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Abstract

The heat flux field for a single particle embedded in a graded material is derived by using the equivalent inclusion method. A linearly
distributed prescribed heat flux field is introduced to represent the material mismatch between the particle and the surrounding graded
materials. By using Green’s function technique, an explicit solution is obtained for the heat flux field in both the particle and the graded
material. Comparison of the present solution with finite element results illustrates the accuracy and limitation of this solution.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) have attracted
significant attention amongst researchers and engineers
due to their unique thermomechanical properties and
microstructural design [1–6]. They have been manufactured
into thermal barrier coatings, tribological coatings, and
energy conversion materials. Although graded materials
microscopically exhibit a heterogeneous microstructure,
macroscopically their effective material properties continu-
ously vary in the gradation direction but keep constant in
the plane normal to the gradation direction. Material prop-
erty variations can also be found in some civil engineering
materials and constructed facilities. For instance, asphalt
pavements exhibit a severe age hardening gradient near
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the surface due to the environmental factors such as oxida-
tive hardening. In addition, above the groundwater table,
the moisture content for subgrade materials also varies in
the vertical direction, which induces a material property
gradient.

Because in most applications FGMs are subjected to
thermal loading, heat conduction has been widely investi-
gated by various numerical methods, such as the finite ele-
ment method [7], boundary element method [8], and
meshless method [9]. However, because FGMs generally
have a complex microstructure but the accuracy of numer-
ical simulations depends on the quality of discretization
aspects, it is not straightforward to extend these results
to general cases. Thus, analytical methods become a very
valuable tool for model verification, and ultimately to gain
a better insight into heat conduction in FGMs.

The inhomogeneity problem involving a single particle
embedded in a homogeneous matrix is a fundamental
problem for theorists in a variety of fields: materials sci-
ence, solid-state physics, and mechanics of composites.
Eshelby’s formulation [10,11] for an ellipsoidal inclusion
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Fig. 1. An FGM subjected to a prescribed heat flux in a spherical domain.
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embedded in an unbounded matrix with a uniform, far-
field loading provided a cornerstone for micromechanics.
Since then, mechanical solutions for the inhomogeneity
problem have received considerable attention. For
instance, Willis [12] developed an elastic solution for a sin-
gle inclusion embedded in an anisotropic matrix; Gilormini
and Montheillet [13] considered the strain rates and stresses
for an inclusion in a viscous matrix; and Rodin [14],
Kawashita and Nozaki [15], and Zheng et al. [16] studied
the effect of the shape of the inhomogeneity on the stress
and strain distribution. Furthermore, Hatta and Taya
[17] extended Eshelby’s method to heat conduction prob-
lems. However, all of these works focus on an inhomogene-
ity embedded in a homogeneous matrix.

This work investigates the inhomogeneity problem for
one spherical particle embedded in a graded material under
a uniform heat flux in the far field. Herein, the size of the
particle considered is assumed to be much smaller than
the size of the graded matrix. Because the disturbed heat
flux field due to the inhomogeneity is localized in the neigh-
borhood of the particle, and the material property varia-
tion is continuous and differentiable in the gradation
direction, we use a parabolic variation of thermal conduc-
tivity to approximate the material gradation of the matrix
in the neighborhood of the particle. Then Eshelby’s equiv-
alent inclusion method is used to solve for the disturbed
heat flux field, in which the effect of material mismatch
between the particle and the graded matrix on the heat flux
field is simulated by introducing a prescribed heat flux. The
heat flux distribution from the present analytic solution is
in excellent agreement with finite element results.

The remainder of this paper is organized as follows. Sec-
tion 2 derives the heat flux field in an FGM due to a pre-
scribed heat flux field in a spherical domain. Section 3
briefly reviews the equivalent inclusion method and formu-
lates the heat flux field for a particle embedded in an
unbounded graded material. Section 4 presents a verifica-
tion of the present solution to finite element results.
Finally, concluding remarks are given in Section 5.
2. Heat flux field in an FGM due to a prescribed heat flux

In an FGM, when a prescribed distributed heat flux
(thermal doublet) denoted as q*(x) is applied in a spherical
domain X along the gradation direction, i.e. x3 direction
(see Fig. 1), a local heat flux field will be induced in the
neighborhood of the particle domain. The relationship
between the heat flux and the temperature gradient is given
by the Fourier law as

qiðxÞ ¼ q�ðxÞdi3 � kðxÞT ;iðxÞ; ð1Þ

where q*(x) = 0 for x 2 D � X. Here D denotes the total
FGM domain. At steady state without heat generation,
the heat flux field satisfies the following differential equa-
tion of heat conduction:

qi;iðxÞ ¼ 0: ð2Þ
The variation of the FGM properties is assumed to be
continuous and differentiable in the gradation direction,
so that the thermal conductivity distribution can be written
as

kðx3Þ ¼ k0 þ k0ð0Þx3 þ
1

2
k00ð0Þx2

3 þ � � � ; ð3Þ

where k0 represents the thermal conductivity at the origin,
and the primes in k0 and k00 denote the first and second
derivatives of k, respectively. Because the material proper-
ties in far field only produce a minor effect on the heat flux
field in the neighborhood of the particle, the lower order
terms of (3) have dominant effects on the solution, and thus
(3) is rewritten as

kðx3Þ ¼ k0ð1þ ax3Þ2 þOðx2
3Þ; ð4Þ

where the material variation parameter a = 0.5k0(0)/k0, and
the higher order terms Oðx2

3Þ will be disregarded for the
convenience of derivation. It is noted that accuracy of
approximation in (4) also depends on the magnitude of
the material gradient. In this paper, we assume

aa << 1: ð5Þ

Substituting (4) into (1), and (1) into (2), one obtains

k0½ð1þ ax3Þ2T ;i�;i ¼
oq�

ox3

; ð6Þ

where the higher order terms Oðx2
3Þ in (4) are disregarded.

By introducing a new variable, namely

U ¼ ð1þ ax3ÞT : ð7Þ

Eq. (6) can be rewritten as

r2U ¼ 1

k0ð1þ ax3Þ
oq�

ox3

: ð8Þ

Because temperature and heat flux fields induced by the
prescribed heat flux decay to zero rapidly in the far field,
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by using Green’s function technique, the variable U can be
expressed in an integral form:

UðxÞ ¼ �
Z

D

G x� x0ð Þ
k0 1þ ax03ð Þ

oq�

ox03
dx0; ð9Þ

where Green’s function G(x � x0) describes the response at
point x due to the source at point x0 in the infinite domain,
which is written as

G x� x0ð Þ ¼ 1

4p x� x0j j : ð10Þ

Because q* = 0 for jx0j?1, using Green’s theorem in
(9), one obtains

UðxÞ ¼ �
Z

D

oGðx� x0Þ
ox3

q�

k0ð1þ ax03Þ
dx0

�
Z

D
Gðx� x0Þ aq�

k0ð1þ ax03Þ
2

dx0; ð11Þ

where oGðx� x0Þ=ox3 ¼ �oGðx� x0Þ=ox03 is used. Combin-
ing (7) and (1) with (4) provides

qiðxÞ ¼ q�ðxÞdi3 � k0ð1þ ax3ÞU ;iðxÞ þ k0adi3UðxÞ: ð12Þ

Next, it is assumed that the prescribed heat flux is a lin-
ear function of x3 in the domain X as

q�ðxÞ ¼ q0 þ ~qx3 for x 2 X; ð13Þ
1 Ωk
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Fig. 2. A single spherical inhomogeneity in an FGM matrix subjected to a
uniform heat flux field.
where ~q represents the linear coefficient of the prescribed
heat flux distribution. Substitution of (13) into (11) renders

UðxÞ ¼ �
Z

D

1

k0

oGðx� x0Þ
ox3

q0 þ ð~q� aq0Þx03
�

þOðx023 Þ
�

dx0 �
Z

D

a

k0
G x� x0ð Þ

� q0 þ ð~q� 2aq0Þx03 þOðx023 Þ
� �

dx0: ð14Þ

After disregarding the higher order terms Oðx2
3Þ in (14),

U(x) can be explicitly integrated as

UðxÞ ¼

1
15k0

5qaq0ðqn3 � 5aaÞ
�q3a2ð1� 3n2

3Þð~q� aq0Þ
�aq2a3n3ð~q� 2aq0Þ

2
64

3
75; x 62 X;

1
30k0

q0 10x3 � 5a 3a2 � jxj2
� �� �

� ~q� aq0ð Þð5a2 � 3jxj2 � 6x2
3Þ

�að~q� 2aq0Þð5a2 � 3jxj2Þx3

2
6664

3
7775; x 2 X;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð15Þ

where n = x/jxj, and q = a/jxj. Similarly, one can further
obtain the gradient of the above function as
U ;iðxÞ ¼

1
15k0

5q0q2 q di3� 3n3nið Þ þ aanið Þ
þ3 ~q� aq0ð Þq4a

� 2di3n3þ ni� 5n2
3ni

� �
�a ~q� 2aq0ð Þq3a2ðdi3� 3n3niÞ

2
6664

3
7775; x 62 X;

1
30k0

10q0ðdi3þ axiÞ þ 6ð~q� aq0Þ
�ð2di3x3þ xiÞ � a ~q� 2aq0ð Þ
� 5a2� 3jxj2
� �

di3� 6x3xi

h i
0
BB@

1
CCA; x 2 X:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð16Þ
Substituting (15) and (16) into (12), one obtains the explicit
form of the heat flux field.

3. Single inhomogeneity in a functionally graded material

Consider an unbounded FGM domain with heat con-
ductivity, k(x3), containing a single spherical inhomogene-
ity X (see Fig. 2) with heat conductivity k1, radius a, with
its center located at the origin. A uniform heat flux field
q1 is applied in the x3 direction in the far field.

Because the FGM is homogeneous in the x1 � x2 plane,
if the particle did not exist, then the heat flux field would be
uniform. However, a disturbance in the heat flux field q0i
will be induced by the presence of the particle. Then the
local heat flux field can be denoted by two parts:

qiðxÞ ¼ q1di3 þ q0iðxÞ: ð17Þ

The constitutive relation is written as

q1di3 þ q0iðxÞ ¼ �kðx3ÞT ;iðxÞ; x 62 X; ð18Þ
q1di3 þ q0iðxÞ ¼ �k1T ;iðxÞ; x 2 X: ð19Þ

The equivalent inclusion method is employed to derive
the heat flux disturbance using a prescribed heat flux q*

in the particle domain X to simulate the material mismatch,
so that the constitutive relation in the particle domain
becomes
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q1di3 þ q0i xð Þ ¼ q�ðxÞdi3 � kðx3ÞT ;iðxÞ x 2 X; ð20Þ

where the prescribed heat flux is approximated by the lin-
ear function in (13), and the heat flux disturbance in the
particle domain due to the prescribed heat flux can be ob-
tained from (12) as

q0iðxÞ ¼ ðq0 þ ~qx3Þdi3 �
1þ ax3

30

�
(

q0 10di3 þ 10axið Þ þ 6 ~q� aq0
� �

2di3x3 þ xið Þ

�a ~q� 2aq0
� �

ð5a2 � 3jxj2Þdi3 � 6x3xi

h i)

þ adi3

30
q0 10x3 � 5að3a2 � jxj2Þ
h in

� ~q� aq0
� �

5a2 � 3jxj2
� �

� 6x2
3

h i
� a ~q� 2aq0
� �

5a2 � 3 xj j2
� �

x3

o
: ð21Þ

On the other hand, because the thermal property of the
particle is replaced by the corresponding FMG properties
in (4), the heat flux of the real particle should be equal to
that of the equivalent inclusion, so that the combination
of (19) and (20) yields:

q�ðxÞ ¼ k1 � kðx3Þ
k1

½q1 þ q03ðxÞ�: ð22Þ

Here q* is written in the form of (13). By manipulating the
right hand side of (22) using a Taylor series expansion ap-
plied at the origin, and by comparing the coefficients up to
the linear terms, the following two expressions are obtained:
2b

b

a
1x

3x

a b

Fig. 3. Finite element model for a single inhomogeneity embedded in a larg
element mesh in the dotted line box.
q0 ¼ 1� k0

k1

� 	
q1 þ 2q0

3
1� a2a2
� �
 �

;

~q ¼ 1� k0

k1

� 	
4aq0 þ 6~q

15
� 2ak0

k1
q1 þ 2q0

3
1� a2a2
� �
 �

:

ð23Þ
From the above two equations, q0 and ~q can be explicitly
written as
q0 ¼ k1 � k0

3k1 � 2 1� a2a2ð Þ k1 � k0
� � 3q1;

~q ¼
2 k1 � k0
� �2 � 15k0k1

3k1 þ 2k0
� �

3k1 � 2 1� a2a2ð Þ k1 � k0
� �� � 2aq1:

ð24Þ
Using the assumption of (5), one can disregard the higher
order term aa. Truncating the terms aa in (24) up to linear
term, one can write the explicit solution of q0 and ~q as

q0 ¼ k1 � k0

k1 þ 2k0
3q1;

~q ¼
2 k1 � k0
� �2 � 15k0k1

3k1 þ 2k0
� �

k1 þ 2k0
� � 2aq1:

ð25Þ

In summary, the heat flux field can be explicitly written
as follows:
qiðxÞ ¼ q1di3 þ q�ðxÞdi3 � k0 1þ ax3ð ÞU ;iðxÞ þ k0adi3UðxÞ;
ð26Þ
e functionally graded material: (a) axisymmetric geometry, and (b) finite
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where
q�ðxÞ ¼
0; x 62 X;

q0 þ ~qx3; x 2 X;

�
ð27Þ

UðxÞ ¼

1
15k0

5qaq0 qn3 � 5aað Þ � q3a2 1� 3n2
3

� �
~q� aq0ð Þ

�aq2a3n3 ~q� 2aq0ð Þ


 �
; x 62 X;

1
30k0

q0 10x3 � 5a 3a2 � xj j2
� �� �

� ~q� aq0ð Þ 5a2 � 3 xj j2 � 6x2
3

� �
�a ~q� 2aq0ð Þ 5a2 � 3 xj j2

� �
x3

2
64

3
75; x 2 X;

8>>>>>><
>>>>>>:

ð28Þ

U ;i xð Þ ¼

1
15k0

5q0q2 q di3 � 3n3nið Þ þ aanið Þ þ 3 ~q� aq0ð Þq4a 2di3n3 þ ni � 5n2
3ni

� �
�a ~q� 2aq0ð Þq3a2 di3 � 3n3nið Þ


 �
; x 62 X;

1
30k0

10q0 di3 þ axið Þ þ 6 ~q� aq0ð Þ 2di3x3 þ xið Þ
�a ~q� 2aq0ð Þ 5a2 � 3 xj j2

� �
di3 � 6x3xi

h i !
; x 2 X

8>>>><
>>>>:

ð29Þ
in which a = 0.5k0(0)/k0, and q0 and ~q are provided in (25).

4. Model verification and discussion

The thermal fields for a single inhomogeneity embedded
in a functionally graded material are of great interests for
thermal analysis of FGM structures. For example, during
fabrication of FGMs, air voids may form and change the
thermomechanical behavior of the FGMs during their
application. Because the present solution of the thermal
fields for a particle embedded in an infinitely large FGM
involves linear approximations, the accuracy of the solu-
tion must be investigated. Although numerical methods
cannot provide exact solution for the thermal fields in
FGMs [7–9,20–22], a good approximation of the thermal
field in FGMs can be reached by using a highly refined dis-
cretization with graded material property.

Herein, a finite element model is constructed with the
finite element software ABAQUS to offer a reference solu-
tion. Based on the geometry and loading conditions, an
axisymmetric problem is considered as shown in Fig. 3a.
Here the size of the FGM is b � 2b, and the radius of the
inhomogeneity is a. Because the disturbed heat flux field
is mostly influenced by the material distribution in the
neighborhood of the particle, herein the FGM size
b = 10a is used, which was found to provide a convergent
solution for the local heat flux field in this problem. The
radius of the particle is assumed to be of the unit length,
i.e. a = 1 m. Triangular elements are employed, where the
edge length of the elements in the particle is 0.02, whereas
those for the FGM are mostly 0.1. However, in the neigh-
borhood of the particle, a transition zone is used with grad-
ually changing element size. Fig. 3b illustrates the finite
element mesh in the region of the box denoted by dotted
lines in Fig. 3a. The mesh consists of 71,060 elements and
36,935 nodes. The material properties of each element are
assumed to be uniform and depend on the location of the
centroid of the element. Herein the user-defined subroutine
UMATHT [18] is employed to assign material properties to
each element. Although each element has uniform material
properties, the sizes of the elements are relatively small with
respect to the characteristic length (1/a) associated to the
material gradient [19]. Thus, the present mesh with varying
material properties should be sufficient to represent the
gradient of the FGM.

First, one air void embedded in an FGM, which is sub-
jected to a uniform heat flux field, is investigated. The heat
conductivity of air is taken as k1 = 0.03 W/m K. For the
FGM, we assume k0 = 1.0 W/m K and a = 0.05 m�1. A
uniform heat flux field q3 = 1.0 W/m2 is applied along the
bottom and surface of the FGM, such that a steady-state
heat flux field is induced but the local heat flux field is dis-
turbed by the material mismatch between the air void and
the FGM. Fig. 4 compares the heat flux distribution along
the axes x1 and x3 for the numerical (FEM) and analytical
solutions. Along the axis x1, the magnitude of heat flux
field is nearly uniform in the particle domain but highly dis-
continuous across the interface. The heat flux reaches its
maximum at the outer surface of the particle and then
gradually decreases to 1.0 W/m2 in the far field of the
matrix material. However, along the axis x3, the distribu-
tion of heat flux field is nearly linear in the particle domain
and continuous even across the interface. Far from the par-
ticle, the heat flux is also convergent to 1.0 W/m2, which is
the uniform far field loading. The proposed solution is in
excellent agreement with the FEM results. From the heat
flux field in the particle, we can see that the linear assump-
tion of heat flux distribution in the gradation direction in
the particle domain is quite sufficient. The heat flux field
is almost convergent to 1.0 W/m2 at the distance of four
times of the particle’s radius, whereas the finite element
mesh used herein covers a region spanning 10 times the
particle’s radius. Therefore, the domain extent of the cur-
rently used mesh is adequate.

Next, a parametric investigation conducted using the
same finite element model. First, we consider the effect of
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material gradation. The thermal conductivities for the par-
ticle and the graded material are taken as k1 = 1.0 W/m K
and k0 = 1.0 W/m K. Three material variations are investi-
gated, namely a = 0.01, 0.05, and 0.1 m�1. As shown in
Fig. 5, the first two variations adequately satisfy the condi-
tion described in (5) and thus provide solutions which are
in very good agreement with the FEM results; whereas
the last variation is quite high, which leads to minor dis-
crepancies with the numerical solution. Because the pro-
posed method uses linear assumptions and truncates the
effect of higher order terms, it provides excellent prediction
when a is relatively small. However, for a large material
gradient, such as aa > 0.1, the accuracy of the solution
begins to degrade.

Fig. 6 investigates the effect of the material mismatch
between particles and the surrounding graded material on
the heat flux distribution. The material parameters for
the graded material are taken as k0 = 1.0 W/m K and
a = 0.05 m�1, whereas three particle thermal conductivities
are investigated: k1 = 10.0, 1.0, and 0.1 W/m K. Fig. 6
illustrates that excellent agreement of the proposed solu-
tion to the FEM results are obtained for all three cases,
so the accuracy of the proposed solution is highly insensi-
tive to the material mismatch.
5. Conclusions

The present study provides an explicit formulation of the
heat flux distribution for a single inhomogeneity embedded
in an unbounded graded material. Green’s function tech-
nique is employed to solve the heat flux field due to a
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prescribed heat flux field in a particle domain, which is
embedded in an unbounded graded material. Using the
equivalent inclusion method, the particle-graded matrix is
transferred to a homogeneous graded material domain
but with a prescribed heat flux field acting in the particle
domain. The heat flux field is analytically derived. The pres-
ent solution is in excellent agreement with finite element
results when material property gradients are relatively
small. When particle’s size is much smaller than the overall
size of an FGM, this solution is applicable to solving for
particle’s heat flux for any continuous and differentiable
material variation based on the linearization assumption.
In addition, this work can naturally extend to other areas
described by equations of potential theory, such as for elec-
tric, dielectric, magnetic, and water flow problems.
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