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Abstract A two-dimensional explicit elastic solu-
tion is derived for a brittle film bonded to a ductile
substrate through either a frictional interface or a fully
bonded interface, in which periodically distributed dis-
continuities are formed within the film due to the
applied tensile stress in the substrate and consideration
of a “weak form stress boundary condition” at the crack
surface. This solution is applied to calculate the energy
release rate of three-dimensional channeling cracks.
Fracture toughness and nominal tensile strength of the
film are obtained through the relation between crack
spacing and tensile strain in the substrate. Comparisons
of this solution with finite element simulations show
that the proposed model provides an accurate solution
for the film/substrate system with a frictional interface;
whereas for a fully bonded interface it produces a good
prediction only when the substrate is not overly com-
pliant or when the crack spacing is large compared
with the thickness of the film. If the section is idealized
as infinitely long, this solution in terms of the energy
release rate recovers Beuth’s exact solution for a fully
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cracked film bonded to a semi-infinite substrate. Inter-
facial shear stress and the edge effect on the energy
release rate of an asymmetric crack are analyzed. Frac-
ture toughness and crack spacing are calculated and are
in good agreement with available experiments.
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1 Introduction

A brittle film or coating bonded to a substrate that is
subjected to a tensile stress may fail by the formation of
a series of uniformly distributed cracks in the longitudi-
nal direction of the film (Fig. 1a). With increased tensile
stress, additional cracks form until the saturation spac-
ing is achieved (Agrawal and Raj 1989; Hutchinson and
Suo 1992). This mechanism has been used to evaluate
the interfacial shear strength (Agrawal and Raj 1989)
and to measure the elastic modulus and the fracture
toughness of the film (Thouless et al. 1992; Wang et al.
1998). A number of experiments have been developed
to study the dependence of fracture behavior on the
geometry of the film, the mechanical properties of the
film and substrate, and conditions of the interface (see,
for example, Hu and Evans 1989; Bordet et al. 1998;
Etzkorn and Clarke 2001; Alaca et al. 2002; Zhao et al.
2002; Malzbender 2004; Tadepalli et al. 2008).

123



40 H. M. Yin et al.

Fig. 1 A brittle film resting
on a thick substrate with
uniformly distributed
discontinuities due to a
uniform strain in the
substrate: a the
discontinuity map; b the
marked section between two
discontinuities; c the
uniformly strained section;
d the section with the ends
of the film compressed and
the ends of the constrained
substrate
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Crack propagation in a thin film exhibits a three-
dimensional (3D) process. When the local stress
reaches a critical value, a crack initiates perpendicular
to the film surface and spreads by channeling across the
thickness of the film (Beuth 1992; Xia and Hutchinson
2000; Vlassak 2003). Nakamura and Kamath (1992)
presented a 3D finite element analysis (FEA) and showed
that the channeling crack reaches a steady-state when
the crack length is more than twice the film thick-
ness for a film bonded to a rigid substrate. The elastic
fields due to a steady-state channeling crack are typ-
ically solved by a two-dimensional (2D) plane strain
analysis. Because a singular point exists at the crack
tip, which is located at the bottom of the film, many
analyses have focused on the local elastic solution in
the neighborhood of that point. Beuth (1992) presented
solutions of fully and partially cracked film problems
for elastic films bonded to elastic substrates. Beuth and
Klingbeil (1996) extended this work to elastic-plastic
substrates by using the simple shear lag model (Hu
and Evans 1989). In addition, Liu et al. (1999) and
Yu et al. (2001) investigated the elastic field due to the
edge effects. Although local solutions such as these are
useful in the study of crack propagation, they cannot be
directly used to predict crack initiation, crack spacing,
or to study the interaction between cracks. The overall
elastic field is essential to provide a complete picture
of cracking in films.

To analyze the interfacial shear strength, Agrawal
and Raj (1989) employed a sine wave function to appro-
ximate the shear stress along the interface. Saif et al.
(1993) adopted the simple shear log model and the
2D finite element method (FEM) to analyze stress dis-
tributions in the whole film. Chen et al. (2000) also
obtained the stress distribution by 2D FEM and
demonstrated that Agrawal and Raj (1989) approxima-

tion is not reasonable in the vicinity of discontinuities.
Xia and Hutchinson (2000) and Shenoy et al. (2001),
respectively, proposed an elastic solution in integral
forms. Parmigiani and Thouless (2006) employed a
cohesive zone model to simulate crack deflection at
interfaces. Fleck and Qiu (2007) used linear FEM to
study the damage tolerance of 2D isotropic lattices.
Numerical methods are a good tool to solve the elastic
field, however, they do not lead to a general solution
for the class of problems of interest.

Timm et al. (2003) developed a one-dimensional
(1D) closed-form solution for an elastic strip on a sub-
strate with a frictional interface, in which the shear
stress is balanced by a uniform tensile stress along the
thickness of the strip. However, because the friction
forces are driven from the interface, the tensile stress
and the shear stress will significantly change along the
thickness. Obviously, a 1D solution cannot describe the
stress distribution variation along the thickness. Thus,
a 2D model is necessary to better analyze the stress
distribution of the film.

The purpose of this paper is to solve the elastic
field distribution in a 2D brittle film bonded to a sub-
strate and subjected to uniform tensile strain in the
substrate as seen in Fig. 1a. The film is assumed to
be fully bonded to the substrate even during the for-
mation of the discontinuities, and thus no delamination
along the interface is considered. Because the film is
thin and brittle, once a crack initiates, it is assumed
to propagate across the thickness of the film and stop
at the interface. The cracks in the substrate are not con-
sidered. By using the specific boundary and loading
conditions, a general solution for the elastic fields of
the film is obtained in a closed form for two kinds
of interfaces: a frictional interface and a fully bonded
interface.
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An explicit elastic solution for a brittle film with periodic cracks 41

When the width of the film is very large, the cracks
spread by channeling normal to the loading direction.
The energy release rate of a steady-state channeling
crack is obtained as the work done to close the crack
far behind the crack tip (Beuth 1992). If the width
of the film is limited, the channeling process may be
unstable (Hutchinson and Suo 1992), and cracks will
quickly spread across the width and thickness, and thus
some discontinuities form. The fracture toughness can
be solved as the critical energy release rate at the forma-
tion of the discontinuity. The nominal tensile strength
not only depends on fracture energy and elastic moduli
of the film material, but also changes with the crack
spacing and the thickness of the film.

The interfacial shear stress is explicitly given for
two kinds of interfaces. For a very thin film, the shear
stress is only concentrated in the neighborhood of the
crack tip, and is quickly reduced to zero far from the
singular point. If the interfacial shear strength is given,
a method for evaluating the propensity for debonding
along the interface in the vicinity of discontinuities is
presented. Furthermore, a fully bonded interface can
be simulated by a frictional interface by introducing an
equivalent spring coefficient. A thinner film provides a
higher equivalent spring coefficient. This 2D solution
is compared with Xia and Hutchinson’s (2000) results
obtained from 1D solution, which shows that the pro-
posed solution leads to a clearer physical meaning.

The edge effect on the energy release rate is further
discussed. When a long film/substrate system is sub-
jected to a tensile stress in the substrate, in the begin-
ning, many cracks may simultaneously initiate in the
middle range. When the length of the section between
discontinuities is small enough, a new crack will initi-
ate at the symmetric plane so that the section is cracked
into two equal pieces. Thus, the film will finally be
cracked into pieces with roughly equal length. When
a film/substrate system is subjected to a fixed tensile
strain in the substrate, fracture toughness is calculated
and compared with the experimental data. The pro-
posed solution provides a reasonable explanation of the
experimental observation: given fracture toughness and
tensile loading in a film/substrate system, there exists
a critical thickness, below which no crack initiates.

The remainder of this paper is organized as follows.
Section 2 presents the general solution of the displace-
ment field in a periodic section between two discontinu-
ities and provides the explicit expressions of the elastic
fields for the film/substrate system with two kinds of

interfaces. Section 3 emphasizes the energy release rate
of a channeling crack and provides a method to mea-
sure the fracture toughness and nominal tensile strength
of the film. Section 4 shows some comparisons with
FEM simulations and validates the accuracy of the pro-
posed solution. Applying this solution, we also investi-
gate the interfacial shear stress distribution, equivalent
spring coefficient of the fully bonded interface, and
edge effect on the energy release rate of an asymmetric
crack. The proposed method is shown to be in good
agreement with the experimental results of Thouless et
al. (1992).

2 Basic formulation

Consider a brittle film (thickness h, Young’s modu-
lus E1, Poisson’s ratio v1) bonded to a thick substrate
(thickness H , Young’s modulus E0, Poisson’s ratio v0)

as illustrated in Fig. 1a. With the increase of the tensile
strain in the substrate (the averaged strain denoted by
ε0

x ), some uniformly distributed discontinuities form
across the thickness of the film. However, the tensile
strain on the ends of each section is still assumed to be
uniform along the depth of the substrate and equal to
the averaged strain of the substrate as ε0

x . Based on the
periodic boundary condition, the section highlighted
in Fig. 1a is selected to represent all other sections.
When the tensile strain reaches ε0

x , the marked section
of the film with length 2λ will be cracked into two
pieces. To solve the elastic field in the section at the
moment just before the crack forms (Fig. 1b), a stan-
dard representation introduced for analysis purposes
employs the superposition of a uniformly strained sec-
tion (Fig. 1c) with the “reduced problem” (Fig. 1d)
wherein the film is bonded to the substrate and sub-
jected to a uniform compressive strain −ε0

x on its ends
(Yu et al. 2001). To make the total averaged strain of the
substrate consistent, the x-directional displacements at
the ends of the substrate in Fig. 1d are constrained.
Because the deformation of Fig. 1c is compatible
between the film and the substrate, the strain field in the
film is still uniform as ε0

x . To solve the reduced prob-
lem, a 2D Cartesian coordinate system is setup with
the origin at the central bottom of the section. A plane
strain problem is considered.

Because the thickness of the film is much smaller
than its length and the top surface is free, generally
the top surface of the film remains approximately flat
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during the compression if no debonding happens along
the interface between the film and the substrate. Thus,
it is assumed that all points of a plane normal to the
y direction is still in the same plane after deformation
(Yin et al. 2007), i.e.,

u y(x, y) = u y(y). (1)

The constitutive law in the plane strain problem reads

σx = Ē1ux,x , τxy = µ1ux,y, (2)

where the elastic moduli are denoted as Ē1 = E1/

(1 − v2
1) and µ1 = E1/[2(1 + v1)], and u y,x = 0 is

used. The equilibrium equation in the absence of body
force in the x direction is written as:

σx,x + τxy,y = 0. (3)

Combining Eqs. 2 and 3, one obtains

Ē1ux,xx + µ1ux,yy = 0. (4)

By using the method of separation of variables, the
general solution is obtained as

ux (x, y) = (A1ecx/h + A2e−cx/h) [B1 sin(dy/h)

+B2 cos(dy/h)] , (5)

where A1, A2, B1 and B2 are constants to be decided
by the boundary conditions. Moreover, d =

√
Ē1/µ1c,

and x and y are normalized by the thickness of the film.
The symmetry of the geometry and the free upper

surface provide

ux (0, y) = 0; ux,y(x, h) = 0. (6)

Applying the above boundary conditions in Eq. 5, one
obtains

ux (x, y) = B sinh(cx/h) cos[d(1 − y/h)]. (7)

At both ends, stress σx = −Ē1ε
0
x . Due to assumptions

of Eq. 1, this boundary condition cannot rigorously be
satisfied at every point. However, the total normal force
should be zero, namely

1

h

h∫

y = 0

σx (λ, y)dy = −Ē1ε
0
x . (8)

The above weak form boundary condition provides a
global control of the resultant force being zero at the
cracked end, but the local stress distribution may not
be accurate. Therefore, the singularity and the mixed
mode of cracking are not presented through this solu-
tion. The substitutions of Eq. 7 into Eq. 2, and Eq. 2
into Eq. 8 provide

B = −
√

Ē1

µ1

hε0
x

cosh(cλ/h) sin d
. (9)

Along the bottom of the film, the interfacial friction
force gives a resistance to the displacement in the x
direction (Xia and Hutchinson 2000; Timm et al. 2003),
namely

µ1ux,y(x, 0) = kux , (10)

where k is the spring coefficient, which depends on the
performance of the interface and material properties of
the substrate. In some special cases, k can be directly
obtained as a material constant. Insertion of Eq. 7 into
Eq. 10 provides

d tan d = kh

µ1
; c =

√
µ1

Ē1
d. (11)

Thus, parameters d and c can be numerically solved.
However, generally the film is fully bonded to the sub-
strate, so the spring coefficient k is not given. Following
Xia and Hutchinson (2000) method, comparison of the
energy release rate with the exact solution provides

c = 2

πg(α, β)
; d =

√
Ē1

µ1
c. (12)

The detailed derivation of the above equation is given
in Sect. 3. Here the function g(α, β) is illustrated in
Fig. 2. It depends on Dundur’s parameters, α and β,
namely,

α = Ē1 − Ē0

Ē1 + Ē0
, β = µ1(1 − 2v0) − µ0(1 − 2v1)

2µ1(1 − v0) + 2µ0(1 − v1)
,

(13)

with Ē0 = E0/(1 − v2
0) and µ0 = E0/[2(1 − v0)].

Figure 2 shows the function g(α, β) for β = 0 and
β = α/4 (Beuth 1992), respectively. For convenience
of the simulation (performed later), g(α, β) is fitted by
a function (see Fig. 2) as:

g(α, β) ≈ 1.258 − 0.40α − 0.26α3 − 0.30α4

1 − α
. (14)

Figure 2 shows that the dependence of g(α, β) on β is
weak except when α close to −1 (Xia and Hutchinson
2000). Thus, the fitted function in Eq. 14 will be used
to approximate g(α, β) in the following simulations.

Combination of Eqs. 7, 9, and 11/12 provides a
closed-form elastic solution for the reduced problem.
Then, the total displacement and stress fields read

ux (x, y)= ε0
x x+B sinh(cx/h) cos[d(1−y/h)], (15)

σx = Ē1(ε
0
x+ Bc/h cosh(cx/h) cos[d(1−y/h)]), (16)

and

τxy = µ1 Bd/h sinh(cx/h) sin[d(1 − y/h)] (17)

with B given in Eq. 9, d and c given in Eqs. 11 or 12.
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Fig. 2 The function g(α, β) versus α for β = 0 and β = α/4
together with the fitting curve

If the substrate is much more compliant than the
film, i.e. E0/E1 → 0, the spring coefficient k → 0.
Then, from Eq. 11 we obtain d → 0. Equation 12 will
also give the same prediction of d. Substitution of Eq. 9
into Eq. 15 provides

lim
d→0

ux (x, y) = 0. (18)

Thus, the film has no deformation because the strain
cannot be transferred to the film through the weak inter-
face.

In addition, if the film is much more compliant than
the substrate, i.e. E0/E1 → ∞, the problem in Fig. 1b
is reduced to the film attached on a rigid substrate, i.e.
k → ∞. Then, d in Eq. 11 can be explicitly solved as

d = π/2. (19)

Substituting Eqs. 9 and 19 into Eq. 15 yields the dis-
placement field as

ux (x, y) = ε0
x x −

√
Ē1

µ1
hε0

x

× sinh(cx/h)

cosh(cλ/h)
cos

π(1 − y/h)

2
, (20)

from which we can see that the x-directional strain
along the bottom of the film is still constant as ε0

x .
However, because d in Eq. 12 apparently depends on
the Poisson’s ratio of the film, it seems that we cannot
uniquely decide d as Eq. 19. This observation is not
true. Because the dependence of g(α, β) on β is still
considerable when E0/E1 → ∞ or α → −1, which can
be seen in Fig. 2, c in Eq. 12 will first change with
the Poisson’s ratio of the film, and then Eq. 12 will

hopefully provide an identical d to Eq. 19 for varying
Poisson’s ratio of the film. As an example, Beuth (1992)
provided g(−0.99, 0) = 0.8153 and g(−0.99,−0.25)

= 0.7117. For α = −0.99 we obtain E0/E1 = 199;
then, for β = 0 and −0.25, we obtain v = 0.5 and 0.33,
respectively. From Eq. 12, d is obtained as 0.4971π

and 0.4944π , respectively, from which we can pre-
dict d is approximately 0.5π for α → −1. Moreover,
Eq. 12 shows that d only depends on material proper-
ties of the film/substrate system and is not related to
the geometry of the film. In general, d is in the range of
0 to π/2, and the displacement field is also in between
these two extreme cases.

3 Energy release rate and fracture toughness

Consider the section in Fig. 1b with two discontinuities
at the both ends and with a large width compared to the
thickness. When the external mechanical loading in the
substrate increases, a steady-state channeling straight
crack will initiate at the middle edge of the section and
spread in the −z direction as seen in Fig. 3. Far ahead
the crack front, the elastic fields are not affected by the
crack and are written in Eqs. 15–17. Thus the tensile
stress at the symmetric plane is

σx (0, y) = (1 − d cos[d(1 − y/h)]
cosh(cλ/h) sin d

)σ 0
x , (21)

with σ 0
x = Ē1ε

0
x , and the shear stress is zero.
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Fig. 3 Energy release rate of the crack front for a steady-state
channeling crack in the section with large width and varying
length
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Far behind the crack front, the section is cracked into
two pieces, and the elastic fields in each piece can also
be solved by Eq. 15 with replacing λ by λ/2 in the new
local coordinate system. Then we can solve the crack
opening displacement as:

δ(0, y) = 2

√
Ē1

µ1
hε0

x

tanh( cλ
2h )

sin d
cos[d(1 − y/h)], (22)

To recover this crack opening displacement, the stress
in Eq. 21 has to be applied along the cracking surface.
Thus, the energy release rate of the crack front can be
obtained as the work done to close the crack opening
displacement (Beuth 1992), namely,

G = 1

2h

h∫

0

σx (0, y)δ(0, y)dy. (23)

Because the free boundary condition in Eq. 8 cannot
rigorously be satisfied at every point along the crack
surface, we use the averaged stress along the thickness
to represent the local stress. Here we also use the aver-
aged stress in Eq. 23, and then, the energy release rate
can be explicitly written as

G = (σ 0
x )2

Ē1

h

c

[
2 tanh

(
cλ

2h

)
− tanh(cλ/h)

]
, (24)

which provides the same form as Xia and Hutchinson
(2000) results (see Eq. 30 of the paper) by setting l =
h/c.

When the section is infinite long, i.e. λ → ∞,
Eq. 23 is reduced to

G = (σ 0
x )2h

Ē1c
. (25)

Beuth (1992) also proposed the energy release rate
averaged over the front of a semi-infinite isolated crack
as

G = (σ 0
x )2h

Ē1

π

2
g(α, β), (26)

where g(α, β) can be further approximated by Eq. 14
as a function of α. These two cases should be equiva-
lent (Xia and Hutchinson 2000), so that the following
is obtained

c = 2

πg(α, β)
. (27)

This equation has been used to calibrate the constants
c and d as Eq. 12.

Figure 3 shows the energy release rate at the crack
front. Here v1 = v0 = 0.27 is used in the calcula-
tion. We can find that with the increase of λ, the edge
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Fig. 4 Nominal tensile strength of the section with limited width
and varying length

effect diminishes and thus the energy release rate is
saturated at different lengths for different Young’s mod-
ulus of the film. The higher the Young’s modulus of the
film, the larger the saturation length and the saturation
energy release rate. Thus, cracks in a stiffer film interact
across larger distances than vise versa. It is noted that
the proposed model provides an identical prediction of
the energy release rate to Xia and Hutchinson’s (2000)
model. Any errors in Eq. 24 follow from the assump-
tion of Eq. 1 which is not accurate at the vicinity of the
crack tip. This assumption will be further evaluated in
Sect. 4.1.

For the section in Fig. 1b with a limited width, when
the external mechanical loading reaches a critical value
εcr

x , an unstable crack initiates at a flaw and quickly
spreads across the width as seen in Fig. 4, and then the
section is broken into two pieces. Thus, the fracture
toughness of the film can be written as

	cr = (σ cr
x )2

Ē1

h

c

[
2 tanh

(
cλ

2h

)
− tanh(cλ/h)

]
, (28)

where the critical tensile stress σ cr
x = Ē1ε

cr
x describes

the nominal tensile strength of the film/substrate sys-
tem. Thus, fracture energy can be measured through
the measurement of the crack spacing λ and the crit-
ical value εcr

x . Here mechanical loading should be in
the linear elastic range for both the film and the sub-
strate. From Eq. 28, the nominal tensile strength can be
written as:
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σ cr
x =

√
Ē1	cr ·

√
c

h
·
(

2 tanh

(
cλ

2h

)

− tanh(cλ/h)

)−1/2

. (29)

Because the fracture toughness is typically a material
constant, once the fracture toughness of a material is
obtained, we can use it to predict the general fracture
behavior of the thin film under a tensile loading in the
substrate. With further increasing the loading, the initi-
ation of an additional crack can be determined by com-
paring the maximum averaged stress along the thick-
ness of the film to the nominal strength given by Eq. 29.
It is noted that the nominal strength is not only related
to fracture toughness of the film and mechanical prop-
erties of the film and the substrate, but also decided by
the geometry of the film.

Figure 4 illustrates the nominal tensile changing
with the geometry of the film for a fully bonded film/
substrate system. Here v1 = v0 = 0.27 is used.
Figure 4 shows that the smaller the ratio of λ/h, the
larger the nominal tensile strength; but when λ is large
enough, the nominal strength is convergent to a con-
stant. When λ/h is larger than 10, a compliant sub-
strate provides a lower nominal strength because it
cannot provide a strong support as a stiffer one. How-
ever, when λ/h is small, for example in the range of
3–4 in Fig. 4, the nominal strength for the compliant
substrate is even higher than that for the stiffer one due
to the large edge effect. When λ/h is fixed, from Eq.
29, the nominal strength changes with the thickness
of the film as σ cr

x ∝ √
1/h, which is consistent with

the observation in the size effect experiments (Bažant
1999).

4 Results and discussion

A relatively extensive study of the proposed explicit
elastic solution for a brittle film with periodic cracks
is presented. The film is bonded to a substrate through
either a frictional interface or a fully bonded interface.
First, the proposed elastic solution is verified with FEM
simulations. Using the solution, we investigate the fol-
lowing aspects: interfacial shear stress distribution, the
effect of frictional spring coefficient, and edge effect on
the energy release rate. As appropriate, our solution are
compared to finite element results, results from other
authors (e.g. Beuth 1992; Xia and Hutchinson 2000),
and experimental results (Thouless et al. 1992).

4.1 Comparison with FEM simulations

Because the problem in Fig. 1c is trivial, here only
the reduced problem in Fig. 1d is considered. If this
periodic section is extended to the total film, the geom-
etry and the loading at a crack surface is same as the
fully cracked problem of Beuth (1992) except that the
former considers the periodically distributed disconti-
nuities but the latter studies only one crack in films.
From Eqs. 7 and 9, we can solve the work done by the
external loading as

W = (σ 0
x )2

Ē1c
h2 tanh(cλ/h). (30)

To verify the integrity of the proposed analytical model,
comparisons are made with the FEM simulation by
ABAQUS. Two kinds of interfaces are considered.
First, for a frictional interface, if the spring coefficient
k is given, it is not necessary to consider the substrate.
Due to the symmetry of the problem, only half of the
section is modeled by 240×40 four-node quadrilat-
eral elements with equal size under plane strain. This
simulation is to show the reasonability of the plane
assumption in Eq. 1. Secondly, a film fully bonded to
the substrate is considered to simulate the real system.
Because a singular point exists at the edge of the inter-
face, the FEM mesh shown in Fig. 5 includes refined
elements in the vicinity of that point. The x-directional
displacement along the symmetric plane and the end
of the substrate is constrained, which is consistent with
Fig. 1d. Here the thickness of the substrate is 20 times
as that of the film, and 11,260 four-node quadrilateral
elements are used. To simulate the different length of
the section, affine transformation of the mesh in the
x-direction is used.

Figure 6 shows the external work calculated by Eq.
30 with comparisons to FEM simulations for two kinds
of interfaces: a frictional interface and a fully bonded
interface. With the increase of spring coefficient k or the
Young’s modulus of the substrate E0, the external work
reduces and is finally convergent to a constant. When
the interface or substrate is stiff, for example, k > 0.25
or E0/E1 > 1, the cases of λ = 12 and λ = 6 pro-
vide the same result. Thus, the edge effect can be dis-
regarded. However, when the interface or substrate is
compliant, the case of λ = 6 gives a considerably lower
result than that of λ = 12. Comparison of the theoret-
ical predictions with the FEM results shows that the
proposed model provides excellent agreement with the
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Fig. 5 Finite element mesh
used to model half of the
geometry of the reduced
problem: a total mesh, and
b detail of refined mesh at
the vicinity of the singular
point

numerical simulations in Fig. 6a, which means that the
assumption in Eq. 1 is reasonable for a frictional inter-
face. However the proposed model provides a higher
prediction for the fully bonded interface in the range of
E0/E1 < 1 in Fig. 6b. The reason for this difference is
that FEM simulation in Fig. 6b constrains the x-direc-
tional displacement at the crack tip whereas the pro-
posed model permits this deformation. In Fig. 7b, we
can clearly observe this difference: the displacement
along the bottom of the film is zero at x/λ = 1 for
the FEM results but it reaches the highest for the pro-

posed model. In the extreme situation, when E0/E1 →
0, the boundary condition for FEM simulation is
reduced to the beam under uniform compression with
the bottom constrained at the both ends; whereas the
proposed model is reduced to uniaxial compression of
the beam. If the length of the section is permitted to be
infinitely large, the half of the current problem is the
same as Beuth (1992) problem. The external work for
unit depth of the thickness in Eq. 30 is the same as Beu-
th’s exact solution, which guarantees the accuracy of
the proposed model for a film with large crack spacing.
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The displacement distributions of ux along the top
and bottom of the films are shown in Fig. 7. It is seen
that the stiffer the interface or substrate, the smaller the
displacement field. The displacement field along the
bottom of the film is always smaller than that along
the top due to the constraint of the interface. In Fig. 7a,
the displacement monotonically changes with x along
both the bottom and the top of the film; whereas for the
FEM simulations in Fig. 7b the displacement along the
bottom of the film reaches the maximum in between
and then decreases to zero at the end due to the strong
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Fig. 7 Displacement field along the top and bottom of the film
for two kinds of interfaces: a frictional interface with the spring
coefficients k = 1 and 100; b fully bonded interface with the
Young’s moduli of the substrate E0 = E1 and 100E1. Curves
denote the theoretical predications; symbols the FEM results

boundary condition. The proposed model provides a
good agreement with the FEM results in Fig. 7a but it
does not for the case of E0/E1 = 1 in Fig. 7b because
boundary conditions for the FEM simulations and ana-
lytical derivation are different.

Figure 8 illustrates the interfacial shear stress distri-
bution for two kinds of interfaces. In Fig. 8a we can find
the theoretical solution well fits the FEM results even
close to the end of the film for a frictional interface.
However, for the fully bonded interface in Fig. 8b, due
to the singular effect at the end of the film, the FEM
provides a higher result in the neighborhood of sin-
gular point. In the other range, two methods still give
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comparable predictions, especially for E0/E1 = 100.
In the vicinity of the singular point, our assumption in
Eq. 1 can not be rigorously satisfied, which also cause
the approximate boundary condition in Eq. 8. Thus, the
accuracy of this analytical solution cannot be guaran-
teed in this region.

Essentially, the proposed model is based on the
assumption of the frictional interface. To accurately
simulate the fully bonded interface, we followed Xia
and Hutchinson (2000) method to make the energy
release rate for both kinds of interfaces equivalent in
Eqs. 25 and 26. Thus, this model provides a good pre-
diction in terms of total strain energy or external work

for the fully bonded interface, but it does not accurately
predict the local elastic field especially in the vicinity
of the singular point. However, in an average sense, the
proposed model produces a good estimate of the local
solution for the fully bonded interface, besides that it
gives a very accurate solution for the general frictional
interface.

4.2 Interfacial shear stress and frictional spring
coefficient

The interfacial shear stress distribution is very impor-
tant for evaluation of the interfacial shear strength
(Agrawal and Raj 1989; Chen et al. 2000; Wang and
Qiao 2004; Leevers and Godart 2008). Combining Eqs.
9 and 17, we obtain an explicit solution of the interfacial
shear stress as

τxy = −cσ 0
x

sinh(cx/h)

cosh(cλ/h)
, (31)

from which we can solve the interfacial shear stress for
both the frictional interface and the fully bonded inter-
face with c defined by Eqs. 11 and 12, respectively.
Obviously, it is different from Agrawal and Raj (1989)
assumption as they have used a sine-wave function to
approximate the interfacial shear stress. Especially, for
a thin film fully bonded to a rigid substrate, Eq. 12 com-
bined with Eq. 19 produces c = −π/2

√
(1 − v1)/2.

Substituting this quantity into Eq. 31, we can obtain the
interfacial shear stress distribution for a film bonded to
a rigid substrate. In Fig. 9, we see that at the singu-
lar point (x/λ = 1), the shear stress is almost same for
each the ratio of h/λ because the thickness h is typ-
ically much smaller than the crack spacing and then
tanh(cλ/h) is convergent to 1. The shear stress expo-
nentially decrease from the singular point and is finally
reduced to zero at the symmetric point. The smaller
the ratio of h/λ, the larger the curvature of the curve.
Thus, for a very thin film, the interfacial shear stress is
only concentrated in the neighborhood of the singular
point. When the shear strength along the interface is
given, by comparing the maximum shear stress and the
shear strength, we can evaluate the propensity of the
interfacial debonding.

In Eq. 12, we find that c or d only depends on the
material constants for a fully bonded film/substrate sys-
tem. The interface can be simulated by a frictional inter-
face with the equivalent spring coefficient denoted by
Eq. 11, i.e.,
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Fig. 9 Interfacial shear stress distribution for the thin film fully
bonded to a rigid substrate with varying thickness h/λ = 0.25,
0.1, and 0.05

k = µ1d tan d/h. (32)

Obviously, the frictional spring coefficient of the
interface will increase along with the decrease of the
thickness of the film because µ1 and d are material con-
stants. Thus, the thinner the film, the stiffer the inter-
face for the fully bonded film/substrate system. Xia and
Hutchinson (2000) employed 1D solution to simulate
the fully bonded interface and also obtained the equiv-
alent spring coefficient (Eq. 12 of the Ref.) as

k = µ1d2/h. (33)

Figure 10 illustrates the results of Eqs. 32 and 33. When
E0/E1 < 1, two methods provide very close predic-
tions. However, when E0/E1 > 1, the proposed method
give a much higher prediction than Xia and Hutchinson
(2000) method. We know that for a film bonded to a
rigid substrate, i.e. E0/E1 → ∞, the spring coefficient
will be infinitely large. Obviously, Xia and Hutchinson
(2000) method cannot predict this tendency, whereas
the proposed method provides a very good explana-
tion.

4.3 Edge effect on the energy release rate

In Sect. 3, we obtained the energy release rate for a
channeling crack at the middle of the section. In real-
ity, the crack may initiate at a flaw which is not exactly
located at the middle point. Then the energy release
rate cannot be solved by Eq. 24 due to the edge effect.
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Fig. 10 Equivalent spring coefficients for a fully bonded inter-
face with varying Young’s modulus of the substrate

Here we consider that the crack is in the distance t to
the symmetric plane as seen in Fig. 11. Following the
same method in Sect. 3, we can write the tensile stress
to close the crack as

σx (t, y) =
(

1 − d cosh(ct/h) cos[d(1 − y/h)]
cosh(cλ/h) sin d

)
σ 0

x , (34)

and the crack opening displacement as:

δ(t, y) =
√

Ē1

µ1
hε0

x

tanh
(
c λ+t

2h

)+ tanh
(
c λ−t

2h

)

sin d

× cos[d(1−y/h)]. (35)

Then, we can obtain the energy release rate as

G(t) = (σ 0
x )2

2Ē1

h

c

[
tanh

(
c
λ + t

2h

)

+ tanh

(
c
λ−t

2h

)] (
1− cosh(ct/h)

cosh(cλ/h)

)
. (36)

Figure 11 shows the energy release rate for different
locations of the crack with c = 0.5. The energy release
rate of the crack front reaches the largest at the mid-
dle plane and is convergent to zero at the end of the
section. The longer the section, the higher the energy
release rate of the crack front at the middle plane. More-
over, the energy release rate changes more slowly in
the middle range of the section for a longer section.
For λ/h = 24, the energy release rate almost keeps
constant as 1 in the range of 0 < t/λ < 0.5; whereas
for λ/h = 6, the energy release rate quickly falls down
from 0.815 with the increase of t/λ. Therefore, when a
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Fig. 11 Edge effect on the energy release rate of the crack front
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long film/substrate system is subjected to an increasing
tensile loading on the substrate in the length direction,
in the beginning, cracks will form in the middle range of
the film, and many cracks may simultaneously initiate
because the energy release rate can reach the maximum
in a large range. After the film is cracked into many
sections, the maximum energy release rate in each sec-
tion will decrease so that it is smaller than the fracture
toughness. When the tensile loading keeps increasing,
the maximum energy release rate of the short section
will reach the fracture toughness again and cause new
cracks. When the length of the section is small enough,
the new crack will initiate at the middle plane because
the energy release rate at that location is considerably
larger than that at other locations. Thus, finally the film
will be cracked into the sections with the roughly equal
length.

4.4 Crack spacing

A thin film/substrate system has widely been used to
test the fracture quantities of the film by observation
of the relation between the crack spacing and applied
loading (Agrawal and Raj 1989; Thouless et al. 1992;
Wang et al. 1998; Chen et al. 2000). The proposed
model offers a convenient way to calculate the frac-
ture energy or to predict the crack spacing from Eq. 28.
To demonstrate the validity of the proposed method,
we compare with the experimental data conducted
by Thouless et al. (1992). They examined the PrBa2

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.5

1.0

1.5

2.0
E

0
=267GPa; v

0
=0.24; E

1
=102GPa; v

1
=0.32; ε

x

0=0.02

 Experimental data
Γ

cr
=5.5 Jm-2

Γ
cr
=6.5 Jm-2

Γ
cr
=7.5 Jm-2

C
ra

ck
 s

pa
ci

ng
 (

µm
)

Film thickness (µm)

Fig. 12 Comparison of the experimental data (Thouless et al.
1992) for crack spacing as a function of film thickness with the
proposed predictions for different fracture toughness of the film

Cu3O7−x films bonded to SrTiO3 substrates and ob-
served the relation between the crack spacing and the
film thickness. Elastic constants for SrTiO3 are given
(Bell and Rupprecht 1963) as E0 = 267 GPa and v0 =
0.24 (c11 = 317 GPa and c12 = 102.5 GPa). The Young’s
modulus of PrBa2Cu3O7−x and the tensile strain are
given (Thouless et al. 1992) as E1 = 102 GPa and ε0

x =
0.02 respectively. In numerical simulations, both the
film and the substrate are assumed to be isotropic mate-
rials and the Poisson’s ratio of the film is assumed as
v1 = 0.32. Using Eq. 12, we can solve c = 0.631.

Figure 12 shows a comparison of the experimen-
tal data (Thouless et al. 1992) for crack spacing as a
function of film thickness with the proposed predic-
tion for the fracture toughness of the film as 	cr = 5.5,
6.5, and 7.5 J m−2, respectively. We see that the curve
for 	cr = 5.5 J m−2 fits the experimental data very well,
and thus we can assume it to be the measured fracture
energy, which is slightly lower than the 6.5 J m−2 pre-
dicted by Thouless et al. (1992). Actually, the curve for
	cr = 6.5 J m−2 in Fig. 12 is still acceptable except for
the small thickness as 0.1 µm. It is noted that Thouless
et al. (1992) did not take into account of the mechani-
cal properties of the substrate; but the proposed method
consider them through the parameter c defined in
Eq. 12. It is reasonable for a stiffer substrate to provide
a stronger constraint for the film and then to produce
a larger crack spacing in a general loading
condition.
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Figure 12 illustrates that with the increased film
thickness, the crack spacing also becomes larger.
However, a critical thickness exists for each curve of
the fracture toughness, below which the crack spac-
ing quickly increases to be infinite. Thouless et al.
(1992) also observed that there were no cracks for
a film with thickness 0.08 µm; whereas the proposed
results for 	cr = 5.5 J m−2 predicts the critical thick-
ness h = 0.081µm. Thus, the crack spacing does not
monotonically increase with the film thickness. It is
noted that Thouless et al. (1992) also presented a
prediction which is in excellent agreement with the
experiments. However, this method only provides a
monotonically increasing estimation, so it cannot di-
rectly predict critical thickness and an additional con-
dition is needed to calculate it. In contrast, the proposed
Eq. 28 not only gives a good prediction of the crack
spacing, but also directly provides the critical thick-
ness as

Hcr = cĒ1	cr

(σ cr
x )2 . (37)

from which we can find that the critical thickness is pro-
portional to the fracture toughness of the film and the
quantity of c. Thus if the substrate is more compliant,
the critical thickness will be smaller.

5 Conclusions

A 2D explicit elastic solution is derived for one sec-
tion between two discontinuities of the film with a fric-
tional interface or a fully bonded interface. From this
solution, we calculate the energy release rate of three-
dimensional channeling cracks and obtain a method to
measure the fracture toughness and the nominal ten-
sile strength of the film through the relation between
the crack spacing and the tensile strain in the sub-
strate. Comparisons with the FEM simulations verify
the integrity of the proposed solution. If the section is
infinitely long, this solution in terms of the energy re-
lease rate is reduced into Beuth’s exact solution for a
fully cracked film bonded to a semi-infinite substrate.

The interfacial shear stress is explicitly given for two
kinds of interfaces. For a very thin film, the shear stress
is only concentrated in the neighborhood of the crack
tip, and is quickly reduced to zero far from that point. A
thinner film provides a higher equivalent spring
coefficient. The 2D solution is compared with Xia and

Hutchinson (2000) results obtained from 1D solution,
which shows that the proposed solution exhibits better
physical meaning. The edge effect on the energy
release rate is further discussed and the cracking proce-
dure of a long film/substrate system is simulated. When
a film/substrate system is subjected to a fixed tensile
strain in the substrate, fracture toughness is calculated
and compared with experimental data. Given the frac-
ture toughness of the film and the tensile loading in the
substrate, there exists a critical thickness, below which
no crack will initiate.
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