the size so that the VIPB model characterizes
the size effect. Another bond density potential �	2�, described by
�GF−Gf�, depends on the specimen size to satisfy the size depen-
dence of the total fracture energy.

Each potential function contains three unknown constants
�Di, mi, and 
i� which can be determined by an elastic property
�elastic modulus�, and fracture properties �fracture energy and
cohesive strength�. The elastic and fracture properties are defined
in each of the respective bond density potential function �	1 and
	2�. The fracture energy is separated into Gf and �GF−Gf�, as
previously discussed.

The cohesive strength of the steep short-range potential is as-
sumed then to be �1−��f t�, whereas that of the longer-range shal-
lower potential is assumed to be �f t�, as shown in Figs. 2�b and c�.
The strength ratio ��� of the two potentials can be defined as the
kink point stress ratio in the bilinear softening model described in
Fig. 3 �Park 2008�. Because the kink point in the bilinear soften-
ing model is related to a postpeak load behavior, the long-range
potential characterizes a postpeak load behavior in the VIPB
model. The initial elastic modulus of each potential is determined
under the assumption of linear elasticity at small strain. The elas-
tic modulus of the pair-bond potential model is the summation of
each potential, E=E1+E2, because the bonds are connected in
parallel. Each elastic modulus can, therefore, be defined by the
same ratio as the cohesive strength for each potential.

The concept of the VIPB model is extended to characterize
material responses of fiber-reinforced concrete �FRC�. Fracture
mechanisms of FRC generally consist of aggregate bridging and
fiber bridging zones �Anderson 1995; Van Mier 1996�. The ag-
gregate bridging zone describes the crack branching and inter-
locking which result from the weak interface between the
aggregates and cement matrix. The fiber bridging zone represents
the effect of fibers on the stress transfer at larger opening dis-

Fig. 3. Bilinear softening model for concrete where f t�=tensile
strength; Gf =initial fracture energy; GF=total fracture energy;
�=strength ratio at the kink point; w1=horizontal axis intercept of
the initial descending line; wk=crack opening width at the kink point;
and wf =final crack opening width—see Park �2008�
placements. The aggregate bridging zone is illustrated by the
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steep short-range potential, whereas the fiber bridging zone is
described by the shallow long-range potential. The steep short-
range potential �	1� is associated with the total fracture energy of
plain concrete, and the shallow long-range potential �	2� is re-
lated to the difference between the total fracture energy of plain
concrete �GF� and the total fracture energy of FRC �GFRC�.

Determination of Material Properties

As the proposed VIPB model is based on the same framework of
continuum mechanics as the VIB model, elastic and fracture prop-
erties are investigated in conjunction with the traditional VIB
model. In the VIB model, elastic properties are examined at the
state of infinitesimal strain and fracture properties are evaluated
with respect to element size dependencies �Klein and Gao 1998�.
Therefore, previous studies provide the basis for the material
properties to be used in both the VIB model and the VIPB model.

Elastic Properties at Infinitesimal Strains

Elastic material properties of the VIB �or VIPB� model can be
evaluated at the state of small strain by defining the material
tangent modulus in two different ways �Gao and Klein 1998�.
Either the strain energy function of the VIB �or VIPB� model or
the linear elastic strain energy function represents the material
tangent modulus. For the calculation of the material tangent
modulus, the linearized strain is utilized because strain at the
elastic range is infinitesimal.

First, the material tangent modulus is calculated by the strain
energy function �4� of the VIB �or VIPB� model. Assuming in-
finitesimal strain, and taking a Taylor series expansion of the
strain energy function and its second derivative with respect to the
linearized strain, one obtains the material tangent modulus

Cijkl =
4�

15
l0
2	��l0���ij�kl + �ik� jl + �il�kj� �17�

described by a bond density potential function, 	�l�, of the VIB
�or VIPB� model.

Alternatively, the elastic modulus can also be obtained by the
theory of linear elasticity. As the strain is assumed to be linear, the
strain energy function is quadratic. Taking the second derivative
with respect to the linearized strain, one obtains the material tan-
gent modulus, as expected

Cijkl = ��ij�kl + ���ik� jl + �il�kj� �18�

From the Cauchy symmetry relation �10�, the two Lame param-
eters are assumed to be the same ��=�� in the material tangent
modulus. As a result, equating Eqs. �17� and �18� results in the
relationship between the shear modulus and the bond density po-
tential function

� =
4�

15
l0
2	��l0� �19�

for a three-dimensional problem. The elastic properties are also
represented by the Poisson’s ratio �
� and Young’s modulus �E�

whose relationships are
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 =
1

4
, E =

2�

3
l0
2	��l0� �20�

Moreover, for two-dimensional plane stress problems, the rela-
tionship between the shear modulus and the bond density poten-
tial energy function is

� =
�

4
l0
2	��l0� �21�

and Hooke’s law leads to


 =
1

3
, E =

2�

3
l0
2	��l0� �22�

The initial Young’s modulus has been formed to correlate with
the bond density potential �11�, under the Cauchy symmetry
condition ��=��. Therefore, a constant Di �i=1,2�, in the
bond density potential is determined from the relationship be-
tween the Young’s modulus and the bond density potential
function �Eqs. �20� and �22�� of the VIPB model. Substitution of
Eq. �16� into Eq. �22� leads to

Di =
3Ei

2�mi
i
2 �i = 1,2� �23�

which provides the closed form of the bond density function in
terms of the elastic modulus and the two exponents �mi ,
i� in the
bond density potential. The exponents �mi ,
i� can be associated
with two fracture properties of materials, i.e., the fracture energy
and the cohesive strength.

Fracture Properties and Mesh Size Dependencies

The essential fracture parameters for Mode I fracture are cohesive
strength and fracture energy. These experimental fracture proper-
ties are utilized to estimate the two exponents �mi ,
i� in the bond
density potential through numerical simulations, e.g., the pure
tension test �as discussed in the next section�. In the simulation of
a pure tension example, the numerical cohesive strength is as-
sumed to be the peak stress in the pure tension test, whereas the
numerical fracture energy is obtained from the area under the
stress-displacement curve in the simulation. The two exponents
�mi ,
i� in the bond potential can then be determined by curve
fitting; the two numerical fracture parameters �strength and frac-
ture energy� obtained by a pure tension simulation coincide with
known material properties from experiments.

In the VIB �or VIPB� model, the fracture energy depends on
the element size �Klein et al. 2001�, which can be explained by
the path independent J integral �Rice 1968�

J =�
�

�U0�IJ − �PiJFiI��NJd� �24�

where �=contour in the undeformed configuration surrounding
the crack tip; U0=strain energy density; P=First Piola–Kirchhoff
stress; and N=outward normal to the contour, as shown in
Fig. 4�a�. Because of path independence, a contour is selected
along the upper and lower bound ��+ and �−� of the localization
zone �hL� where stress softening occurs �Fig. 4�b�� for a Mode I
loading �Klein and Gao 1998�. The contour results in the sym-
metric stress and displacement field, and then we obtain J for

Mode I
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J = hL�
1

�

P22d�2 = GI �25�

where �2=stretch along the X2 direction. Therefore, the J integral
introduces a length scale �hL� which is proportional to the fracture
energy in the VIB �or VIPB� model. Because of this relationship,
one should consider a length scale �e.g., localization zone size�
for the simulation of the VIB �or VIPB� model. Further, the rela-
tionship provides guidance for verification studies and for deter-
mination of fracture parameters, discussed in the next section.

In summary, cohesive strength and fracture energy are consid-
ered in conjunction with the localization zone size to determine
the exponents �
i ,mi� in the bond density potential. First, one
selects the localization zone size. Next, the exponents are cali-
brated by numerical simulation, e.g., the pure tension test, which
provides two numerical fracture parameters �cohesive strength
and fracture energy� which are consistent with expected values of
experiments.

Verification: Fracture Properties and Element-Size
Dependence

The fracture behavior of the VIB �or VIPB� model is analyzed by
performing both the pure tension and the double cantilever beam
�DCB� tests. Because numerical simulations of the pure tension
example are associated with the measured cohesive strength and
the fracture energy, the simulations enable us to determine the
two exponents �mi and 
i� with respect to the localization zone
size �hL�. Additionally, the DCB test verifies the relationship be-
tween the fracture energy and the size of the localization zone, hL,
derived from the J integral. Moreover, in order to illustrate that
the localization zone size is proportional to the fracture energy
obtained by the numerical simulations of the DCB example, each
numerical test has two different finite element mesh sizes for the
localization zone where the VIB �or VIPB� element is defined.
The main difference between the pure tension and the DCB ex-
amples is that the localization zone is taken as the entire domain
in the former example, whereas it is taken as a �single element�
strip in the latter example.

The determination of the bond density potential for the
VIB model correlates with three measured concrete material
properties: the Young’s modulus �E=32 GPa�, the cohesive
strength �f t�=4.15 MPa�, and the reference fracture energy
�GF0=164 N /m�. The bond density potentials for the VIPB model
are associated with additional measured fracture parameters,
i.e., initial fracture energy �Gf =56.6 N /m�, and the strength ratio
��=0.34�.

As the fracture energy �GF� depends on the localization zone
size �hL� related to the VIB �or VIPB� element size, the reference

Fig. 4. J-integral contours �a� for an arbitrary path; �b� for a path of
the localization zone
fracture energy �GF0� is defined at a reference localization zone
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size �hL0=0.5 mm�. As shown in Table 1, if the size of the local-
ization zone �hL� grows in the finite element mesh, the numerical
result of the fracture energy �GF� also increases with the same
ratio as that of the localization zone

GF = GF0
hL

hL0
�26�

This relationship follows from expression �25�, derived for the J
integral.

Pure Tension Test

The pure tension numerical simulation has a square �W by W�
domain, elongated at the top under displacement control. The nu-
merical results for two different plate sizes �W=1 and 0.5 m� are
provided in Fig. 5. The peak stress of the plate corresponds to the
cohesive strength of 4.15 MPa. For the evaluation of the macro-
scopic numerical fracture energy, we calculate the area under the
stress-displacement curve up to 40% elongation �chosen arbi-
trarily� of the virtual bond length �l� with respect to the unde-
formed virtual bond length �l0�. The calculated numerical fracture
energy almost coincides with the analytical expression in Eq.
�26�, as shown in Table 1. Numerically, the area under the curve
of the 1 m by 1 m plate is nearly twice that of the 0.5 m by 0.5 m
plate. The bigger plate has twice the localization length of the
smaller one. These numerical results illustrate that the fracture
energy is proportional to the localization zone size in the VIB �or
VIPB� model.

Table 1. Relationship between the VIB Element Size and the Fracture
Energy

Computational
test specimen

VIB element
size �hL�

�m�

Total fracture energy

GF−hL

relation �26�
�N/m�

Numerical
simulation result

�N/m�

Pure tension 1 328,000 328,302

0.5 164,000 164,311

DCB hL0=0.0005 GF0=164 164

0.00025 82 82

Fig. 5. Numerical simulation result of a pure tension test using
the VIB model with different domain sizes �W=1 and 0.5 m�. The
loading is performed with displacement control ���.
JOURN
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In addition, the VIPB �pair-bond potential� model is compared
to the VIB �single-bond potential� model in Fig. 6, displaying
results of the pure tension test with a localization zone size of
0.5 mm. The VIPB model results are indicated by a solid line for
the stress-displacement curve, whereas the VIB model results are
given by a dotted line. Each potential �	1 ,	2� for the VIPB
model is represented by dashed lines. Both the VIB and the VIPB
model have the same fracture energy and cohesive strength, but
exhibit different postpeak load behavior. The different postpeak
load behavior influences the maximum load capacity of structures
containing quasi-brittle materials.

Double Cantilever Beam Test

The geometry of the DCB test is described in Fig. 7�a�. It has
initial notch �a0� of 0.1 m, height �2h� of 0.1 m, and length �L� of
1 m. The DCB mesh detail around the crack tip �boxed area in
Fig. 7�a�� is shown in Fig. 7�b�, and the localization zone is de-
fined by the VIB �or VIPB� element along the direction of crack
propagation. Material properties are also the same as in the pure
tension test in order to relate the fracture energy to the localiza-
tion zone size. Elements outside the localization zone are defined
as linear elastic.

The numerical simulation of the DCB is implemented with
two different VIB �or VIPB� element sizes �hL=0.5, 0.25 mm�,
with the same original geometry and with the same constants in
the bond density potential function. Fig. 7�c� demonstrates the
vertical stress ��yy� distribution under the deformed shape. The
maximum stress corresponds to the cohesive strength �4.15 MPa�,
and the fracture behavior is localized with the large deformation
where the VIB �or VIPB� element is defined.

Fig. 8 illustrates the agreement of the numerical results and the
analytical solution of LEFM. For the size of 0.5 mm, the numeri-
cal results of the VIB model and the VIPB model are plotted in
Fig. 8�a� with the LEFM analytical solution whose fracture en-
ergy is 164 N /m. Similarly, the localization zone size is 0.25 mm
for the numerical simulation �Fig. 8�b��, and the fracture energy is

Fig. 6. Comparison between the VIB �single-bond� model and
the VIPB �pair-bond� model with the localization zone size of
W=hL=0.5 mm. The loading is performed with displacement control
���.
82 N /m for the analytical solution of LEFM. Additionally, the
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peak load of the VIPB model is lower than that of the VIB model
because of the different softening behavior as discussed previ-
ously �Fig. 6�.

Validation

In order to validate the VIPB model for quasi-brittle materials,
numerical simulation results are compared with previous ex-
perimental results from three-point bending �TPB� tests of plain
concrete �Roesler et al. 2007a� and FRC �Roesler et al. 2007b�.
For the plain concrete experiments, three sizes �D=63, 150,
250 mm� of notched beam were designed with a constant thick-

Fig. 7. �a� The geometry of the DCB test; �b� mesh detail around
initial notch with the element size varying from 0.5 mm �localization
zone� to 2 mm �outer region�; and �c� normal stress, �yy, distribution
under the deformed shape
ness �t=80 mm�, notch to depth ratio �a0 /D=1 /3�, and span to
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depth ratio �S /D=4� �see Fig. 9�. For the FRC experiments, the
beam depth was 150 mm with the thickness of 80 mm, notch to
depth ratio of 1 /3, and span to depth ratio of 4.

Three-Point Bending Tests of Plain Concrete

Experimental elastic and fracture parameters of concrete are pre-
sented in Table 2. The tensile strength of 4.15 MPa was measured
by the splitting test �Brazilian test�. The total fracture energy was
obtained by the work-of-fracture method �Hillerborg 1985�, and
the initial fracture energy was estimated by the two-parameter
fracture model �TPFM� �Jenq and Shah 1985�. Finally, the
strength ratio ��=0.34� in the pair-bond potential was calculated
by using the critical crack tip opening displacement �CTODc�

Fig. 8. Numerical simulation results of the DCB test using the VIB
and the VIPB models with the localization zone size of �a�
hL=0.5 mm; �b� hL=0.25 mm
obtained from the TPFM �Park 2005�.
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Based on the concrete properties in Table 2, the constants in
the modified Morse potential are evaluated by expression �23� in
conjunction with the numerical simulation of the pure tension test
at a localization zone size of 0.5 mm. Table 3 illustrates the cal-
culated constants in the bond density potential for the VIB
�single-bond� model, and Table 4 provides those for the VIPB
�pair-bond� model. The exponents in the bond density potential
are calibrated by simulating the pure tension test so that the nu-
merical fracture parameters correspond to the material fracture
parameters. In the VIPB model, the constants �
1 ,m1 ,D1� in the
steep short-range potential �	1� are the same for all specimen
sizes, as the potential represents the size independent initial frac-
ture energy �Gf�. However, in the shallow long-range potential
�	2�, the constants �
2 ,m2 ,D2� are different with respect to size,

Table 2. Elastic and Fracture Parameters of Concrete Beam Experiments
by Roesler et al. �2007a�

Specimen
size
�mm�

Elastic
modulus
�GPa�

Tensile
strength
�MPa�

Initial
fracture
energy
�N/m�

Strength
ratio at

kink point
���

Total
fracture
energy
�N/m�

63 119

150 32 4.15 56.6 0.34 164

250 167

Table 3. Material Properties and the Constants in the Bond Density
Potential for Each Size of Beam in the VIB �Single-Bond� Model with the
Localization Zone Size of 0.5 mm

Size D
�mm�

E
�GPa�

f t�
�MPa�

GF

�N/m� 
 m
D

�N m /m3�

63 119 34 315 41,960

150 32 4.15 164 23 480 60,170

250 167 22 510 61,900

Table 4. The Constants in Each Bond Density Potential for the VIPB
�Pair-Bond� Model with the Localization Zone Size of 0.5 mm

Size D
�mm�

�1−��E, �1−��f t�, Gf �E, �f t�, GF−Gf


1 m1

D1

�N m /m3� 
2 m2

D2

�N m /m3�

63 19 630 25,450

150 50 215 18,760 9 1,260 50,900

250 8 1,480 54,660

Fig. 9. Specimen geometry of TPB tests
JOURN
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Fig. 10. Comparison of load-CMOD curves with experimental
results: �a� specimen size D=63 mm; �b� specimen size
D=150 mm; and �c� specimen size D=250 mm
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due to the size dependence of the total fracture energy �GF�, as
shown in Table 4. The exponent m2 of the long-range potential is
not only greater than the exponent m1 of the short-range potential,
but the exponent m2 also increases with size. The increased speci-
men size produces a larger total fracture energy for a fixed cohe-
sive strength, resulting in a shallow long-range potential. This
feature corresponds well to the characteristics of the Morse po-
tential; the larger value of m, the longer the range, and the shal-
lower the potential �Milstein 1973�.

Figs. 10�a–c� illustrate the correspondence between the nu-
merical predictions of the VIPB model and the experimental re-
sults for each specimen size with respect to the normalized load
versus crack mouth opening displacement �CMOD� curves. The
VIB model slightly overestimates the peak load, due to the VIB
model consisting of a single-bond potential related to the total
fracture energy, whereas the VIPB model employs two different
potentials, i.e., the steep short-range and the shallow long-range
potential, associated with the initial fracture energy and the total
fracture energy.

On Size Effect

In general, the size effect due to the scaling of geometrically
similar structures can be characterized by the nominal strength of
the structure, the maximum deflection, and the maximum strain
�Bazant 1999�. In this study, the size effect is examined by plot-
ting the structural size �D� versus the nominal strength ��Nu�,
which is calculated as the peak load divided by the beam size �D�
and thickness �t�, as shown in Fig. 11. The solid and dashed lines
are calculated, respectively, by the size effect method �SEM� �Ba-
zant and Planas 1998� and the TPFM �Jenq and Shah 1985�
through the size effect expression �Bazant and Kazemi 1990�

Table 5. Elastic and Fracture Parameters of Plain Concrete �Roesler et al.
2007b�

Elastic
modulus
�GPa�

Tensile
strength
�MPa�

Total fracture
energy
�N/m�

Strength ratio
at kink point

���

26.9 3.4 120 0.28

Fig. 11. Size effect for TPB fracture test configuration
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�Nu =
Bft�

�1 + D/D0

�27�

where the nondimensional constant, B, and the length dimen-
sional constant, D0, are determined by the three-point bending
tests in Table 2. The numerical prediction of the VIPB model
trends with the size effect expression �27�, and is bounded by the
SEM and the TPFM curves, as shown in Fig. 11. The single
potential �VIP� model demonstrates overestimation of the strength
with respect to the increase in structural size �D� for this specific
example. Moreover, the strength differences between the VIB
model and the VIPB model grow with respect to the increase of
specimen size.

TPB Test of Fiber-Reinforced Concrete

FRC beams were cast with ordinary plain concrete and fiber vol-
ume fraction of 0.78%. Elastic and fracture parameters of the
ordinary plain concrete are provided in Table 5. The total fracture
energies of plain concrete and FRC are 120 and 3,531 N /m, re-
spectively, which are obtained by the work-of-fracture method
�Hillerborg 1985�. Based on these experimental elastic and frac-
ture parameters, load versus CMOD curves of the FRC beams are
predicted by simulating the VIPB model and the VIB model. The
simulation results are compared with the experimental data, as
shown in Fig. 12. The VIPB model demonstrates a similar load-
CMOD curve to experimental data, whereas the VIB model over-
estimates the peak load and postpeak behavior in this example.

Conclusions

A VIPB model is proposed to consider two fracture energies, the
initial fracture energy �Gf� and the total fracture energy �GF�,
which are essential fracture parameters to represent the fracture
behavior and size effect of quasi-brittle materials, such as con-
crete. The initial fracture energy is related to the steep short-range
bond density potential, whereas the difference between the initial
fracture energy and the total fracture energy is associated with the
shallow long-range bond density potential. Further, the VIPB
model is extended to simulate fracture behavior of FRC in con-
junction with two fracture energies, the total fracture energy of
plain concrete �GF� and the total fracture energy of FRC �GFRC�.

A modified Morse function �atomistic potential� is proposed

Fig. 12. Prediction of load-CMOD curves of FRC beam tests
compared with experimental data
for the bond density potential in the VIPB model so that the
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potential function is independent of the discrete lattice parameter
�l0�. The elastic modulus, cohesive strength, and fracture energy,
which can be obtained by means of macroscopic experiments,
determine the three constants in each modified Morse function
�mi ,
i ,Di�.

The model parameters in the bond density potential are esti-
mated from the experimental fracture parameters and a pure ten-
sion simulation. The DCB simulations are conducted simply to
verify the relationship between the fracture energy �GF� and the
localization zone size �hL�. The VIPB model is validated by pre-
dicting the load-CMOD curves of three-point bending tests for
both plain concrete and FRC. The later example involving FRC
clearly demonstrates the advantage of the VIPB model over the
usual VIB model �cf. Fig. 12�.

Further, the present conceptual framework, i.e., the superposi-
tion of the two potentials, can be extended to account for other
physical behaviors. For instance, the VIPB model can be changed
to a virtual internal multiple-bond potential model, which
can represent other interactions between fractured surfaces, e.g.,
friction.
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Notation

The following symbols are used in this paper:
C or CIJKL � material tangent modulus;

D� � bond density function;
D0 � constant bond density function;

D1 ,D2 � bond densities for the pair-bond potential;
E � elastic modulus;

E or EIJ � Lagrangian strain;
F or FIJ � deformation gradient;

f t� � tensile strength;
GF � �total� fracture energy;

GF0 � reference fracture energy;
Gf � initial fracture energy;
hL � localization zone;

hL0 � reference localization zone;
l � deformed virtual bond length;

l0 � undeformed virtual bond length;
mi � exponents in the modified Morse potential

�i=1,2�;
N or NI � outward normal to the contour;
P or PIJ � first Piola–Kirchhoff stress;
S or SIJ � second Piola–Kirchhoff stress;

U�l� � bonding potential;
U0 � strain energy density;
wf � final crack opening width;

wk � crack opening width at the kink point;

JOURN
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w1 � horizontal axis intercept of the initial
descending line;

X or XI � Lagrangian coordinates;
x or xi � Eulerian coordinates;


i � exponents in the modified Morse potential
�i=1,2�;

� � strength ratio of the pair-bond potential;
� � contour in the undeformed configuration

surrounding a crack tip;
� ,� � Lame parameters;

�2 � stretch along the X2 direction;

 � Poisson’s ratio;

� or �I � bond direction;
� � Cauchy stress;
� � strain energy function;

	�l� � bond density potential; and
� � domain.
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