
ORIGINAL ARTICLE

A general topology-based framework for adaptive insertion
of cohesive elements in finite element meshes

Glaucio H. Paulino Æ Waldemar Celes Æ
Rodrigo Espinha Æ Zhengyu (Jenny) Zhang

Received: 4 August 2006 / Accepted: 13 September 2006 / Published online: 24 July 2007

� Springer-Verlag London Limited 2007

Abstract Large-scale simulation of separation phenom-

ena in solids such as fracture, branching, and fragmentation

requires a scalable data structure representation of the

evolving model. Modeling of such phenomena can be

successfully accomplished by means of cohesive models of

fracture, which are versatile and effective tools for com-

putational analysis. A common approach to insert cohesive

elements in finite element meshes consists of adding dis-

crete special interfaces (cohesive elements) between bulk

elements. The insertion of cohesive elements along bulk

element interfaces for fragmentation simulation imposes

changes in the topology of the mesh. This paper presents a

unified topology-based framework for supporting adaptive

fragmentation simulations, being able to handle two- and

three-dimensional models, with finite elements of any or-

der. We represent the finite element model using a compact

and ‘‘complete’’ topological data structure, which is capa-

ble of retrieving all adjacency relationships needed for the

simulation. Moreover, we introduce a new topology-based

algorithm that systematically classifies fractured facets

(i.e., facets along which fracture has occurred). The algo-

rithm follows a set of procedures that consistently perform

all the topological changes needed to update the model.

The proposed topology-based framework is general and

ensures that the model representation remains always valid

during fragmentation, even when very complex crack

patterns are involved. The framework correctness and

efficiency are illustrated by arbitrary insertion of cohesive

elements in various finite element meshes of self-similar

geometries, including both two- and three-dimensional

models. These computational tests clearly show linear

scaling in time, which is a key feature of the present data-

structure representation. The effectiveness of the proposed

approach is also demonstrated by dynamic fracture analysis

through finite element simulations of actual engineering

problems.

Keywords Fragmentation simulation � Cohesive zone

models (CZM) � Intrinsic model � Extrinsic model �
Topological data structure

1 Introduction

Fracture and fragmentation, including dynamic events [1, 2]

have a broad range of engineering applications [3]. In gen-

eral, such phenomena involve switching from a continuum

to a discrete discontinuity, which can be investigated by

means of a cohesive zone model (CZM) of fracture. The

CZM can be computationally simulated either by enrich-

ment functions [4] or inter-element techniques [5, 6]. The

latter is the approach of choice in this work, i.e., cohesive

elements are inserted between bulk (or volumetric) finite

elements. We distinguish two types of cohesive elements:

intrinsic and extrinsic. In the former case, the cohesive

elements are inserted a priori, i.e., at the pre-processing

stage (before the simulation starts). In the latter case, the

cohesive elements are inserted adaptively during the course

of the finite element analysis, i.e., the cohesive elements are

inserted when needed, and where needed. The present data

G. H. Paulino (&) � Z. (Jenny) Zhang

Department of Civil and Environmental Engineering, University

of Illinois at Urbana-Champaign, Newmark Laboratory, MC-

250, 205 North Mathews Avenue, Urbana, IL 61801-2397, USA

e-mail: paulino@uiuc.edu

W. Celes � R. Espinha

Tecgraf/PUC-Rio—Computer Science Department, Pontifical

Catholic University of Rio de Janeiro, Rua Marquês de São

Vicente 225, Rio de Janeiro, RJ 22450-900, Brazil

123

Engineering with Computers (2008) 24:59–78

DOI 10.1007/s00366-007-0069-7

structure handles both types of cohesive elements, either in

two-dimensional (2D) or three-dimensional (3D) models,

with Lagrangian-type finite elements of any order.

During the course of extrinsic fragmentation analysis,

new cohesive elements are adaptively inserted at element

interfaces, thus imposing changes in the topology of the

mesh. In order to efficiently treat these topology changes,

access to a topological data structure is needed. In fact,

several finite element applications, especially adaptive

analysis, require a topological data structure that provides

adjacency information among the mesh topological entities

[7–14]. For instance, in adaptive fragmentation simula-

tions, element connectivity varies as new cohesive inter-

faces are inserted. The insertion of a cohesive element may

require the duplication of nodes. Whether a node has to be

duplicated depends on the topological classification of the

facet along which the cohesive element has to be inserted

[15–17]. Intrinsic CZMs can also benefit from a topology-

based framework. Although the regions where to insert the

cohesive elements are chosen in advance, the support of a

topological data structure allows the use of conventional

mesh generators to obtain the initial bulk element mesh.

The cohesive elements can then be automatically inserted

within the selected regions (e.g., along a line or a rectan-

gular area for 2D applications; and along a plane or a

volumetric region for 3D applications).

The storage space usually required by a complete

topological data structure can become a crucial problem [7,

8] for finite element mesh representation. To address this

problem, we have introduced a new compact adjacency-

based topological data stucture, denoted by TopS, for finite

element mesh representation—see our previous work [17,

18]. The proposed data structure uses reduced storage

space while being complete, in the sense that it preserves

the ability to extract all topological adjacency relationship

among the mesh entities in time proportional to the number

of retrieved entities.

In this paper, we explore the use of TopS, the specific

topological data structure proposed in [17, 18], for sup-

porting fracture and fragmentation simulations using

cohesive zone modeling. We introduce a new topology-

based algorithm that systematically classifies fractured

facets (i.e., facet along which fracture has occurred), and

identifies the topological modifications needed to preserve

model consistency. The algorithm follows a set of proce-

dures that consistently perform all the topological changes

needed to update the model. The same set of procedures can

be used for any type of finite element mesh, for both 2D and

3D models, including linear, quadratic, and higher order

elements. One of the main advantages of this approach is

that the same topological framework is employed for con-

sistently supporting a variety of fragmentation simulations,

despite the model dimension and the element order.

This paper is organized as follows. Section 2 discusses

the interface models for cohesive fracture. Section 3 dis-

cusses previous works on topological data structures for

mesh representation and for fragmentation simulations.

Section 4 describes TopS, the topological data structure

framework adopted in this work. Section 5 illustrates ele-

ments that are presently available in the data structure and

shows how to incorporate a new element using the concept

of element template. Section 6 (conceptually, the main

section of the paper) addresses topological classification of

facets, which define the fracture path. Section 7 provides

many numerical results demonstrating that the elapsed time

scales linearly with respect to the number of cohesive

elements inserted. In Sect. 8, applications of the proposed

framework in actual dynamic fracture analysis are dem-

onstrated through two finite element simulations, one in 2D

and the other in 3D. Finally, concluding remarks and

suggestions for future work are given in Sect. 9.

2 Intrinsic and extrinsic cohesive models

Cohesive models are versatile and effective tools for

numerical simulation of various separation phenomena in

solids (e.g., fracture and fragmentation) [19–21]. There are

two basic types of CZMs: intrinsic and extrinsic. The main

distinction between them is the presence of the initial elastic

curve, as shown in Fig. 1. Intrinsic CZMs assume that

traction T first increases with increasing interfacial sepa-

ration d, reaches a maximum value, then decreases and fi-

nally vanishes at a characteristic separation value dc, where

complete decohesion is assumed to occur. On the other

hand, extrinsic CZMs assume that separation only occurs

when the interfacial traction reaches the finite strength, and

once the separation occurs, the interfacial cohesion force

monotonically decreases as separation increases, and finally

vanishes at the characteristic separation value dc.

In general, the so-called intrinsic models assume that all

cohesive elements are embedded in the discretized struc-

ture prior to the beginning of the simulation, and thus the

mesh connectivity remains unchanged during the whole

simulation process [5, 22–26]. From the mesh representa-

tion point of view, intrinsic models allow easy imple-

mentation. However, they introduce artificial compliance,

which depends on the area of cohesive element surfaces

introduced and the cohesive law parameters relative to bulk

element property, e.g., the ratio of cohesive strength to

elastic modulus [19]. If the crack grows along a pre-defined

path with relatively few number of cohesive elements, the

adverse effect is relatively minor; while for simulations

involving cohesive elements inserted in a large area or

volume, the adverse effect can be more pronounced and

lead to convergence problems in implicit simulations [22].

60 Engineering with Computers (2008) 24:59–78

123

On the other hand, the so-called extrinsic models require

adaptive insertion of cohesive elements (in space and time)

in the finite element mesh [27]. This usually requires an

elaborate updating scheme for the modified mesh by

inserting new nodes and interface elements [16, 17].

Therefore, the geometrical and topological (e.g., connec-

tivities) information need to be updated as the simulation

progresses. The extrinsic model avoids the artificial soft-

ening effect present in intrinsic models.

The above observations regarding intrinsic and extrinsic

models are of a general nature, and both models are of

interest in this work. Different types of CZMs within each

group are developed based on various considerations, and

one may be preferred over the other depending on the

problem. TopS, the topological data structure used in this

work, applies to both models. The advantage for extrinsic

models is obvious. In regard to intrinsic models, the data

structure can be used to generate cohesive elements within

pre-specified regions of an existing mesh. For instance, in

assessing cracks in materials with microstructure, the data

structure can be of great help in generating intrinsic ele-

ments around particles [28] or grain boundaries [29].

3 On topological data structures

Topological data structures define a model by means of a

set of topological entities. These entities should provide an

unambiguous abstraction of the underlying model [17, 30–

32]. For finite element mesh representation, the usually

defined topological entities include region, face, edge, and

vertex [7–10]. Regions are 3D entities bounded by a set of

faces, which are 2D. Edges are one-dimensional entities

that delimit the faces, and vertices are zero-dimensional

entities that represent the boundary of edges and are

associated to the mesh nodes. For 3D meshes, each region

corresponds to a finite element and internal faces represent

the interface between two elements. For 2D meshes, each

face corresponds to a finite element and internal edges

represent the interface between elements.

Previous works have proposed the use of topological

data structures, originally designed for solid modeling [30–

32], to support fracture simulation [33, 34]. The result is a

highly integrated framework where mesh entities are re-

lated to the corresponding geometric model entities, but

such topological data structures impose a prohibitive cost

of storage space for large finite element meshes. In order to

minimize the required storage space, researchers have been

engaged in the development of reduced (compact) topo-

logical data structures [7, 8]. The main idea consists of not

explicitly representing all the topological entities. Repre-

sentation of implicit entities are created, as required, ‘‘on-

the-fly’’. This approach tends to reduce the storage space

needed to represent the mesh but faces the challenge of

appropriate management of implicit entities in order to

maintain the model consistency [7]. As an alternative

solution, some topological data structures have been spe-

cifically designed for attending the needs of particular

mesh generation algorithms [12, 13] and analysis applica-

tions [14]. In references [9, 10], a different approach has

been proposed. Instead of using a particular data structure,

the authors have presented an algorithm-oriented mesh

database. They are then able to dynamically extract dif-

ferent mesh representations according to the application

needs in terms of adjacencies. In general, this is achieved

by extracting and explicitly storing the adjacency rela-

tionships needed by a particular application, resulting in

efficient representations for querying operations. However,

this approach still faces the challenge of keeping the whole

data structure consistent when modifying the mesh.

Moreover, explicitly storing all the needed sets of adja-

cencies may demand a large amount of memory space (see

Garimella [8] for a few comparisons). It might be better to

efficiently extract each relationship just when required.

Previous reduced topological data structures have repre-

sented implicit faces and edges by their bounding nodes [7–

10], but those representations are ambiguous for fragmen-

tation simulation. Finite element models for fragmentation

simulation require the representation of cohesive elements

[15, 16, 35, 36], which may have distinct edges with the

Fig. 1 Comparison of two

typical cohesive zone models

(CZMs): a intrinsic CZM;

b extrinsic CZM

Engineering with Computers (2008) 24:59–78 61

123

same bounding nodes. Pandolfi and Ortiz [15, 16] have

proposed a topological data structure for supporting frag-

mentation simulations. Their work focused specifically on

representing quadratic tetrahedral meshes. They have opted

for explicitly representing all topological entities and their

corresponding adjacency relationships, thus ending up with

data structures that require large amounts of storage space.

Notice that the use of region, face, edge, and vertex as the

defined topological entities imposes challenges for gener-

alizing previous proposals [7–10, 33, 34]. If this set of

topological entities is used for designing a unique topolog-

ical framework to represent both 2D and 3D meshes, one

faces the problem of managing different semantics associ-

ated to faces and regions. Faces, in 2D, represent finite ele-

ments, while in 3D they represent the boundary of finite

elements. Similarly, in 3D, regions represent elements but

are meaningless for 2D meshes. It would be better if the

semantics associated to each topological entity did not

change, despite the mesh dimension. This is a major con-

tribution of TopS [17, 18], which is employed here to support

the topological framework for fragmentation simulations.

4 Adjacency-based topological data structure (TopS)

In order to support both intrinsic and extrinsic fragmenta-

tion simulations, we use a novel compact adjacency-based

topological data structure (TopS) that requires small stor-

age space while providing access to all adjacency rela-

tionships in time proportional to the number of retrieved

entities. This basic data structure is presented in detail in

references [17, 18]. Here, we briefly describe its main

concepts and focus on its use for supporting large scale

finite element fragmentation simulations.

4.1 Topological entities

TopS was designed to represent meshes with any type of

elements defined by templates of ordered nodes. Therefore,

it defines a new set of topological entities, which is used to

describe both 2D and 3D models. It explicitly represents only

two topological entities: element and node. The element is an

abstract entity that represents finite elements (any type and

order). The node represents finite element nodes (both corner

and mid-side nodes). Each element has references to its

boundary nodes and to the adjacent elements. The element is

specialized for each type of finite element. For instance, a

quadratic tetrahedral finite element would have ten boundary

nodes and four adjacent elements. Each node, besides its

position, keeps a reference to one of its incident elements.

TopS also defines and implicitly represents other

topological entities. Facet represents the interface between

two elements. Edge represents a one-dimensional entity

and is bounded by two vertices. Vertex represents a corner

node (there is no vertex associated to a mid-side node).

Thus, essentially, vertex is a node, but not every node is a

vertex. An important point to note is that, for being able to

handle both 2D and 3D meshes, the facet always represents

the interface between two elements. Thus, for 3D models, a

facet corresponds to a 2D entity and is defined by a cyclic

set of edges. For 2D meshes, it corresponds to a one-

dimensional entity and is defined by a unique edge. Facets

resting on the model boundary have only one interfacing

element.

In order to facilitate retrieving topological adjacency

relationships, TopS also defines and implicitly represents

oriented topological entities, namely facet-use, edge-use,

and vertex-use, associated to the use of facets, edges, and

vertices by an element, respectively. Each finite element in

isolation is composed by a set of facets, edges, and verti-

ces. These local entities are labeled by identification

numbers (id’s). The topology of each element is known in

advance and depends only on the element type (e.g., T3,

T6, Tetra4, and Tetra10). Consequently, for each type of

element, we define its element template [7]. Based on an

element template, we can extract all adjacency relation-

ships relating the local entities of such an element type.

The local facets, edges, and vertices of an element in iso-

lation correspond, respectively, to the use of facets, edges,

and vertices of the mesh by that element. Therefore, the

element template provides access to adjacency relation-

ships relating entity-uses within an element.

Element and node are explicitly represented by abstract

types. Each element or node has to be allocated and in-

cluded in the model. Facet, edge, vertex, and their associ-

ated uses, are implicitly represented and retrieved, when

required, ‘‘on-the-fly’’. To easily handle these implicit

entities, TopS represents them as concrete types, being

treated as ordinary values, similarly to any other built-in

type of a programming language. By using concrete types,

we avoid the need of dynamic allocation while manipu-

lating implicit entities: they are returned by value and

allocated on the stack, which greatly simplifies managing

entity uniqueness and lifetime. Each implicit entity is

represented by integer values packed in a 32-bit word [18].

Each facet-use, edge-use, or vertex-use is represented by a

reference to the element (Ei) using the entity and a local

number (id) that identifies the corresponding entity within

the element (Ei, id). Each facet, edge, or vertex is simply

represented by one of its uses. One should note that by

representing edges and facets in this way, two different

edges (or facets) sharing the same bounding nodes, a quite

common topological configuration in fractured models,

have different representations because they are associated

with different edge-uses (or facet-uses). A main drawback

of previous reduced representations is to rely implicit-

62 Engineering with Computers (2008) 24:59–78

123

entity representations solely on the bounding nodes [7–10],

thus being unable to distinguish the two different edges (or

facets).

The diagram in Fig. 2 shows the entities represented by

the data structure, together with the stored data and the

directly retrieved topological adjacency. From the model,

we have access to the set of nodes and elements that

compose the mesh. From each element, we can directly

access the adjacent elements and the boundary nodes.

Conversely, from each node, we access an incident ele-

ment. Based on the element template, from an element, we

can also access its associated facet-uses, edge-uses, and

vertex-uses, thus having access to facets, edges, and ver-

tices. From each entity-use, we can also access its bound-

ary nodes.

4.2 Adjacency relationships

There are a total of 25 adjacency relationships among the

five defined topological entities (element, node, facet, edge,

and vertex), as illustrated by Fig. 3. As shown by Celes

et al. [17], the data structure is capable of retrieving any of

these relationships in time proportional to the number of

retrieved entities. Three of them are of particular interest

for fragmentation simulations, and are marked by thicker

lines in Fig. 3. These are the relationships that provide

access to all the adjacent elements of a given facet, edge, or

vertex.

Finding the adjacent elements of a given facet, edge, or

vertex corresponds to retrieving all the uses associated to

the given facet, edge, or vertex, respectively. Based on the

data structure representation, together with the element

templates, these sets of uses can be efficiently retrieved:

1. Uses of a facet: given a facet, we first access one of its

uses from its representation. Then, with the referenced

element and the local facet id, we access the other use

of the same facet, by using the adjacency information

stored in the element representation.

2. Uses of an edge: given an edge, we first access one of

its uses from its representation. Then, based on the

element template, we access the adjacent facet-uses

within the element. By using the adjacency informa-

tion stored in the element, we can reach each adjacent

element and then access the uses of the corresponding

edge. The procedure is repeated until all adjacent

elements are visited.

3. Uses of a vertex: given a vertex, we first access one of

its uses from its representation. Then, based on the

element template, we access the set of adjacent facet-

uses within the element. By using the adjacency

information stored in the element, we can reach each

adjacent element and then access the uses of the cor-

responding vertex. The procedure is repeated until all

adjacent elements are visited.

It is important to note that these sets of uses are all

retrieved based on the adjacency information provided by

the element representation, which provides access to the

adjacent elements. Once we have the set of uses, we can

have access to the adjacent elements: it suffices to access

the element associated with each one of the retrieved en-

tity-uses (facet, edge, or vertex).

5 Finite elements for fragmentation simulation

In order to handle fragmentation simulation, we have added

support for different types of finite elements in the data

structure. Previous proposals [15, 16] have opted for

identifying cohesive elements as attributes attached to the

facets of bulk elements. We have opted for explicitly

representing the cohesive elements. In this way, cohesive

elements are treated as any other type of element, resulting

in a more flexible and concise data structure. As an

example of such flexibility, cohesive elements can hold

application attributes, as any other element. Moreover, with

respect to their representation in the data structure, the

same bulk element type can be used for analysis other than

fragmentation simulation. Similarly, the interface elements

(between bulk elements) can be used for any analysis

regarding interfacial behavior (e.g., non-cohesive).

Figure 4 illustrates a few types of finite elements added

for fragmentation simulation. For instance, for 2D simu-

lation, we have added support for both linear and quadratic

triangular and quadrilateral element (T3, T6, Q4, and Q8),

together with the two corresponding cohesive elements: the

Element
nnodes

 nadj
nodes[]
adj[]

Facet-use
Ei

Facet
f_use

Vertex
v_use

Edge
e_use

Node
x,y,z
elem

Edge-use
Ei

 id

Vertex-use
Ei

 id

Model
node_array

 elm_array

Fig. 2 Schematic representation of topological entities in the data

structure (TopS). Solid boxes represent explicit entities and dashed
boxes represent implicit entities. Solid arrows represent explicitly

stored adjacency and dashed arrows represent implicitly stored

adjacency, which are extracted based on the element templates

Engineering with Computers (2008) 24:59–78 63

123

cohesive element with linear edge (CohE2) and the cohe-

sive element with quadratic edge (CohE3). For 3D, we

have added support for both linear and quadratic, tetra-

hedral and hexahedral elements (Tetra4, Tetra10, Hexa8,

and Hexa20), and for their corresponding cohesive

elements (CohT3, CohT6, CohQ4, and CohQ8, respec-

tively). It is important to note that the cohesive elements

internally represent the mesh boundary. Thus, their element

templates dictate that there is only one local facet adja-

cent to anyone of their vertices or edges, even when

opposite vertices share the same nodes. As an example, it is

valid for a cohesive element of type CohE2 to have the

following illustrative incidence: nodeA, nodeB, nodeC, and

nodeB. This indicates that two vertices of the element

share the same node. However, the element template dic-

tates that the second vertex of the element is adjacent to a

local facet while the fourth vertex is adjacent to a different

local facet.

The concept of element template [7, 17] is quite flexible

and versatile. For instance, if a new type of element is

needed, it can be easily incorporated in TopS by means of

its element template, which relates to the local topological

entities of an element in isolation. This general concept

holds for both bulk and interface elements.

6 Topological classification of facets

During the course of extrinsic fragmentation simulation,

the analysis application identifies at which facets new

cohesive elements are to be inserted, depending on the

fracture criterion used by the simulation. The insertion of

new cohesive elements imposes topological changes in the

data structure. In order to identify which operations have to

be done for updating the data structure, we need a criterion

to topologically classify the fractured facets. In this section,

we first review previous proposals restricted to quadratic

tetrahedral elements and then introduce a new systematic

topological classification that can be applied to any type of

element.

6.1 Previous proposals

Pandolfi and Ortiz [15, 16] have proposed a set of rules to

classify the fractured facet in order to perform the appro-

priate topological changes in the model. Their criterion is

applied to quadratic tetrahedral elements and is based on

the position of the facet with respect to the model boundary

(external, internal, or created by cracks). More precisely, in

their data structure, a facet is bounded by a set of segments

(edges), and the criterion to classify a facet is based on the

position of the segments of the facet with respect to the

boundary. As illustrated in Fig. 5, four different cases are

identified. In all cases the facet itself is duplicated. The

remaining required topological operations vary according

to the case [15, 16]:

Element

Facet

Edge

Vertex

Node

Elements

Facets

Edges

Vertices

Nodes

Given a(n) …
Extract adjacent

set of …

Fig. 3 The 25 topological adjacency relationships defined among the

data structure topological data. Three of them are of special interest

for fragmentation simulations: the two elements adjacent to a given

facet, the set of elements adjacent to a given edge, and the set of

elements adjacent to a given vertex

T3
1 2

3 2

1
3

4

CohE2Q4
1 2

34

T6
1 2

3

4

56

2

1
4

5

CohE3

3
6

Q8
1 2

34

8 6

7

5

Tetra4
1 3

2

4

Tetra10
1 3

2

4

7

5
6

8 9

10

CohT6

3

2

1

9

7

8

4

5

6

11

10

12

CohT3

2

1

6

4

5

3

1 5

84

73

62

Hexa8

7

1 5

84

62

Hexa20

9

17
13

18
16

14
15

19

20
11

12

10
2

1

4

7

8

5

6

3

CohQ4

2

1

4

11

12

10

3

CohQ8

9
5

6
7

8
13

15

16

14

T3
1 2

3 2

1
3

4

CohE2Q4
1 2

34

T3
1 2

3

T3
1 2

3 2

1
3

4

CohE2

2

1
3

4

CohE2Q4
1 2

34

Q4
1 2

34

T6
1 2

3

4

56

2

1
4

5

CohE3

3
6

Q8
1 2

34

8 6

7

5

T6
1 2

3

4

56

T6
1 2

3

4

56

2

1
4

5

CohE3

3
6

2

1
4

5

CohE3

3
6

Q8
1 2

34

8 6

7

5

Q8
1 2

34

8 6

7

5

Tetra4
1 3

2

4

Tetra10
1 3

2

4

7

5
6

8 9

10

CohT6

3

2

1

9

7

8

4

5

6

11

10

12

CohT3

2

1

6

4

5

3

Tetra4
1 3

2

4

Tetra4
1 3

2

4

Tetra10
1 3

2

4

7

5
6

8 9

10

Tetra10
1 3

2

4

7

5
6

8 9

10

CohT6

3

2

1

9

7

8

4

5

6

11

10

12

CohT6

3

2

1

9

7

8

4

5

6

11

10

12

CohT3

2

1

6

4

5

3

CohT3

2

1

6

4

5

3

1 5

84

73

62

Hexa8

7

1 5

84

62

Hexa20

9

17
13

18
16

14
15

19

20
11

12

10
2

1

4

7

8

5

6

3

CohQ4

2

1

4

11

12

10

3

CohQ8

9
5

6
7

8
13

15

16

14

1 5

84

73

62

Hexa8
1 5

84

73

62

Hexa8

7

1 5

84

62

Hexa20

9

17
13

18
16

14
15

19

20
11

12

10

7

1 5

84

62

Hexa20

9

17
13

18
16

14
15

19

20
11

12

10

1 5

84

62

Hexa20

9

17
13

18
16

14
15

19

20
11

12

10
2

1

4

7

8

5

6

3

CohQ4

2

1

4

7

8

5

6

3

CohQ4

2

1

4

11

12

10

3

CohQ8

9
5

6
7

8
13

15

16

14

2

1

4

11

12

10

3

CohQ8

9
5

6
7

8
13

15

16

14

3
7

Fig. 4 Illustration of element types (both volumetric and cohesive)

for fragmentation simulation

64 Engineering with Computers (2008) 24:59–78

123

• Zero segments on the model boundary: no further

operation is required;

• One segment on the boundary: the segment (and its

mid-side node) is duplicated;

• Two segments on the boundary: the segments (and their

mid-side nodes) are duplicated; the corner-node shared

by both segments is ‘‘a candidate to be’’ duplicated;

• All the three segments of the facet on the boundary: the

segments (and their mid-side nodes) are duplicated and

all three corner-nodes are ‘‘candidates to be’’ duplicated.

The approach by Pandolfi and Ortiz [15, 16] is restricted

to quadratic tetrahedral elements. Although extension for

tetrahedral elements of different order is straightforward,

their criterion cannot be directly applied to other element

types. For instance, for hexahedral elements, several other

cases should be identified.

6.2 Systematic topological classification

In order to overcome the limitations of previous proposals,

we introduce a new systematic topological classification

that can be applied to any type of element, including both

2D and 3D elements. We define a set of procedures that,

carried out step-by-step, consistently classify the facets,

thus identifying the topological changes needed to update

the data structure.

Once the analysis application identifies the facet where

to include a new cohesive element, we have access to both

associated facet-uses. Without loss of generality, let us

name them as first facet-use (fu1) and second facet-use

(fu2). Therefore, we can also name the interfacing ele-

ments: first element (E1) and second element (E2), as

illustrated in Fig. 6a. The following procedures should then

be carried out:

1. Insert the new cohesive element: the new cohesive

element is created and inserted in the model, sharing

facets with the two interfacing elements (E1 and E2).

Accordingly, the adjacency of both elements is up-

dated to reference the new inserted element (Fig. 6b).

Element E1 is no longer adjacent to element E2, and

vice versa; they both now are adjacent to the new in-

serted cohesive element.

2. For each edge-use (eu) of the facet-use (fu1) asso-

ciated to the first interfacing element (E1), do:

– • Starting at eu, retrieve all other uses of the same

edge, based on the updated element adjacencies

(Fig. 6c). If the edge-use associated to the E2 is not

reached (due to changes in the element adjacen-

cies), duplicate the edge, which leads to duplicating

all mid-side nodes, if they exist. If the E2 is

reached, the edge should not be duplicated.

3. For each vertex-use (vu) of the first facet-use (fu1)

associated to the first interfacing element (E1), do:

– • Starting at vu, retrieve all other uses of the same

vertex, based on the updated element adjacencies

Fig. 5 Cases of facet classification identified by Pandolfi and Ortiz

[15, 16] in an illustrative tetrahedral model (for simplicity, the

diagonal edges on the mesh boundary are not represented). Fractured

facets are dashed and segments on the boundary are in bold

Fig. 6 Proposed procedures to classify the fractured facet: a two

original adjacent tetrahedral elements; b the new cohesive element is

inserted; c retrieval of elements around each edge starting at the first

element, trying to reach the second one; d retrieval of elements

around each vertex starting at the first element, trying to reach the

second one

Engineering with Computers (2008) 24:59–78 65

123

(Fig. 6d). If the vertex-use associated to the E2 is

not reached (due to changes in the element

adjacencies), duplicate the vertex, which leads to

duplicating the associated corner node. If the E2 is

reached, the vertex should not be duplicated.

Whenever a node is duplicated, element connectivity

has to be updated. The new created node should replace the

original node in all the ‘‘uses’’ reached by the retrieval

process described above. In other words, all elements

associated to the visited edge-uses (or vertex-uses) must

have their incidence updated, and all element(s) not

reached during the retrieval will continue referencing the

original node.

The following pseudo-code illustrates the algorithm just

described for inserting cohesive elements along fractured

facet of bulk elements.

Pseudo-code: Procedures to insert a new cohesive element

along a facet.

function InsertCohesive (facet)

 fu1 = GetFacetUse (facet, 1)

 fu2 = GetFacetUse (facet, 2)

 E2 = GetElement (fu2)

 CreateCohesiveElement (facet)

for each edgeuse eu of fu1 do

set = GetEdgesAdjacentToElement (eu)

if not IsInSet (set, E2) then

 DuplicateEdge (GetEdge (eu))

end if

end for

for each vertexuse vu of fu1 do

set = GetVerticesAdjacentToElement (vu)

if not IsInSet (set, E2) then

 DuplicateVertex (GetVertex (vu))

end if

end for

end function

6.3 Application to 3D meshes

The proposed set of procedures suffices for classifying all

the cases identified by Pandolfi and Ortiz for tetrahedral

quadratic meshes [15, 16]. In fact, it is easy to see that the

procedures do correctly make all the required topological

changes. Thus, Pandolfi and Ortiz work [15, 16] becomes a

particular case of the present general criterion. Now let us

consider the general case in 3D.

First, we should note that for an internal edge, after

breaking the interface between the two interfacing ele-

ments, it is always possible to reach the E2 from the first

one, rotating around the edge, that is, following the cyclic

chain of edge-uses. Conversely, if the edge is resting on the

model boundary, it is not possible to access the E2 from the

first. Therefore, an edge on the boundary of a 3D model

will always be duplicated. Figures 7 and 8 illustrate both

situations together with the corresponding cross-section

views.

Second, we have to investigate what happens to the

surroundings of a vertex that is adjacent to a fractured

facet. If the vertex is on the boundary of the model and

shared by two adjacent edges of the facet that are also on

the boundary, there is no way to access the E2 from the first

one, after the adjacency between the two elements is bro-

ken. In this case, the vertex is duplicated. This situation is

illustrated in Fig. 9, together with the effect of the topo-

logical changes. On the other hand, if the vertex is in the

interior of the model or on the boundary, but shared by

none or only one edge of the facet, it remains possible to

reach the E2. These situations are illustrated in Fig. 10.

All the topological cases identified by Pandolfi and Ortiz

[15, 16] fit well under this model. One should still note that

the proposed procedures also apply for hexahedral ele-

ments, without any change, despite which edges of the

facet rest on the boundary model. In fact, the extension to

other elements is one of the advantages of the proposed

topological classification.

6.4 Application to 2D meshes

The same set of procedures described above also work for

2D models. It is important to note that, in 2D, each facet is

Fig. 7 Illustrative tetrahedral mesh (for simplicity, the diagonal

edges on the mesh boundary are not represented). After the facet (f) is

fractured, it remains possible to rotate around an internal edge (e) to

reach the second element (E2) from the first one (E1)

66 Engineering with Computers (2008) 24:59–78

123

defined by a unique edge. Conversely, each edge-use of an

element has only one facet-use adjacent to it. Therefore,

once the interface between two elements is broken, there is

no way to access the E2 starting at the associated edge-use

of the E1. The unique facet-use is no longer adjacent to the

E2. As a result, in 2D models, the edge associated to the

fractured facet is always duplicated, and existing mid-side

nodes, if any, are duplicated. Figure 11 illustrates three

different configurations together with the resulting topo-

logical changes.

The procedure related to each vertex of the fractured

facet may present different results. If it is an interior vertex,

it is always possible to access E2 rotating around the ver-

tex. However, if the vertex rests on the model boundary, E2

can no longer be reached, and the vertex has to be split

(Fig. 11).

6.5 Avoiding non-manifold configurations

Pandolfi and Ortiz [15] have mentioned that, ‘‘inevitably,

non-manifold situations, such as shell pinched at a point,

do indeed arise during fragmentation.’’ We shall demon-

strate that, under the topological framework proposed here

(TopS), the model representation remains valid during

fragmentation, even for complex crack patterns.

The topological data structure was designed to provide

support for representing meshes with manifold domains.

This means that the external boundary of a 3D mesh must

have two-manifold topology; therefore, each edge on the

boundary is shared by exactly two boundary faces.

Accordingly, for 2D models, the external boundary must

have one-manifold topology, with each vertex on the

boundary having exactly two boundary edges connected to

Fig. 8 Illustrative tetrahedral

mesh (for simplicity, the

diagonal edges on the mesh

boundary are not represented).

After the facet (f) is fractured, it

is not possible to rotate around a

boundary edge (e) to reach the

second element (E2) from the

first one (E1). As a result,

the edge is duplicated (e¢)
and the eventual mid-side nodes

(N) are duplicated (N¢). In this

case, the connectivity of

elements is updated

Fig. 9 Illustrative tetrahedral

mesh (for simplicity, the

diagonal edges on the mesh

boundary are not represented).

After the facet (f) is fractured, it

is not possible to rotate around a

boundary vertex (v) to reach the

second element (E2) from the

first one (E1) if the vertex is

shared by two edges of the

facet also on the boundary. As a

result, the associated node (N) is

duplicated (N¢) and the

connectivity of elements is

updated

Engineering with Computers (2008) 24:59–78 67

123

it. Under these conditions, the data structure is complete, in

the sense that it can efficiently retrieve all the adjacency

relationships among the defined topological entities [17].

For a model discretized by finite elements, there are

two types of non-manifold configurations, illustrated in

Fig. 12, that are not presently supported by TopS. In the

first configuration, two non-adjacent elements in 3D share

the same edge. In the second, two non-adjacent elements,

either in 3D or in 2D, share the same vertex. The former

configuration represents a singularity at a non-manifold

edge and the latter a singularity at a non-manifold vertex

[37]. If neither of these two configurations occurs, the

mesh representation is valid and complete. We should

note that a set of disjoint elements represents a mesh with

a manifold boundary. In fact, a fragmentation simulation

may result in a set of disjoint manifold sub-meshes, each

one composed by one or more connected elements.

During the course of the simulation, two non-adjacent

elements may have nodes with the same geometric posi-

tions, thus having the same appearance as the configura-

tions illustrated in Fig. 12. However, as long they are

different nodes, the non-manifold configuration is not

characterized. From a topological point of view, the two

elements are disjoint.

As long as we start with a valid mesh representation,

the proposed topological procedures to insert a cohesive

element ensure that the adaptive model representation

remains valid during the course of the simulation, even

for complex crack patterns. In other words, the singular-

ities illustrated in Fig. 12 do not arise while inserting

cohesive elements in a mesh. A ‘‘singularity’’ at a non-

manifold edge can only occur if we have more than one

connected sub-mesh sharing the same edge. The second

procedure (see Sect. 6.2) to classify fracture facets avoids

such a configuration. After breaking the interface between

the two elements, we check whether the elements around

the edge remains connected. Whenever the connectivity is

broken, we duplicate the edge, attaching the new edge to

one of the connected set of elements. The third proposed

procedure works in a similar way to avoid the occurrence

of singularity at non-manifold vertices. The vertex is

duplicated whenever the elements around it do not remain

connected.

There is another non-manifold configuration that, in

fact, may arise during the course of a fragmentation

Fig. 10 Illustrative tetrahedral mesh (for simplicity, the diagonal

edges on the mesh boundary are not represented). After the facet (f) is

fractured, it remains possible to rotate around a vertex (v1) to reach

the second element (E2) from the first one (E1), even if the vertex is

on the boundary (v2), but not shared by two edges of the facet also on

the boundary

N
N’

E2
E1

E1
E2

E2
E1

N’

N

NN’

Fig. 11 Fractured facets in 2D

with their corresponding

topological changes in an

illustrative triangular mesh.

Eventual mid-side nodes are not

illustrated, but they would be

duplicated whenever their

associated edges are duplicated

Fig. 12 Non-manifold configurations in 3D and 2D models. The left
configuration represents a singularity at a non-manifold edge; the

other two represent a singularity at a non-manifold vertex

68 Engineering with Computers (2008) 24:59–78

123

simulation. It occurs when a cohesive element is inserted

along an internal facet whose vertices lie on different sides

of the mesh boundary. Such an occurrence is illustrated in

Fig. 13, where one edge of an internal triangular facet lies

on one boundary of the model and thus is duplicated; the

opposite vertex lies on another side of the mesh boundary.

As this vertex is not duplicated, a non-manifold configu-

ration is characterized at this location. Such a non-manifold

configuration, however, does not invalidate the mesh rep-

resentation because there is only one connected set of

elements around the non-manifold vertex. Thus, the data

structure remains complete under this configuration. In

fact, according to the proposed topological classification,

the node is not duplicated because it is possible to reach,

from one element adjacent to the fracture facet, the second

adjacent element. This criterion avoids the emergence of

more than one connected set of elements around a vertex,

which is the necessary condition for the data structure to be

complete.

7 Computational experiments

We have run a set of computational experiments to test the

scalability, efficiency, and correctness of the proposed

algorithm to insert cohesive elements along the facet of

bulk elements. In the experiments, we have considered a

variety of models, from 2D to 3D, including both linear and

quadratic meshes, thus demonstrating that the proposed

approach is general and can be applied to a variety of

models. The algorithm to insert cohesive elements is ex-

actly the same, despite the model under consideration; that

is, the code to implement the insertion of cohesive

elements is the same, for 2D and 3D models, and for linear

and quadratic meshes. This is the main advantage of using

TopS: we achieve a unified topological framework for

representing finite element models used on fragmentation

simulations.

The basic model under consideration is a cylindrical

specimen as illustrated in Fig. 14. Different 2D and 3D

finite element meshes were generated to represent the

cylindrical model, at different discretizations, using both

linear and quadratic elements: T3, T6, Q4, Q8, Tetra4,

Tetra10, Hexa8, and Hexa20. Figures 15–18 show the

resulting meshes at illustrative discretizations.

For each generated mesh, we have tested the proposed

framework decoupled from any mechanics simulation

(setting up experiments similar to the one described by

Pandolfi and Ortiz [15]). Cohesive elements were inserted,

in a random order, at all the facets of the underlying me-

shes. The random order in which the cohesive elements are

non-manifold
configuration

(a) (b) (c)

Fig. 13 A non-manifold configuration that may arise during the

course of a fragmentation simulation. A new cohesive element is

inserted along an internal facet of the model: a illustrative tetrahedral

model with one of its internal faces highlighted in gray; b same model

displaying the internal facet in isolation: one edge of the facet lies on

one boundary of the model and the opposite vertex lies on another

side of the mesh boundary; c model configuration after the insertion

of a CZ element along the internal facet: the edge on the boundary is

duplicated but the opposite vertex is not, thus a non-manifold

configuration is characterized at this location. The mesh representa-

tion using TopS remains valid under this configuration

150 mm

50 mm

50 mm

Fig. 14 Cylindrical model used in the computational experiments

Engineering with Computers (2008) 24:59–78 69

123

inserted results in arbitrarily complex crack patterns during

the experiment. In the end, each node of the mesh is used

by only one bulk element. We then have checked if the

final obtained number of topological entities (nodes, ele-

ments, facets, edges, and vertices) were the expected ones.

Figure 19 shows the achieved configuration of an illustra-

tive hexahedral mesh after inserting cohesive elements, in a

random order, along 20% of the facets of the model,

illustrating the resulted arbitrary crack patterns. In

Fig. 19b, we impose a separation in between each bulk

element interface in order to better illustrate the mesh with

the inserted cohesive elements (represented in blue).

Table 1 presents the time needed to perform the inser-

tion of cohesive elements at all bulk element interfaces.1

For each type of mesh, we run the test for different mesh

discretizations. Figures 20–23 plot the elapsed time against

the number of cohesive elements inserted for the triangular,

quadrilateral, tetrahedral, and hexahedral meshes, respec-

tively. As can be noted, the proposed approach scales lin-

early with the size of the model, despite the element type in

use: the elapsed time is linearly proportional to the number

of inserted cohesive elements. These results demonstrate

that the insertion of a cohesive element is based on local

topological procedures, thus its performance is independent

of the size of the model.

8 Fracture simulations

In this section, we demonstrate the application of TopS in

dynamic fracture analysis through two finite element sim-

ulations. The first problem is a 2D simulation of mixed-

mode dynamic crack growth in a pre-cracked steel plate

subjected to impact loading. The second problem is a 3D

simulation of mixed-mode dynamic crack growth in a pre-

notched three-point-bending concrete beam.

The CZM employed in this section follows that pro-

posed by Pandolfi and Ortiz [15], which is based on

effective quantities (both tractions and displacements). The

traction–separation relations for pure normal and tangential

separation can display linear softening and linear unload-

ing/reloading. This model was used by Zhang et al. [6] to

investigate dynamic microbranching phenomena. Essen-

tially, the cohesive force that resists the opening and slid-

ing of the new surface is assumed to weaken irreversibly

with increasing interface separation. Irreversibility is

Fig. 15 Illustrative triangular mesh (for both T3 and T6) displaying a

discretization of 5 · 30

Fig. 17 General tetrahedral mesh (for both Tetra4 and Tetra10)

displaying a discretization of 5 · 30 · 5

Fig. 16 Illustrative quadrilateral mesh (for both Q4 and Q8)

displaying a discretization of 5 · 30

1 For reference, the tests were run on a dual-processor AMD Opteron

248 (2 · 2,193.78 MHz, 64 bits, and 16 Gb RAM).

70 Engineering with Computers (2008) 24:59–78

123

retained by keeping track of the maximum displacement in

the simulation history and by using it as the indicator for

loading or unloading, as shown schematically in Fig. 1.

Under loading condition, when the current effective

opening displacement is larger than that in the history, the

cohesive traction ramps down as displacement jump in-

creases, and reduces to zero as opening reaches critical

opening displacement. Decohesion is complete at this point

and cohesive force vanishes thereafter (Fig. 1). If the

interface reopens, the reloading path follows the unloading

path in the reverse direction until the maximum effective

displacement is reached, and then follows the original

ramp–down relation.

The same model is employed to simulate both 2D and

3D problems in the present work. Since the two examples

are presented for illustration purposes, we will focus on the

ability of the data structure in handling the changing

geometry. Neither the results presented nor the parameter

chosen are for validation purposes.

8.1 2D mixed-mode dynamic crack growth

Kalthoff and Winkler [38] tested a plate with two edge

notches subjected to impact by a projectile, as shown in

Fig. 24a. The experiments demonstrated different fracture/

damage behaviors of a maraging steel material under vari-

ous loading rates. The material properties are listed in Ta-

ble 2. The parameters are defined as following: E, m, and q
denote Young’s modulus, Poisson’s ratio, and mass density

of the bulk material; parameters GIC and GIIC denote frac-

ture energy for opening crack (mode-I fracture) and sliding

crack (mode-II fracture); Tn
max and Tt

max are cohesive

strength along normal and sliding directions, while dn and dt

are the corresponding separations when material failure

occurs under pure mode-I and mode-II fracture.

In this study, our objective is to simulate the brittle failure

mode and investigate the overall crack propagation behavior.

The impact-loading rate is chosen as 16.5 m/s. Since the

problem possesses symmetry, only half of the geometry

(100 · 100 mm2) is modeled, as shown in Fig. 24b.

Numerical simulation is carried out using a mesh of

80 · 80 with each square divided into four T6 elements.

Time step is set to Dt = 5 · 10–3 ls. Figure 25 shows a set

of stress contour plots taken at different times. Crack ini-

tiates at around t = 25 ls.

The impact load is applied along the left boundary of the

lower plate section (below the initial crack plane). It creates

compressive waves propagating toward the right surface

within the lower section of the plate. Before the first tide of

stress waves reaches the initial crack tip (x = 50 mm,

y = 25 mm) at around t = 18 ls, the upper plate section

(y > 25 mm) remains stress-free. When the wave reaches

the crack tip, the upper crack surface, near the crack tip,

stays stationary, while the lower crack surface near the

crack tip is under the influence of a rightward compressive

wave. This creates a tearing effect at the crack tip. After-

wards, the waves continue to propagate rightwards in the

lower plate section as compressive wave, and also propa-

gate around the crack tip into the upper section (above the

initial crack plane) of the plate. The stress waves along the

Fig. 18 General hexahedral mesh (for both Hexa8 and Hexa20)

displaying a discretization of 5 · 30 · 5

Fig. 19 Illustrative hexahedral configuration after inserting cohesive

elements (in blue) at 20% of the facets, exemplifying the resulting

(arbitrary) crack patterns: a external boundary; b model achieved

after imposing a small separation in-between each bulk element

interface to better illustrate the mesh with the inserted cohesive

elements

Engineering with Computers (2008) 24:59–78 71

123

upper crack surface are now tensile propagating toward the

left boundary. Therefore the upper and lower surfaces of the

crack are subjected to influence of stresses of opposite sign

and direction along the Cartesian x coordinate (horizontal),

and a strong tearing effect is created at the crack tip. When

the local stress reaches the cohesive strength, a cohesive

element is inserted and crack initiates. This occurs at around

25 ls. Reflective wave from the right boundary also influ-

ences the crack propagation and the crack finally grows

along a direction of about 60�.

Table 1 Elapsed times (in seconds) for inserting cohesive elements at all the facets of the models

Element

type

Mesh

discretization

Number of bulk elems Initial number of nodes Number of CZM elems Final number of nodes Time (s)

T3 100 · 600 240,000 120,600 359,400 720,000 7.636

200 · 1,200 960,000 481,200 1,438,800 2,880,000 30.172

300 · 1,800 2,160,000 1,081,800 3,238,200 6,480,000 67.66

400 · 2,400 3,840,000 1,922,400 5,757,600 11,520,000 120.054

500 · 3,000 6,000,000 3,003,000 8,997,000 18,000,000 184.782

T6 100 · 600 240,000 481,200 359,400 1,440,000 9.29

200 · 1,200 960,000 1,922,400 1,438,800 5,760,000 36.946

300 · 1,800 2,160,000 4,323,600 3,238,200 12,960,000 84.94

400 · 2,400 3,840,000 7,684,800 5,757,600 23,040,000 150.04

500 · 3,000 6,000,000 12,006,000 8,997,000 36,000,000 236.814

Q4 100 · 600 60,000 60,600 119,400 240,000 2.028

200 · 1,200 240,000 241,200 478,800 960,000 8.126

300 · 1,800 540,000 541,800 1,078,200 2,160,000 18.384

400 · 2,400 960,000 962,400 1,917,600 3,840,000 32.552

500 · 3,000 1,500,000 1,503,000 2,997,000 6,000,000 51.866

Q8 100 · 600 60,000 181,200 119,400 480,000 2.778

200 · 1,200 240,000 722,400 478,800 1,920,000 10.996

300 · 1,800 540,000 1,623,600 1,078,200 4,320,000 25.25

400 · 2,400 960,000 2,884,800 1,917,600 7,680,000 43.798

500 · 3,000 1,500,000 4,506,000 2,997,000 12,000,000 67.508

Tetra4 10 · 60 · 10 36,000 7,260 69,600 144,000 7.428

20 · 120 · 20 288,000 52,920 566,400 1,152,000 60.972

30 · 180 · 30 972,000 172,980 1,922,400 3,888,000 209.726

40 · 240 · 40 2,304,000 403,440 4,569,600 9,216,000 489.204

50 · 300 · 50 4,500,000 780,300 8,940,000 18,000,000 954.472

Tetra10 10 · 60 · 10 36,000 52,920 69,600 360,000 8.208

20 · 120 · 20 288,000 403,440 566,400 2,880,000 65.782

30 · 180 · 30 972,000 1,339,560 1,922,400 9,720,000 223.848

40 · 240 · 40 2,304,000 3,149,280 4,569,600 23,040,000 545.292

50 · 300 · 50 4,500,000 6,120,600 8,940,000 45,000,000 1,067.52

Hexa8 10 · 60 · 10 6,000 7,260 16,800 48,000 1.152

20 · 120 · 20 48,000 52,920 139,200 384,000 9.664

30 · 180 · 30 162,000 172,980 475,200 1,296,000 33.69

40 · 240 · 40 384,000 403,440 1,132,800 3,072,000 81.918

50 · 300 · 50 750,000 780,300 2,220,000 6,000,000 158.35

Hexa20 10 · 60 · 10 6,000 27,720 16,800 120,000 1.444

20 · 120 · 20 48,000 206,640 139,200 960,000 12.336

30 · 180 · 30 162,000 680,760 475,200 3,240,000 42.656

40 · 240 · 40 384,000 1,594,080 1,132,800 7,680,000 101.076

50 · 300 · 50 750,000 3,090,600 2,220,000 15,000,000 198.356

Each time reported is the average of five simulations for each specific model, inserting the elements in different random orders

72 Engineering with Computers (2008) 24:59–78

123

Due to bending effect, crack initiation also occurs at the

right edge (Fig. 25d). Belytschko et al. [39] studied the

same problem using extended FEM with loss of hyperbo-

licity criterion, and the damage zone at the bending side is

also present in their analysis. We also compare the results

with those obtained by Zhang and Paulino [5] using

intrinsic CZMs. The overall crack behavior is similar for

the two studies, while the bending crack is not as notice-

able in the intrinsic CZM study because it employs a higher

cohesive strength value.

Microcracks emanating from the main crack are also

observed in the crack growth pattern (Fig. 25). These

cracks typically arrest shortly after the main crack tip ad-

vances. We define cohesive element decohesion when all

its Gauss points separation jump exceed a critical separa-

tion value. Thus, by extracting only the cohesive elements

that have undergone complete decohesion, we obtain a

‘‘clean’’ fracture pattern, as shown in Fig. 26a. Clearly, the

microcracks observed in Fig. 25 do not grow beyond one

element length.

Crack velocity is also computed from crack length

versus time increment information, as shown in Fig. 26b

along with the Rayleigh wave speed (2,799 m/s) for com-

parison purpose. The average crack speed is around

1,700 m/s, which is slightly lower than that estimated by

Belytschko et al. [39], which is 1,800 m/s.

8.2 3D mixed-mode dynamic crack growth

John and Shah [40] tested pre-cracked three-point-bend

beam (TPB) concrete material specimens as shown in

Fig. 27. Position of the pre-crack was shifted systemati-

cally to test a series of asymmetric loading conditions that

result in mixed-mode fracture. Dynamic loading was ap-

plied with a modified Charpy test.

Fig. 20 Time versus number of inserted CZ elements for linear and

quadratic triangular meshes

Fig. 23 Time versus number of inserted CZ elements for linear and

quadratic hexahedral meshes

Fig. 22 Time versus number of inserted CZ elements for linear and

quadratic tetrahedral meshes

Fig. 21 Time versus number of inserted CZ elements for linear and

quadratic quadrilateral meshes

Engineering with Computers (2008) 24:59–78 73

123

By increasing its offset (represented by the parameter a
where 0 £ a £ 1), the pre-crack was subjected to mode-II

fracture conditions, and the trajectory of the crack varied

accordingly. Two competing crack mechanisms drove

fracture initiation and growth in the specimen illustrated in

Fig. 27: the crack growth initiated from the pre-crack; and

the nucleation of crack at the lower center cross-section

and its subsequent growth. The experiment indicates that

for a < 0.77, crack pattern is dominated by the growth of

pre-crack, while for a > 0.77 crack initiation and growth of

center crack become dominant and shields the growth of

pre-crack.

In this paper, we present one set of results that illustrate

the capability of the data structure in analyzing the 3D

fracture problem. A typical mesh for a = 0.5 is shown in

Table 2 Material properties of 18Ni(300) steel and cohesive model

parameters

E
(GPa)

m q (kg/

m3)

GIc = GIIc

(kJ/m2)

Tn
max = Tt

max

(GPa)

dn = dt

(lm)

190 0.3 8,000 22.2 1.2 37.0

Fig. 25 Stress contour and

crack propagation plots of the

Kalthoff–Winkler experiment at

different time instants: a 20 ls;

b 30ls; c 50ls; d 60ls

75mm

100mm

70
o

0
=av0

50mm

100mm

100mm

50mm

v0

100mm

25mm

100mm

75mm

0=50mma

(a) (b)
Fig. 24 a Geometry and

loading of the Kalthoff–Winkler

experiments [39]; b 2D plane-

strain FEM simulation model

74 Engineering with Computers (2008) 24:59–78

123

Fig. 28. Due to symmetry condition along the Cartesian y

(thickness) direction, half of the geometry is used for

simulation with symmetric condition appropriately applied.

Mesh generation considers denser mesh within the region

of projected crack growth, which is between the pre-crack

and the central region. The mesh consists of 176,514 Tet-

ra4 elements and 37,923 nodes.

Table 3 lists the material properties employed in the

simulation. The notation is the same as that employed for

the previous example. The tension–shear coupling param-

eter b, which assigns different weight for normal and

sliding traction–separation in computing effective quanti-

ties [15], is set to be 2.75. Figure 28 reports principal stress

and crack growth at different time instants. Before crack

growth starts (Fig. 29a), stress concentration occurs both

around the crack tip and along the bending side of the beam

center. Crack initiates from the existing crack tip (Fig. 29

b), and afterwards the stress concentration along the central

beam is gradually relieved (Fig. 29c, d). Numerous frag-

mentations also occur around the main crack path, while

the main crack propagating path is clearly visible at an

angle of around 30�.

The cohesive strength is rather low for concrete material,

and thus the estimated cohesive zone size is relatively large.

Based on such assumption, Ruiz et al. [41] simulated this

problem using a coarse mesh. Their results did not capture

the transitional a value well. For example, mid-span tensile

crack begins to grow for a as low as 0.5, and becomes

dominant for a = 0.6. Ruiz et al. [41] suggested that the

discrepancy between their simulation results and the

experimental observation in terms of transitional a value

may be contributed to choice of b value. However, our

investigation indicates that the results are more sensitive to

0.04 0.06 0.08
0.02

0.03

0.04

0.05

0.06

0.07

0.08

x (m)

y
(m

)

30 40 50 60
0

500

1000

1500

2000

2500

3000

t(µs)

V
cr

ac
kT

ip
 (

m
/s

)

Rayleigh Wave Speed

Crack Speed

(a) Crack path (b) Crack Speed

Fig. 26 a Main crack path

extracted from completely

debonded cohesive surfaces in

Fig. 25; b numerical crack

speed derived directly (i.e.

without post-processing) from

crack length growth versus time

increment. Rayleigh wave speed

is 2,799 m/s

7.62

V=0.05m/s2.54

1.905

sl

ls=10.16 10.16

11.4311.43

Fig. 27 Specimen dimensions (in cm) for the three-point-bending

fracture test. The pre-crack is shifted to a position als, where ls is half

the distance between the two supports, and 0 £ a £ 1

Fig. 28 Mesh and crack pattern

for pre-cracked three-point-

bending specimen with crack

position parameter a = 0.5.

Crack initiates from the pre-

crack and grows afterwards.

Mesh consists of 176,514 Tet4

elements and 37,923 nodes

Engineering with Computers (2008) 24:59–78 75

123

mesh quality rather than b for the problem. For the problem

under investigation, a careful mesh quality study must

precede any conclusive simulation. For 3D simulation,

unstructured mesh with through-thickness size control

provides better results compared to structured mesh. A

detailed report for mesh quality control and simulation re-

sults is presently under development by the authors.

9 Conclusion

In this paper, we propose a topological framework for

supporting both intrinsic and extrinsic fragmentation sim-

ulations. The proposed framework is general in the sense

that it supports any finite element mesh with elements

defined by ordered list of nodes. Based on TopS, a reduced

topological data structure [17, 18], we propose a new

Table 3 Material properties of concrete beam specimen and cohesive

model parameters

E
(GPa)

m q
(kg/m3)

GIc = GIIc

(J/m2)

Tn
max

(MPa)

Tt
max

(MPa)

dn

(dm)

dt

(dm)

28 0.2 2,400 22 8 22 5.5 2.0

Fig. 29 Stress contour and

crack pattern for pre-cracked

three-point-bending specimen

with crack position parameter

a = 0.5: a t = 0.66 ms; b
t = 1.1 ms; c t = 1.35 ms; d
t = 1.5 ms

76 Engineering with Computers (2008) 24:59–78

123

systematic topological classification of fractured facets,

thus achieving a general algorithm to insert cohesive ele-

ments along facets of bulk-elements: the same algorithm

works for 2D and 3D models, including both linear and

quadratic elements. The proposed approach to classify

fractured facets can also be applied to other topological

data structures, as long as they are complete.

We have run a set of computational experiments that

demonstrate the scalability and correctness of the proposed

approach. The insertion of cohesive elements is based on

local topological operations. As a consequence, the time

needed to insert cohesive elements at all facets of a model

is linearly proportional to the number of inserted elements.

Such linear scaling is demonstrated by the plots of Fig-

ures 20 through 23, including millions of CZ elements. We

also have integrated TopS with actual extrinsic fragmen-

tation simulation. Simulation results, for both 2D and 3D

models, demonstrate the effective use of the proposed

topological framework.

Although we have emphasized the use of TopS to pro-

vide support for fragmentation simulations with cohesive

elements, it has other potential applications. For instance,

TopS can be used to generate multiple arbitrary cracks

(e.g., in the context of linear elastic fracture mechanics [3])

in existing crack-free meshes for complex 3D domains.

Acknowledgments Paulino gratefully acknowledges the support

from NASA-Ames, Engineering for Complex Systems Program, and

the NASA-Ames Chief Engineer (Dr. Tina Panontin) through grant

NAG 2-1424. Both Celes and Espinha would like to thank the Tecgraf

laboratory at PUC-Rio, which is mainly funded by the Brazilian oil

company, Petrobras.

References

1. Cox BN, Gao H, Gross D, Rittel D (2005) Modern topics and

challenges in dynamic fracture. J Mech Phys Solids 53:565–596

2. Camacho GT, Ortiz M (1996) Computational modeling of impact

damage in brittle materials. Int J Solids Struct 33:2899–2938

3. Anderson TL (2005) Fracture mechanics: fundamentals and

applications, 3rd edn. CRC, Boca Raton, Florida

4. Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack prop-

agation based on loss of hyperbolicity and a new discontinuous

enrichment. Int J Numer Methods Eng 58:1873–1905

5. Zhang Z, Paulino GH (2005) Cohesive zone modeling of dy-

namic failure in homogeneous and functionally graded materials.

Int J Plast 21:1195–1254

6. Zhang Z, Paulino GH, Celes W (2007) Extrinsic cohesive mod-

eling of dynamic fracture and microbranching instability in brittle

materials. Int J Numer Methods Eng (in press)

7. Beall MW, Shephard MS (1997) A general topology-based mesh

data structure. Int J Numer Methods Eng 40:1573–1596

8. Garimella RV (2002) Mesh data structure selection for mesh

generation and FEA applications. Int J Numer Methods Eng

55:451–478

9. Remacle J-F, Karamete BK, Shephard MS (2000) Algorithm

oriented mesh database. In: Proceedings of the 9th international

meshing roundtable, Sandia National Laboratories, pp 349–359,

October

10. Remacle J-F, Shephard MS (2003) An algorithm oriented mesh

database. Int J Numer Methods Eng 58:349–374

11. Owen SJ, Shephard MS (2003) Editorial: special issue on trends

in unstructured mesh generation. Int J Numer Methods Eng

58:159–160

12. Löhner R (1988) Some useful data structures for the generation of

unstructured grids. Commun Appl Numer Methods 4:123–135

13. Carey GF, Sharma M, Wang KC (1988) A class of data structures

for 2-d and 3-d adaptive mesh refinement. Int J Numer Methods

Eng 26:2607–2622

14. Hawken DM, Townsend P, Webster MF (1992) The use of dy-

namic data structures in finite element applications. Int J Numer

Methods Eng 33(9):1795–1811

15. Pandolfi A, Ortiz M (1998) Solid modeling aspects of three-

dimensional fragmentation. Eng Comput 14:287–308

16. Pandolfi A, Ortiz M (2002) An efficient adaptive procedure for

three-dimensional fragmentation simulations. Eng Comput

18:148–159

17. Celes W, Paulino GH, Espinha R (2005) A compact adjacency-

based topological data structure for finite element mesh repre-

sentation. Int J Numer Methods Eng 64(11):1529–1565

18. Celes W, Paulino GH, Espinha R (2005) Efficient handling of

implicit entities in reduced mesh representations. J Comput Inf

Sci Eng Spec Issue Mesh-Based Geometric Data Process

5(4):348–359

19. Klein PA, Foulk JW, Chen EP, Wimmer SA, Gao H (2001)

Physics-based modeling of brittle fracture: cohesive formulations

and the applications of meshfree methods. Sandia National

Laboratory, Technical Report, SAND 2001-8009

20. Ortiz M, Pandolfi A (2003) Finite-deformation irreversible

cohesive elements for three-dimensional crack-propagation

analysis. Int J Numer Methods Eng 44:1267–1282

21. Cirak F, Ortiz M, Pandolfi A (2005) A cohesive approach to thin-

shell fracture and fragmentation. Comput Methods Appl Mech

Eng 194:2604–2618

22. Song SH, Paulino GH, Buttlar WG (2007a) A bilinear cohesive

zone model tailored for fracture of asphalt concrete considering

viscoelastic bulk material. Eng Fract Mech 73(18):2829–2848

23. Song SH, Paulino GH, Buttlar WG (2007b) Simulation of crack

propagation in asphalt concrete using an intrinsic cohesive zone

model. ASCE J Eng Mech 132(11):1215–1223

24. Espinosa HD, Zavattieri PD (2003) A grain level model for the

study of failure initiation and evolution in polycrystalline brittle

materials. Part 1 theory and numerical implementation. J Mater

35:333–364

25. Zavattieri P, Espinosa HD (2001) Grain level model analysis of

crack initiation and propagation in brittle materials. Acta Mater

49:4291–4311

26. Xu X, Needleman A (1995) Numerical simulations of dynamic

crack growth along an interface. Int J Fract 74:289–324

27. Pandolfi A, Krysl P, Ortiz M (1999) Finite element simulation of

ring expansion and fragmentation: the capturing of length and

time scales through cohesive models of fracture. Int J Fract

95:279–297

28. Matous K, Geubelle PH (2006) Multiscale modelling of particle

debonding in reinforced elastomers subjected to finite deforma-

tions. Int J Numer Methods Eng 65:190–223

29. Iesulauro E, Ingraffea AR, Arwade S, Wawrzynek PA (2002)

Simulation of grain boundary decohesion and crack initiation in

aluminum microstructure models. In: Reuter WG, Piascik RS

(eds) Fatigue and fracture mechanics: 33rd volume, ASTM STP

1417. American Society for Testing and Materials, West Cons-

hohocken, pp 715–728

Engineering with Computers (2008) 24:59–78 77

123

30. Weiler K (1986) Topological structures for geometric modeling,

Ph.D. Thesis, Rensselaer Polytechnic Institute, New York

31. Weiler K (1988) The radial edge structure: a topological repre-

sentation for non-manifold geometric boundary modeling. In:

Wozney M, McLaughlin H, Encarnacao J (eds) Geometric

Modeling for CAD Applications, North-Holland, pp 3–36

32. Mäntylä M (1988) An introduction to solid modeling. Computer

Science Press, Rockville

33. Wawrzynek PA, Ingraffea AR (1987) Interactive finite element

analysis of fracture processes: an integrated approach. Theor

Appl Fract Mech 8:137–150

34. Martha LF, Wawrzynek PA, Ingraffea AR (1993) Arbitrary crack

representation using solid modeling. Eng Comput 9:63–82

35. Paulino GH, Jin Z-H, Dodds RH Jr (2003) Failure of functionally

graded materials. In: Karihaloo B, Knauss WG (eds) Compre-

hensive structural integrity, vol 2, Chapter 13. Elsevier Science,

Amsterdam, pp 607–644

36. Jin Z, Paulino GH, Dodds RH Jr (2003) Cohesive fracture

modeling of elastic–plastic crack growth in functionally graded

materials. Eng Fract Mech 70:1885–1912

37. De Floriani L, Hui A (2003) A scalable data structure for three-

dimensional non-manifold objects. In: Proceedings of the Euro-

graphics symposium on geometry processing, Aachen, Germany,

pp 72–82

38. Kalthoff JF, Winkler S (1987) Failure mode transition at high

rates of shear loading. In: Chiem CY, Kunze HD, Meyer LW

(eds) Proceedings of the international conference on impact

loading and dynamic behavior of materials, Bremen, Germany,

pp 185–195

39. Belytschko T, Chen H, Xu J, Zi G (2003) Dynamic crack prop-

agation based on loss of hyperbolicity and a new discontinuous

enrichment. Int J Numer Methods Eng 58:1873–1905

40. John R, Shah SP (1990) Mixed-mode fracture of concrete sub-

jected to impact loading. J Struct Eng 116:585–602

41. Ruiz G, Pandolfi A, Ortiz M (2001) Three-dimensional cohesive

modeling of dynamic mixed-mode fracture. Int J Numer Methods

Eng 52:97–120

78 Engineering with Computers (2008) 24:59–78

123

	A general topology-based framework for adaptive insertion �of cohesive elements in finite element meshes
	Abstract
	Introduction
	Intrinsic and extrinsic cohesive models
	On topological data structures
	Adjacency-based topological data structure (TopS)
	Topological entities
	Adjacency relationships

	Finite elements for fragmentation simulation
	Topological classification of facets
	Previous proposals
	Systematic topological classification
	Application to 3D meshes
	Application to 2D meshes
	Avoiding non-manifold configurations

	Computational experiments
	Fracture simulations
	2D mixed-mode dynamic crack growth
	3D mixed-mode dynamic crack growth

	Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

