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By means of a fundamental solution for a single inhomogeneity embedded in a function-
ally graded material matrix, a self-consistent model is proposed to investigate the effec-
tive thermal conductivity distribution in a functionally graded particulate nanocomposite.
The “Kapitza thermal resistance” along the interface between a particle and the matrix
is simulated with a perfect interface but a lower thermal conductivity of the particle. The
results indicate that the effective thermal conductivity distribution greatly depends on
Kapitza thermal resistance, particle size, and degree of material gradient.
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Introduction
Functionally graded materials �FGMs� are characterized by spa-

ially varied microstructures of constituent phases and gradual
ariation of effective material properties. This class of materials
as received considerable attention from researchers and engi-
eers because of their unique and attractive thermomechanical
roperties �1–8�. Especially noteworthy in the area of mechanics
f FGMs is the contribution of Erdogan and co-workers—see, for
xample, Refs. �1,4�. With miniaturization of microelectronic ele-
ents and coating components, FGMs with embedded nanopar-

icles �nano-FGMs� can be utilized in very small, lightweight
omponents, while retaining the excellent physical properties of
anomaterials �9,10�. For instance, Zhang et al. �11� proposed to
se nano-FGMs to construct a coupling solar energy generator
ystem maximally utilizing both photo- and thermoelectric ener-
ies. However, with the decrease of particle size in an FGM, the
urface-to-volume ratio of particles increases, such that the inter-
ace between a particle and the surrounding matrix produces a
onsiderable effect on the effective material behavior, especially
n the case of nano-FGMs.

In 1941, Kapitza �12� presented measurements indicating the
xistence of a temperature discontinuity near the interface be-
ween helium and a solid in the presence of a heat flux. A similar
henomenon was also found across the interface between two
olids, which has been termed the “Kapitza thermal resistance”
13�. In randomly dispersed particulate nanocomposites, the
apitza thermal resistance greatly decreases the effective thermal

onductivity with increasing particle size �14–16�. Some analyti-
al and numerical models have been developed to predict the ef-
ective thermal conductivity of nanocomposites considering the
apitza thermal resistance �17–20�. However, for nano-FGMs,

hese models do not consider the graded microstructure, and thus,
novel model is needed for the accurate design and evaluation of
ano-FGMs. This is the emphasis of the present paper.

Yin et al. �8� developed an analytical solution for the heat flux
eld for the case of a single particle embedded in an FGM matrix.
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In that solution, a perfect interface is assumed to exist between
particles and the matrix, i.e., with temperature continuity across
the interface. Therefore, the interfacial thermal resistance is not
considered. This work addresses the effect of the Kapitza thermal
resistance on the effective thermal properties of nano-FGMs. A
particle with the Kapitza thermal resistance is simulated by a par-
ticle with a perfect interface, that is, one having a continuous
temperature field across the interface, but modeled with a different
thermal conductivity to accommodate the so-called Kapitza effect.
Although the local heat flow in the particle with a perfect interface
is different from that which would exist in one exhibiting Kapitza
thermal resistance, the thermal conductivity of the particle is prop-
erly chosen to make the average heat flux of the particle equiva-
lent for the two cases. Using the solution for an equivalent particle
embedded in a graded matrix, a self-consistent formulation is de-
veloped to derive the average heat flux field of the particle phase.
Then, the temperature gradient can be obtained in the gradation
direction. From the relation between the effective flux and tem-
perature gradient in the gradation direction, the effective thermal
conductivity distribution is obtained.

If the gradient of the volume fraction distribution is zero, the
FGM is reduced to a composite containing uniformly dispersed
particles. Moreover, by disregarding the Kapitza thermal resis-
tance, the proposed model recovers the conventional self-
consistent model for uniform composites �21–23�. Mathemati-
cally, effective thermal conductivity is a quantity exactly
analogous to effective electric conductivity, dielectric permittivity,
magnetic permeability, and water permeability in a linear static
state, and thus the solution presented herein can be applied to
predict these other effective physical properties of graded materi-
als.

The remainder of this paper is organized as follows. Section 2
presents a self-consistent formulation to determine the effective
thermal conductivity distribution for an FGM containing nanopar-
ticles and a continuous matrix. To address the effect of the inter-
face between nanoparticles and the matrix, Sec. 3 proposes a
scheme to replace particles with the Kapitza interfacial thermal
resistance by an equivalent particle with a perfect interface but a
lower thermal conductivity. Section 4 introduces the solution for a
single inhomogeneity embedded in an FGM matrix under uniform
heat flux field in the gradation direction. Using this solution in the

self-consistent formulation, we can analytically obtain effective
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hermal conductivity distribution in the FGM. Section 5 illustrates
ypical results obtained with the new solution and demonstrates
he capability of the proposed model using parametric analyses
nd comparison with available experimental data.

Self-Consistent Formulation
Consider an FGM containing Phase A nanoparticles embedded

n a Phase B matrix as shown in Fig. 1�a�, where the global
oordinate system X1−X2−X3 has its origin at the bottom left side
f the displayed FGM. The effective thermal conductivity can be
ested through the relation between the average heat flux and tem-
erature gradient. A uniform heat flux load q� is applied in the
radation direction. For any material point X0, because the mate-
ial is homogeneous at each X1−X2 layer under steady conditions
nd without the presence of heat sources, the average heat flux
hould be equal to q�. At the microscopic scale, both the average
eat flux and temperature gradient consist of the two portions
rom Phases A and B �17�:

�qi�D�X3
0� = q��i3 = ��X3

0��qi�A�X3
0� + �1 − ��X3

0���qi�B�X3
0� �1�

nd

�Hi�D�X3
0� = ��X3

0���Hi�A�X3
0� + Ji�X3

0�� + �1 − ��X3
0����Hi�B�X3

0��
�2�

here the angle brackets with superscripts D, A, and B denote the
olume averages over the whole material point, Phase A, and
hase B, respectively; qi and Hi represent the heat flux and tem-
erature gradient, respectively, and � is the volume fraction of
hase A. Notice that because the normal component of the heat
ux across the interface between the particle and matrix is con-

inuous, the average heat flux only includes two terms from the
wo material phases; whereas due to a temperature discontinuity
xisting across the interface, an additional term Ji is introduced to
epresent the contribution of the temperature jump across the in-
erface, shown schematically in Fig. 1�b� as a white ring. Al-
hough shown schematically with finite thickness, the actual inter-
ace thickness is infinitesimally small.

The temperature jump is proportional to the normal heat flux
cross the interface qn as follows:

�T = − RBdqn �3�

here RBd denotes the interfacial thermal resistance �14�, i.e., the

ig. 1 Illustration of a self-consistent model for FGMs: „a…
GM containing nanoparticles „black… dispersed in Phase B
atrix „white…, „b… Phase A particle embedded in the FGM itself
ith an interfacial thermal resistance, and „c… equivalent par-

icle embedded in the FGM with a perfect interface and a lower
hermal conductivity
apitza thermal resistance. To solve the average heat flux field in
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particle Phase A, the self-consistent method �21,22� is used as
outlined below.

• For a given point X0 in the global FGM system as seen in
Fig. 1�a�, we build up a local coordinate system with a par-
ticle centered at the origin as seen in Fig. 1�c�. The thermal
conductivity of the graded matrix is assumed to be the same
as the FGM itself at the global system.

• Because the particle is in contact with the continuous matrix
Phase B, a constant interfacial thermal resistance exists
along the interface between the particle and the matrix as
seen in Fig. 1�b�.

• To solve for the particle’s average field, the particle with
interfacial thermal resistance is replaced with an equivalent
particle with a perfect thermal interface as seen in Fig. 1�c�.
Therefore, the particle’s average heat flux field is obtained
from the solution for one particle embedded in an un-
bounded graded matrix under uniform heat flux at far field.

Through the above procedure, Eq. �2� becomes

�Hi�D�X3
0� = ��X3

0���Hi�A�X3
0�� + �1 − ��X3

0����Hi�B�X3
0�� �4�

where the superscript �Hi� denotes the presence of a temperature
gradient over the equivalent particle. Because the relation between
�qi�B�X3

0� and �Hi�B�X3
0� satisfies the Fourier law, if �qi�A�X3

0� and
�Hi�A�X3

0� can be solved, one can find the relation between overall
average heat flux and temperature gradient at point X0. Because
X0 is arbitrary and can move to any point in the global coordinate
system, we can obtain the effective thermal conductivity distribu-
tion. Section 3 presents the relation between �qi�A�X3

0� and
�Hi�A�X3

0�, and then Sec. 4 provides the relation between �qi�A�X3
0�

and the applied test loading q�.

3 Equivalent Particle to Simulate the “Kapitza Ther-
mal Resistance”

Although the heat flux field for a particle � embedded in an
FGM with Kapitza thermal resistance �Fig. 1�b�� is fairly com-
plex, we can treat the particle as a homogeneous particle with a
perfect interface as long as the average heat flux and temperature
gradient in the new particle are equal to those in the original
particle with interfacial thermal resistance. For a stable heat flow
in the original particle, observed from the outside surface, the
average heat flux field can be written as

�qi�� =
1

V���
�

qi�x�dx +�
��

xi�qj�x�njdS	 �5�

where �qj denotes the difference of heat flux field cross the inter-
face, and nj the outward unit normal vector. Based on the conti-
nuity of heat flow, we have �qj�x�nj =0 across the interface.
Therefore, Eq. �5� is reduced to

�qi�� =
1

V��
�

qi�x�dx �6�

Considering the temperature discontinuity, we can write the av-
erage temperature gradient observed from the outside surface as

�Hi�� =
1

V���
�

Hi�x�dx +�
��

�T�x�nidS	 �7�

Substituting Eq. �3� into the second term on the right hand side of
Eq. �7� provides

�
��

�T�x�nidS = −�
��

RBd�qj�x�nj�nidS �8�

Because qj,j�x�=0 and 
�ni,j�x�dx= �4 /3��a2�ij with a being the

radius of the particle, the above equation can be rewritten as
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�
��

�T�x�nidS = −
4

3
�a2RBd�qi�� �9�

ubstituting Eq. �9� into Eq. �7� and using the Fourier law with
q. �6�, we can rewrite Eq. �7� as

�Hi�� = − � 1

kA +
RBd

a
��qi�� �10�

here kA denotes the thermal conductivity of the Phase A particle.
herefore, regardless of how complex the local heat flux field is in

he particle domain, from an observation point outside the par-
icle, the particle with the Kapitza thermal resistance in Fig. 1�b�
s equivalent to a new particle with a perfect interface in Fig. 1�c�
ut with a lower thermal conductivity, namely, k̃A, or,

k̃A = kA/�1 + RBdkA/a� �11�

Therefore, by using Eq. �11� and the Fourier law for Phase B,
q. �4� can be further rewritten as

�Hi�D�X3
0� = − ��X3

0�
�qi�A�X3

0�

k̃A
− �1 − ��X3

0��
�qi�B�X3

0�
kB �12�

ombining Eqs. �1� and �12�, we can obtain the relation between
verage heat flux and average temperature gradient if the relation
etween the particle’s average heat flux �qi�A�X3

0� and the applied
eat flux q� is provided.

Single Inhomogeneity in a Functionally Graded Ma-
erial

A single particle embedded in a homogeneous matrix is a fun-
amental problem in materials modeling. Eshelby �24,25� derived
he elastic solution for an ellipsoidal inclusion embedded in an
nbounded matrix with a uniform, far-field loading. Hatta and
aya �26� extended Eshelby’s method to heat conduction prob-

ems. Yin et al. �8� investigated the heat flux field for a single
article embedded in an FGM matrix.

Consider an unbounded FGM domain with heat conductivity,
�x3�, containing a single spherical inhomogeneity � �see Fig. 2�
ith heat conductivity kA, radius a, with its center located at the
rigin. A uniform heat flux field q� is applied in the x3 direction in
he far field. Because the FGM is homogeneous in the x1-x2 plane,
f the particle did not exist, then the heat flux field would be
niform. However, a disturbance in the heat flux field qi� will be
nduced by the presence of the particle. Then, the local heat flux
eld can be denoted by two parts:

qi�x� = q��i3 + qi��x� �13�
The variation of the FGM properties is assumed to be continu-

us and differentiable in the gradation direction, so that the ther-

al conductivity distribution can be written as

30k
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k�x3� = k0�1 + �x3�2 + O�x3
2� �14�

where the material variation parameter � is defined as

� = 0.5k��0�/k0 �15�

in which k0 and k��0� are the thermal conductivity and its first
derivative at the origin, respectively. The higher order terms O�x3

2�
in Eq. �14� will be disregarded for the convenience of derivation.
It is noted that accuracy of approximation in Eq. �14� also depends
on the magnitude of the material gradient. Yin et al. �8� found that,
when �a� �1, which is satisfied for many FGMs, Eq. �14� pro-
vides a high degree of accuracy.

Using Eshelby’s equivalent inclusion method, a linearly distrib-
uted prescribed heat flux field is introduced in the particle to rep-
resent the material mismatch between the particle and the sur-
rounding graded material. The Green’s function technique is
employed to derive the disturbed heat flux field in Eq. �13�. Fi-
nally, the heat flux field in both the particle and the graded mate-
rial can be explicitly written as follows �8�:

qi�x� = q��i3 + q*�x��3i − k0�1 + �x3�U,i�x� + k0��i3U�x�
�16�

where

q*�x� = 
 0, x � �
0 ˜ x � �

� �17�

Fig. 2 A single spherical inhomogeneity in an FGM matrix
subjected to a uniform heat flux field
q + qx3,
U�x� = �
1

15k0 �5	aq0�	n3 − 5�a� − 	3a2�1 − 3n3
2��q̃ − �q0� − �	2a3n3�q̃ − 2�q0�� , x � �

1

30k0 �q0�10x3 − 5��3a2 − �x�2�� − �q̃ − �q0��5a2 − 3�x�2 − 6x3
2� − ��q̃ − 2�q0��5a2 − 3�x�2�x3� , x � �� �18�

U,i�x� = �
1

15k0 �5q0	2�	��i3 − 3n3ni� + �ani� + 3�q̃ − �q0�	4a�2�i3n3 + ni − 5n3
2ni� − ��q̃ − 2�q0�	3a2��i3 − 3n3ni�� , x � �

1
0 �10q0��i3 + �xi� + 6�q̃ − �q0��2�i3x3 + xi� − ��q̃ − 2�q0���5a2 − 3�x�2��i3 − 6x3xi�� , x � �� �19�
SEPTEMBER 2008, Vol. 75 / 051113-3
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n which n=x / �x�, and 	=a / �x�, �=0.5k��0� /k0, and q0 and q̃ are
ritten as

q0 =
kA − k0

3kA − 2�1 − a2�2��kA − k0�
3q�

q̃ =
2�kA − k0�2 − 15k0kA

�3kA + 2k0��3kA − 2�1 − a2�2��kA − k0��
2�q� �20�

Taking a volume average of the heat flux field on the particle
omain provides the particle’s average heat flux as

�qi�� =
3kA

3kA − 2�1 − a2�2��kA − k0�
q��i3 �21�

In Fig. 1�c�, the equivalent particle with thermal conductivity k̃A

s embedded in the FGM with effective thermal conductivity dis-

ribution k̄�X3�, which is yet unknown. Using the above equation,
e can write the particle’s average heat flux as

�qi�A�X3
0� =

3k̃A

3k̃A − 2�1 − a2�2�X3
0���k̃A − k�X3

0��
q��i3 �22�

Using Eqs. �1�, �12�, and �22�, we can derive the relation be-
ween the average heat flux and temperature gradient as

�q3�D�X3
0� = − kB�1 − ��X3

0�
3�k̃A − kB�

3k̃A − 2�1 − a2�̄2�X3
0���k̃A − k̄�X3

0��
	−1


�H3�D�X3
0� �23�

onsidering the arbitrariness of choosing X0, we can obtain the
ffective thermal conductivity at any location as

k̄�X3� = kB�1 − ��X3�
3�k̃A − kB�

3k̃A − 2�1 − a2�̄2�X3���k̃A − k̄�X3��
	−1

�24�
otice that the above expression is implicit because the right hand

ide includes k̄�X3� itself and �̄ is still unknown as

�̄�X3� =
1

2k̄�X3�

dk̄�X3�
dX3

�25�

e solve Eq. �24� using a recursive method, in which a boundary
ondition is typically implied as

k̄�0� = kB �26�

ecause the volume fraction of the particle Phase A is zero. For
nstances where the particle volume fraction does not start from

%, the modified boundary condition of k̄�0� can be still obtained
ith the aid of the uniform composite model as seen in Eq. �27�.

Results and Discussion
For a functionally graded particulate nanocomposite, if the vol-

me fraction of nanoparticles continuously varies in the gradation
irection, the effective thermal conductivity distribution can be
redicted by Eq. �24� with Eqs. �11�, �25�, and �26�. If the material
radation is zero, the nano-FGM is reduced into a uniformly dis-
ersed nanocomposite, so in Eq. �24� �̄�X3�=0 and the effective
hermal conductivity can be rewritten as

k̄ = kB�1 − 3�
k̃A − kB

k̃A + 2k̄
�−1

�27�

he above equation can be ultimately simplified into a quadratic

quation with two roots. The correct root places k̄ between k̃A and
B
.
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Notice that although this work studies the particle size in na-
nometers, nanoparticles are still much larger than molecular or
atomic scales, so they can be treated as continuous bodies. If the
particle’s size is fairly large, the effect of the Kapitza thermal

resistance can be disregarded, by setting k̃A=kA. In this case, the
effective thermal conductivity in Eq. �24� can be rewritten as

k̄�X3� = kB�1 − ��X3�
3�kA − kB�

3kA − 2�1 − a2�̄2�X3���kA − k̄�X3��
	−1

�28�

Notice that because �̄�X3� is related to the volume fraction distri-
bution in its neighborhood, the effective thermal conductivity at a
material point not only depends on the volume fraction at the
point as shown in Eq. �28�, but also depends on the global volume
fraction distribution.

Disregarding both the Kapitza thermal resistance and material
gradation, the proposed model recovers the conventional self-
consistent model as

k̄ = kB�1 − 3�
kA − kB

kA + 2k̄
�−1

�29�

To demonstrate the capability of the proposed model, we first
compare it with available experiments. Every et al. �14� tested the
effective thermal conductivity for diamond/ZnS composites with
two radii, i.e., a=250 nm and 2.0 �m. The other material con-
stants are kdiamond=600 W /m K, kZnS=17.4 W /m K, and RBd=6

10−8 m2 K /W. In Fig. 3, for the case of a=2.0 �m, the effec-
tive thermal conductivity increases with the volume fraction of the
diamond particles due to the reinforcement of the particles with
much higher thermal conductivity; whereas for the case of a
=250 nm, the effective thermal conductivity decreases because
the interfacial thermal resistance plays a dominant role at this size.
The present model predicts the tendency of the experimental data
well, although some difference is found for the case of a
=250 nm due to the irregular particle shape and nonuniform size
of particles.

Figure 4 shows the effect of particle size on the effective ther-
mal conductivity distribution in FGMs with linear volume fraction
distribution. Here the thickness of the FGMs is set as H=1 mm.
Four particle sizes are illustrated. For a=10 �m, the effective
thermal conductivity increases with the volume fraction due to the
high thermal conductivity of particles, whereas for a=10 nm and

Fig. 3 Effective thermal conductivity versus volume fraction
for diamond/ZnS composites
100 nm, the effective thermal conductivity decreases with the vol-
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me fraction due to the Kapitza thermal resistance of nanopar-
icles. When a=1 �m, the change of thermal conductivity of par-
icles with the volume fraction is quite small because the

quivalent thermal conductivity of particles at this size, k̃A

16.2 W /m K, is fairly close to the thermal conductivity of the

atrix, k̃ZnS=17.4 W /m K. Therefore, the particle size has a dra-
atic effect on the effective thermal conductivity distribution in
GMs.
To investigate the effect of the Kapitza thermal resistance, Fig.
illustrates the effective thermal conductivity distribution of

GMs containing carbon �C� particles and silicon carbide �SiC�
atrix assuming different Kapitza thermal resistances. The mate-

ial constants used are kC=135 W /m K and kSiC=9.5 W /m K.
he volume fraction of carbon particles with radius a=1 �m var-

es linearly from 0% to 50% in the gradation direction. The thick-
ess of the FGM is set as H=1 mm. With an increase of the
apitza thermal resistance, the effective thermal resistance de-

reases considerably. Although the carbon particles have a much
igher thermal conductivity than the silicon carbide matrix, the

ig. 4 Predicted effective thermal conductivity versus volume
raction for diamond/ZnS FGMs with different particle sizes

ig. 5 Predicted effective thermal conductivity versus volume
raction for C/SiC FGMs with different “Kapitza thermal

esistances”

ournal of Applied Mechanics
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particles may not result in an increased effective thermal conduc-
tivity if the particle size is fairly low and the Kapitza thermal
resistance is considerably high.

Based on the work presented herein, the effective thermal con-
ductivity at a material point in nano-FGMs not only depends on
the thermal properties and volume fraction of each phase, which is
predicted by conventional composite models, but also consider-
ably depends on the particle size, the Kapitza thermal resistance
of the interface, and the material gradient.

6 Conclusions
This work investigates the effective thermal conductivity distri-

bution in nano-FGMs. The “Kapitza thermal resistance” of a
nanoparticle is simulated by an equivalent particle with a lower
thermal conductivity. A novel self-consistent formulation is devel-
oped to derive the average heat flux field of the particle phase
based on the analytical solution for a single particle embedded in
an FGM matrix. From the relation between the effective flux and
temperature gradient in the gradation direction, the effective ther-
mal conductivity distribution is derived.

If the Kapitza thermal resistance is disregarded, the proposed
model can also predict the effective thermal conductivity for tra-
ditional FGMs. Because effective thermal conductivity is math-
ematically analogous to effective electric conductivity, dielectric
permittivity, magnetic permeability, and water permeability in a
linear static state, the solutions developed herein can be extended
to obtain these other effective physical properties in graded
materials.

If the gradient of the volume fraction distribution is zero, the
nano-FGMs are reduced to composites containing uniformly dis-
persed nanoparticles. An explicit solution of the effective thermal
conductivity is provided. Disregarding the interfacial thermal re-
sistance, the proposed model recovers the conventional self-
consistent model.
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