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Abstract

The problem of thermoelastic contact mechanics for the coating/substrate system with functionally graded properties is

investigated, where the rigid flat punch is assumed to slide over the surface of the coating involving frictional heat

generation. With the coefficient of friction being constant, the inertia effects are neglected and the solution is obtained

within the framework of steady-state plane thermoelasticity. The graded material exists as a nonhomogeneous interlayer

between dissimilar, homogeneous phases of the coating/substrate system or as a nonhomogeneous coating deposited on the

substrate. The material nonhomogeneity is represented by spatially varying thermoelastic moduli expressed in terms of

exponential functions. The Fourier integral transform method is employed and the formulation of the current

thermoelastic contact problem is reduced to a Cauchy-type singular integral equation of the second kind for the unknown

contact pressure. Numerical results include the distributions of the contact pressure and the in-plane component of the

surface stress under the prescribed thermoelastic environment for various combinations of geometric, loading, and

material parameters of the coated medium. Moreover, in order to quantify and characterize the singular behavior of

contact pressure distributions at the edges of the flat punch, the stress intensity factors are defined and evaluated in terms

of the solution to the governing integral equation.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The load transfer mechanism, through contacts between different solid bodies, has been a subject of vital
importance in the context of its close relationship with the maintenance issues of components and parts of
mechanical and structural assemblages. In order to achieve enhanced reliability and durability of such
contacting bodies, especially near and at the surfaces, the utilization of the coated system has become a
common practice in a broad range of modern technological applications. This is because the coating materials
are essentially designed to possess superior properties to play the role of protecting the underlying substrate
against the detrimental wear-, heat-, and corrosion-related damages (Schulz et al., 2003).
e front matter r 2007 Elsevier Ltd. All rights reserved.
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When applying a conventional homogeneous coating to the substrate, however, the inevitable presence of
sharp interface with the apparent mismatch of thermophysical properties may render the coating and the
interface with the substrate susceptible to failure, mainly stemming from high stress concentrations, poor
bonding strength, and brittleness of the coating materials. It is therefore, very likely that the enhancements
gained by the coating are counteracted by the risk of such drawback. As an innovative way of coping with
these limitations, functionally graded materials featuring smooth spatial variations of properties can be used
in the form of an interlayer between the coating and the substrate or as a graded coating to replace the
homogeneous coating. The mismatch in the properties of the constituents of the coated system can thus be
minimized leading to the improved structural and tribological performances (Miyamoto et al., 1999).

Extensive overviews and thorough descriptions on the fundamental concepts and solutions to a variety of
contact problems for the homogeneous materials may be found in the monographs by Gladwell (1980),
Johnson (1985), and Hills et al. (1993). On the other hand, the studies on the contact mechanics involving the
graded, nonhomogeneous properties appear to be relatively restricted. In an effort to keep up with the
increasing usage of the graded media, Suresh and his coworkers, however, have made some mechanistic and
phenomenological contributions in a series of papers dealing with the contact mechanics of the graded
materials. Specifically, Giannakopoulos and Suresh (1997a, b) considered the axisymmetric problem of graded
half-spaces subjected to a concentrated load and to frictionless flat, spherical, and conical indenters,
respectively, in which the elastic modulus was assumed to vary according to a power or an exponential
function. Analysis of parabolic frictionless indentation of the graded medium was also undertaken by Suresh
et al. (1997) where comparison was made between the finite element solution and the experimental results.
Subsequently, Jitcharoen et al. (1998) showed that the appropriate gradual variation of the elastic modulus
significantly alters the stress field around the indenter, leading to the suppression of Hertzian cracking at the
edges of the contact region. It was further illustrated that the controlled gradients in the mechanical properties
of compositions and structures offer unique opportunities for the design of surfaces with improved resistance
to sliding-contact deformation and damage that cannot be realized in the conventional homogeneous material
(Suresh et al., 1999; Suresh, 2001). The closed-form analytical solutions to the plane elasticity problem of rigid
punches on the graded substrate were given by Giannakopoulos and Pallot (2000) by considering the elastic
modulus that increases monotonically with depth in terms of a power-law variation.

Besides, Stephens et al. (2000) investigated the initial yielding behavior in a hard coating/substrate system
with functionally graded interface under frictional Hertzian contact based on the finite element modeling. It
was indicated that the appropriate gradients in yield strength or elastic modulus could result in benefits to the
reliability of the coated system compared to the case of an ungraded substrate. Guler and Erdogan (2004,
2007) examined the contact mechanics of graded coatings bonded to homogeneous substrates and loaded by
frictional rigid punches with various profiles, and Guler and Erdogan (2006) also provided the solution to the
problem of frictional contact between two deformable elastic solids with graded coatings, while El-Borgi et al.
(2006) studied the frictionless receding contact behavior of a graded layer pressed against a homogeneous
semi-infinite substrate. Moreover, Dag and Erdogan (2002) studied the surface cracking of a graded medium
loaded by a sliding rigid stamp, where it was suggested that the contact problem for a graded half-plane has no
solution when the medium exhibits exponentially decaying stiffness. In particular, for both frictionless and
frictional indentation analyses of graded coatings with arbitrary spatial variations of shear modulus, Ke and
Wang (2006, 2007) applied a multilayered model in conjunction with the transfer matrix approach (Bahar,
1972) and derived relevant singular integral equations for the unknown contact pressure distributions. It is
worthwhile to mention that the results of aforementioned contact mechanics analyses could find applications
where the surface wear and damage due to sliding contact are a serious concern such as in the design of load
transfer components with the material property gradation near the surface (Suresh and Needleman, 1996). For
the review on another class of boundary value problems pertaining to the graded, nonhomogeneous media
containing crack-like flaws, the interested readers are referred to Paulino et al. (2003) and Walters et al. (2004).

In many sliding contact problems encountered in practice, a significant amount of heat may be generated
due to friction entailing the thermoelastic distortion of the contacting interface, which in turn affects the
contact pressure distribution and vice versa, giving rise to coupled thermomechanical response (Barber and
Comninou, 1989). The thermoelastic contact problems of this type involve moving heat sources and combined
normal and tangential loadings. To simplify the incumbent analysis with the frictional heating, an implicit
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assumption of small sliding speed of the punch was employed by Barber (1976) discarding the effect of the
convection term in the associated heat conduction analysis, and later by Yevtushenko and Kulchytsky-
Zhyhailo (1995) and by Levytskyi and Onyshkevych (1996) for the axisymmetric and plane contact
configurations, respectively. A similar approach was also undertaken by Kulchytsky-Zhyhailo and
Yevtushenko (1998) and Kulchytsky-Zhyhailo (2001) for thermoelastic contact analyses of layered and
three-dimensional half-spaces, respectively; and more recently, by Lin and Ovaert (2006) for two-dimensional
thermoelastic contact problem of a rigid indenter sliding against an anisotropic half-plane with frictional
heating, yielding some interesting results.

As can be inferred from the foregoing, the earlier attempts made for the contact analysis of the graded
materials are limited to the isothermal loading conditions and it thus appears that little has been done to date
for the nonisothermal counterpart. The present paper is, therefore, devoted to the problem of plane
thermoelastic contact mechanics of the coating/substrate system with graded properties. It is assumed that the
rigid flat punch slides slowly over the surface of the coating with frictional heat generated at the contacting
interface being flowed into the coated system; thereby, the inertia effects are neglected and the problem is
considered using the framework of steady-state thermoelasticity. The graded material is treated as a
nonhomogeneous interlayer between the dissimilar, homogeneous phases of the coated system or as a
nonhomogeneous coating directly deposited on the substrate, with the corresponding spatially continuous
thermoelastic moduli expressed by the exponential variations. As the method of solution and analysis, the
Fourier integral transform method and the transfer matrix approach are employed, leading to the derivation
of a Cauchy-type singular integral equation of the second kind for the unknown contact pressure. Implicit in
this particular formulation is the requirement that the punch remain in complete thermoelastic contact with
the surface of the coating. Numerical results are obtained to address the effects of various geometric, loading,
and material parameters of the coated medium on the distributions of the contact pressure and the in-plane
surface stress component under the given thermoelastic environment. Furthermore, with a view to quantifying
the degree of criticality or the magnitude of the local intensification of singular stresses that build up inherently
near the edges of the sliding frictional flat punch, in parallel with the concept used for characterizing the
singular behavior of crack-tip stresses in linear elastic materials, the stress intensity factors are defined and
evaluated at the locations of contact edges.

It should be remarked that for a punch sliding over the surface of the thermoelastic medium with generation
of frictional heating, the history of the temperature variation can be taken into account by adding a convective
term to the heat equation. In the present investigation of steady-state thermoelastic contact, however, such a
convection term in the heat equation as well as the inertia terms in the Navier–Cauchy equations is suppressed,
which is justifiable via the presumption of slow sliding speed of the punch such that the effect of convection
would be much smaller than that of conduction.

2. Problem statement and formulation

The configuration of the contact problem to be considered is depicted in Fig. 1, where a homogeneous
coating layer is deposited on a substrate with a graded, nonhomogeneous interlayer in-between. A flat punch
of width 2c is pressed against the surface of the coating by a normal force P and slides to the right at a uniform
speed V. A frictional tangential force Q ¼ mfP is developed at the contacting interface by the Coulomb-type
friction, with mf being the constant coefficient of friction, generating the frictional heat flux qf. To make the
problem tractable, the following assumptions are made:
�
 the punch is rigid and nonconductive so that the flow of heat is directed only into the coated medium;

�
 the free surface outside the contact area is thermally insulated;

�
 the motion of the punch is slow so that inertia effects are neglected;

�
 the contact area is stationary with respect to the coating with no separation between the punch and the

contact surface.

The coating, the graded interlayer, and the substrate are distinguished in order from the top with the
thickness hj, j ¼ 1,2, and semi-infinite, respectively. After denoting thermal conductivity coefficients, shear
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Fig. 1. Schematic of the thermoelastic contact problem involving graded properties and frictional heat generation.
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moduli, and thermal expansion coefficients as kj, mj, and aj, j ¼ 1,2,3, respectively, those of the interlayer are
approximated as

k2ðxÞ ¼ k1 e
dx; m2ðxÞ ¼ m1 e

bx; a2ðxÞ ¼ a1 egx, (1)

where in the local coordinates (x,y) ¼ (xj,y), j ¼ 1,2,3, the material gradation parameters d, b, and g
(dimensionally, the reciprocal of characteristic length) are specified to render the continuous transition of the
thermoelastic moduli from the coating to the substrate

d ¼
1

h2
ln

k3

k1

� �
; b ¼

1

h2
ln

m3
m1

� �
; g ¼

1

h2
ln

a3
a1

� �
(2)

and the Poisson’s ratios are assumed to be constant as nj ¼ n, j ¼ 1,2,3. When h1-0, the current three-layer
homogeneous coating/substrate system with a graded interlayer becomes that of a two-layer graded
coating such that the thermoelastic properties of the coating vary continuously from (k1, m1, a1) at its surface
to (k3, m3, a3) at the nominal interface with the substrate.

Let uj(x,y) and vj(x,y), j ¼ 1,2,3, be the displacement components in the x- and y-directions, respectively,
and Yj(x,y), j ¼ 1,2,3, be the temperature field measured from the reference stress-free temperature. The
Duhamel–Neumann constitutive relations for the plane thermoelasticity are written as (Nowinski, 1978)

sjxx ¼
mj

k� 1
ð1þ kÞ

quj

qx
þ ð3� kÞ

qvj

qy
� 4a�j Yj

� �
, (3a)

sjyy ¼
mj

k� 1
ð1þ kÞ

qvj

qy
þ ð3� kÞ

quj

qx
� 4a�j Yj

� �
, (3b)

tjxy ¼ mj

quj

qy
þ

qvj

qx

� �
; j ¼ 1; 2; 3, (3c)

where k ¼ 3�4n, aj
*
¼ (1+n)aj for the plane strain and k ¼ (3�n)/(1+n), aj

*
¼ aj for the plane stress.

The steady-state heat conduction equations for the coated system subjected to the frictional heating induced
by the slowly moving punch are given by

r2Yj þ d
qYj

qx
¼ 0; j ¼ 1; 2; 3 (4)

and the Navier–Cauchy equations of equilibrium governing the thermoelastic behavior in the absence of body
forces are expressed as

r2uj þ
2

k� 1

q2uj

qx2
þ

q2vj

qxqy

 !
þ

b
k� 1

ð1þ kÞ
quj

qx
þ ð3� kÞ

qvj

qy

� �
¼

4a�j e
gx

k� 1
ðbþ gÞYj þ

qYj

qx

� �
, (5a)
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r2vj þ
2

k� 1

q2vj

qy2
þ

q2uj

qxqy

 !
þ b

qvj

qx
þ

quj

qy

� �
¼

4a�j e
gx

k� 1

qYj

qy
; j ¼ 1; 2; 3, (5b)

where d 6¼0, b6¼0, g 6¼0 for the graded interlayer (j ¼ 2) and d ¼ 0, b ¼ 0, g ¼ 0 for the homogeneous
constituents (j ¼ 1,3). Note that a2

*
¼ a1

* when j ¼ 2.
In view of the fact that the entire frictional heat flows into the coated medium through the contact area

without any loss to the surroundings (Hills and Barber, 1985), and that the problem is treated within the linear
thermoelasticity framework, the heat conduction analysis is to be first considered subjected to the thermal
boundary and interface conditions written in the local coordinates (x,y) ¼ (xj,y), j ¼ 1,2,3, as

k1
qY1

qx
ð0; yÞ ¼

�qf ðyÞ; y
�� ��oc;

0; otherwise;

(
(6)

Yjðhj ; yÞ ¼ Yjþ1ð0; yÞ;
qYj

qx
ðhj ; yÞ ¼

qYjþ1

qx
ð0; yÞ; j ¼ 1; 2; y

�� ��o1, (7)

Y3ð1; yÞ ¼ 0; y
�� ��o1, (8)

so that the result can be made available for incorporation into the ensuing thermal stress analysis. In this case,
the displacements are known a priori within the contact area via the prescribed punch profile and the tractions
beneath the punch are unknown, with the following set of mixed contact boundary and interface conditions
(see Fig. 1):

t1xyð0; yÞ ¼ mfs1xxð0; yÞ; u1ð0; yÞ ¼ u0; y
�� ��oc, (9)

s1xxð0; yÞ ¼ 0; t1xyð0; yÞ ¼ 0; y
�� ��4c, (10)

ujðhj ; yÞ ¼ ujþ1ð0; yÞ; vjðhj ; yÞ ¼ vjþ1ð0; yÞ; j ¼ 1; 2; y
�� ��o1, (11)

sjxxðhj ; yÞ ¼ sðjþ1Þxxð0; yÞ; tjxyðhj ; yÞ ¼ tðjþ1Þxyð0; yÞ; j ¼ 1; 2; y
�� ��o1, (12)

u3ð1; yÞ ¼ 0; v3ð1; yÞ ¼ 0; y
�� ��o1, (13)

where u0 is the indentation depth at the surface of the coating and the unique solution of the problem requires
that the overall equilibrium condition be met such thatZ c

�c

s1xxð0; yÞdy ¼ �P. (14)

In addition, based on the initial assumption that the frictional tangential traction inside the contact area is
totally responsible for the heating effect under consideration, the magnitude of heat flux qf into the thermally
conducting coated medium is equal to the rate of frictional heat generated according to the following relation
(Joachim-Ajao and Barber, 1998):

qf ðyÞ ¼ �Vt1xyð0; yÞ; y
�� ��oc. (15)

To solve the governing field equations of thermoelasticity in Eqs. (4) and (5), the Fourier integral transform
method is employed. The general solutions for the temperature in the local coordinates, (x,y) ¼ (xj,y),
j ¼ 1,2,3, that fulfill the regularity condition in Eq. (8) are readily obtained as

Y1ðx; yÞ ¼
1

2p

Z 1
�1

ðA11 e
sx þ A12 e

�sxÞ e�isy ds, (16)

Y2ðx; yÞ ¼
1

2p

Z 1
�1

X2
j¼1

A2j e
ljx�isy ds, (17)
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Y3ðx; yÞ ¼
1

2p

Z 1
�1

A31 e
� sj jx�isy ds, (18)

where s is the transform variable, i ¼ (�1)1/2, with lj(s), j ¼ 1,2, given by

l1 ¼ �
d
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þ s2

s
; l2 ¼ �

d
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þ s2

s
(19)

and Akj(s), k ¼ 1,2, j ¼ 1,2, and A31(s) are arbitrary unknowns that can be determined by applying the thermal
boundary and interface conditions in Eqs. (6) and (7).

Supplemented by the complementary solutions to the homogeneous part of the governing equations in
Eqs. (5a) and (5b), the general solutions for the displacements in the homogeneous coating layer (d ¼ 0, b ¼ 0,
g ¼ 0 and (x,y) ¼ (x1,y)) are also obtainable in terms of the Fourier integrals (Choi, 2003)

u1ðx; yÞ ¼
i

2p

Z 1
�1

F 11 þ F 12 x�
k
s

� 	h i
esx � F13 þ F 14 xþ

k
s

� 	h i
e�sx

n o
e�isy ds

þ
2a�1
1þ k

1

2p

Z 1
�1

A11 xþ
1

s

� �
esx þ A12 x�

1

s

� �
e�sx

� �
e�isy ds; ð20Þ

v1ðx; yÞ ¼
1

2p

Z 1
�1

ðF 11 þ F12xÞ esx þ ðF13 þ F14xÞ e�sx½ � e�isy ds

�
2a�1
1þ k

i

2p

Z 1
�1

xðA11 e
sx � A12 e

�sxÞ e�isy ds, ð21Þ

where F1j(s), j ¼ 1,y,4, are arbitrary unknowns.
For the graded, nonhomogeneous interlayer (d 6¼0, b6¼0, g 6¼0 and (x,y) ¼ (x2,y)), the general expressions of

the displacement components can be obtained as

u2ðx; yÞ ¼ �
i

2p

Z 1
�1

X4
j¼1

F2jmje
njx�isy dsþ

4a�1 e
gx

k� 1

1

2p

Z 1
�1

X2
j¼1

A2j

Fj

Dj

eljx�isy ds, (22)

v2ðx; yÞ ¼
1

2p

Z 1
�1

X4
j¼1

F2j e
njx�isy dsþ

4a�1 e
gx

k� 1

i

2p

Z 1
�1

X2
j¼1

A2j

Oj

Dj

eljx�isy ds, (23)

where F2j(s), j ¼ 1,y,4, are arbitrary unknowns, nj(s), j ¼ 1,y,4, are the roots of the characteristic equation

ðn2 þ bn� s2Þ2 þ
3� k
1þ k

� �
b2s2 ¼ 0 (24)

from which it can be shown that

nj ¼ �
b
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

4
þ s2 � ið�1Þjbs

3� k
1þ k

� �1=2
s

; ReðnjÞ40; j ¼ 1; 2, (25a)

nj ¼ �
b
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

4
þ s2 þ ið�1Þjbs

3� k
1þ k

� �1=2
s

; ReðnjÞo0; j ¼ 3; 4 (25b)

and mj(s), j ¼ 1,y,4, are written for each root nj(s), j ¼ 1,y,4, as

mj ¼
ðk� 1Þðn2

j þ bnjÞ � ð1þ kÞs2

½2nj þ ðk� 1Þb�s
. (26)
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Besides, the thermoelastic constants, Fj(s), Oj(s), and Dj(s), j ¼ 1,2, in the particular solutions in Eqs. (22)
and (23) are defined as

Fj ¼ ðbþ gþ ljÞ
k� 1

kþ 1

� �
Pj �

4ks2

k2 � 1

� �
þ s2Qj, (27a)

Oj ¼ sðbþ gþ ljÞ Qj þ 2b
k� 2

k� 1

� �� �
� sPj, (27b)

Dj ¼
k� 1

kþ 1

� �
Pj �

4ks2

k2 � 1

� �
Pj þ s2 Qj þ 2b

k� 2

k� 1

� �� �
Qj (27c)

in which Pj(s) and Qj(s), j ¼ 1,2, are given by

Pj ¼
kþ 1

k� 1

� �
ðgþ ljÞðbþ gþ ljÞ � s2, (28a)

Qj ¼
2ðgþ ljÞ þ bð3� kÞ

k� 1
. (28b)

The general solutions for the displacements in the semi-infinite homogeneous substrate (d ¼ 0, b ¼ 0, g ¼ 0
and (x,y) ¼ (x3,y)), satisfying the boundedness conditions in Eq. (13), are written as

u3ðx; yÞ ¼ �
i

2p

Z 1
�1

s

sj j
F31 þ F32 xþ

k
sj j

� �� �
e� sj jx�isy ds

þ
2a�3
1þ k

1

2p

Z 1
�1

A31 x�
1

sj j

� �
e� sj jx�isy ds; ð29Þ

v3ðx; yÞ ¼
1

2p

Z 1
�1

ðF31 þ F32xÞ e� sj jx�isy dsþ
2a�3
1þ k

i

2p

Z 1
�1

s

sj j
A31x e� sj jx�isy ds; (30)

where F3j(s), j ¼ 1,2, are arbitrary unknowns.
As can be seen in the above, there are a total of 15 unknowns; Akj(s), k ¼ 1,2, j ¼ 1,2, and A31(s) in the

general solutions for the heat conduction problem; Fkj(s), k ¼ 1,2, j ¼ 1,y,4, and F3j(s), j ¼ 1,2, for the
thermal stress problem. Among these, the expressions for Akj(s), k ¼ 1,2, j ¼ 1,2, and A31(s) determined from
the thermal boundary and interface conditions in Eqs. (6) and (7) are listed in the Appendix. Subsequently, the
interface conditions for the displacements and stresses, Eqs. (11) and (12), can be applied to eliminate the eight
out of the 10 unknowns for the thermoelastic field and the mixed conditions in Eqs. (9) and (10) would yield,
in principle, a pair of integral equations for the remaining two unknowns.

3. Application of boundary and interface conditions

In the thermoelastic contact problem at hand, the contact pressure distribution is to be determined from the
requirement that the sum of the isothermal displacements due to the normal and tangential tractions
and the nonisothermal displacement due to the heat input should be constant beneath the punch for the
contact to be maintained. The next step in the solution procedure would be to obtain the expressions for
the displacements in the coating layer subjected to arbitrary tractions and heat flux acting in a certain area on
the boundary of the coated medium and the interface conditions as well. To accomplish such routine algebraic
manipulations in a judicious manner, the transfer matrix approach (Bahar, 1972) is employed, with the
corresponding result to be made use of in the following section in deriving an integral equation for
the unknown contact pressure.

From the general solutions in Eqs. (20)–(23), (29), (30) and the constitutive relations in Eqs. (3a)–(3c), the
displacements and tractions in the coated system can be written in the Fourier-transformed domain as

f jðx; sÞ ¼ Tjðx; sÞajðsÞ þ f jTðx; sÞ; j ¼ 1; 2; 3, (31)
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where fj(x,s), j ¼ 1,2,3, are state vectors containing the physical variables that need to be determined for the
given constituents, aj(s), j ¼ 1,2,3, are vectors for the arbitrary unknowns in the general solutions of
thermoelasticity equations such that

f jðx; sÞ ¼ ūjðx; sÞ=i; v̄jðx; sÞ; s̄jxxðx; sÞ=i; t̄jxyðx; sÞ

 �T

; j ¼ 1; 2; 3, (32a)

ajðsÞ ¼ F j1ðsÞ;Fj2ðsÞ;Fj3ðsÞ;Fj4ðsÞ

 �T

; j ¼ 1; 2, (32b)

a3ðsÞ ¼ F 31ðsÞ;F 32ðsÞ

 �T

(32c)

and Tj(x,s), j ¼ 1,2,3, are matrices which are a function of not only the variables x and s, but also the elastic
parameters of the constituents, and 4� 4 for the coating and the graded interlayer (j ¼ 1,2) and 4� 2 for the
substrate (j ¼ 3), while fjT(x,s), j ¼ 1,2,3, are vectors indicating the nonisothermal effect originating from the
nonhomogeneous part of the governing equations in Eqs. (5a) and (5b).

In terms of the state vectors, the appropriate boundary and interface conditions can be expressed as

f�1 ðsÞ ¼ f0ðsÞ ¼ ū�1 ðsÞ=i; v̄�1 ðsÞ; s̄ðsÞ=i; t̄ðsÞ

 �T

, (33)

fþ1 ðsÞ ¼ f�2 ðsÞ; fþ2 ðsÞ ¼ f�3 ðsÞ, (34)

where the superscript �/+ denotes the upper/lower surfaces of the constituents and s̄ðsÞ and t̄ðsÞ refer to the
transformed normal and shear tractions acting on the upper surface of the coating layer

sðsÞ ¼
Z c

�c

sðrÞ eisr dr; tðsÞ ¼
Z c

�c

tðrÞ eisr dr (35)

and the applications of the boundary and interface conditions, Eqs. (33) and (34), to the state vector equations
in Eq. (31) can remove the unknown vectors aj(s), j ¼ 1,2, in the coating and the interlayer so that the surface
values of the field quantities in Eq. (33) are written in terms of the unknown vector in the substrate a3(s) such
that

f0ðsÞ ¼ GðsÞa3ðsÞ þ r0ðsÞ, (36)

where G(s) is a 4� 2 transfer matrix between the substrate and the upper surface of the coating and r0(s) is a
vector of length four containing the thermal loading:

GðsÞ ¼
Y3
j¼1

HjðsÞ, (37a)

r0ðsÞ ¼ �irðsÞqf ðsÞ ¼
Y2
j¼1

HjðsÞ

" #
f�3TðsÞ � fþ2TðsÞ
� 

þH1ðsÞ f
�
2TðsÞ � fþ1TðsÞ

� 
þ f�1TðsÞ (37b)

in which the matrix functions Hj(s), j ¼ 1,2,3, and the transformed heat flux q̄f ðsÞ are given by

HjðsÞ ¼ T�j ðsÞ T
þ
j ðsÞ

h i�1
; j ¼ 1; 2; H3ðsÞ ¼ T�3 ðsÞ, (38a)

qf ðsÞ ¼

Z c

�c

qf ðrÞ e
isr dr. (38b)

The transfer matrix equation in Eq. (36) is then solved, eliminating the unknown vector a3(s), for the
transformed surface displacements, ū�1 ðsÞ ¼ ū1ð0; sÞ and v̄�1 ðsÞ ¼ v̄1ð0; sÞ, directly in terms of the transformed
surface tractions, s̄ðsÞ and t̄ðsÞ, and heat flux, q̄f ðsÞ. Upon taking the inverse Fourier transform, one can show
that

u1ð0; yÞ ¼
1

2p

Z 1
�1

N11ðsÞsðsÞ þ iN12ðsÞtðsÞ þ L1ðsÞqf ðsÞ
� 

e�isy ds; y
�� ��o1, (39)



ARTICLE IN PRESS
H.J. Choi, G.H. Paulino / J. Mech. Phys. Solids 56 (2008) 1673–1692 1681
v1ð0; yÞ ¼
1

2p

Z 1
�1

�iN21ðsÞsðsÞ þN22ðsÞtðsÞ � iL2ðsÞqf ðsÞ
� 

e�isy ds; y
�� ��o1, (40)

where Njk(s), j,k ¼ 1,2, are elements of the 2� 2 matrix and Lj(s), j ¼ 1,2, are those of the vector of two units
in length

NðsÞ ¼
G11 G12

G21 G22

" #
G31 G32

G41 G42

" #�1
, (41a)

LðsÞ ¼
r1

r2

( )
�

G11 G12

G21 G22

" #
G31 G32

G41 G42

" #�1
r3

r4

( )
(41b)

in which the matrix N(s) depends only on the elastic parameters of the constituents of the coated system and
the vector L(s) has the dependency on the thermoelastic moduli of such constituents.

4. Integral equation for the thermoelastic contact mechanics

In order to dictate the correct nature of singularities the current contact problem may have, and to exclude
the possibility of rigid body displacements, with the substitution of Eqs. (35) and (38b), the displacements in
Eqs. (39) and (40) are differentiated with respect to the variable y to yield

qu1

qy
ð0; yÞ ¼ �

1

2p

Z c

�c

iK11ðy; rÞsðrÞ � K12ðy; rÞtðrÞ þ iK13ðy; rÞqf ðrÞ
� 

dr; y
�� ��o1, (42)

qv1

qy
ð0; yÞ ¼ �

1

2p

Z c

�c

K21ðy; rÞsðrÞ þ iK22ðy; rÞtðrÞ þ K23ðy; rÞqf ðrÞ
� 

dr; y
�� ��o1, (43)

where the kernel functions, Kjk(y,r), j ¼ 1,2, k ¼ 1,2,3, are written as

Kjkðy; rÞ ¼

Z 1
�1

sNjkðsÞ e
isðr�yÞ ds; j ¼ 1; 2; k ¼ 1; 2, (44)

Kj3ðy; rÞ ¼

Z 1
�1

sLjðsÞ e
isðr�yÞ ds; j ¼ 1; 2 (45)

together with the asymptotic behavior of the integrands for the variable s as follows:

lim
sj j!1

s N11ðsÞ ¼ lim
sj j!1

s N22ðsÞ ¼ N11
s

sj j
¼ �

kþ 1

4m1

s

sj j
, (46a)

lim
sj j!1

s N12ðsÞ ¼ lim
sj j!1

s N21ðsÞ ¼ N12 ¼ �
k� 1

4m1
, (46b)

lim
sj j!0

sL1ðsÞ ¼ L0
1ðsÞ ¼ �

2a�3
k3

1

s
, (46c)

lim
sj j!0

sL2ðsÞ ¼ L0
2ðsÞ ¼ �

2a�3
k3

k
kþ 1

1

sj j
. (46d)

After separating the leading terms from the kernels in Eqs. (44) and (45) and employing the Fourier
representation of generalized functions (Friedman, 1991)Z 1

0

sin sðr� yÞds ¼
1

r� y
, (47a)

Z 1
0

cos sðr� yÞds ¼ pdðr� yÞ, (47b)



ARTICLE IN PRESS
H.J. Choi, G.H. Paulino / J. Mech. Phys. Solids 56 (2008) 1673–16921682
where d(r�y) is the Dirac delta function, a pair of integral equations is obtained for the unknown contact
tractions s(y) and t(y) as

k� 1

kþ 1
tðyÞ þ

1

p

Z c

�c

sðrÞ
r� y

dr�
1

p
4m1
kþ 1

Z c

�c

k11ðy; rÞsðrÞ þ k12ðy; rÞtðrÞ þ
a�1
k1

k13ðy; rÞqf ðrÞ

� �
dr

þ
4m1a

�
3

ðkþ 1Þk3

Z c

�c

sgnðr� yÞqf ðrÞdr ¼
4m1
kþ 1

qu1

qy
ð0; yÞ; y

�� ��oc, ð48Þ

k� 1

kþ 1
sðyÞ �

1

p

Z c

�c

tðrÞ
r� y

dr�
1

p
4m1
kþ 1

Z c

�c

k21ðy; rÞsðrÞ � k22ðy; rÞtðrÞ þ
a�1
k1

k23ðy; rÞqf ðrÞ

� �
dr

�
1

p
8m1a

�
3k

ðkþ 1Þ2k3

Z c

�c

ln r� y
�� ��qf ðrÞdr ¼

4m1
kþ 1

qv1

qy
ð0; yÞ; y

�� ��oc ð49Þ

provided the surface slope of the punch profile is prescribed and the complete thermoelastic contact condition
is sustained beneath the punch, where the kernels kjk(y,r), j ¼ 1,2, k ¼ 1,2,3 are bounded and given by

kijðy; rÞ ¼

Z 1
0

sNijðsÞ �N11
� 

sin sðr� yÞds; ði; jÞ ¼ ð1; 1Þ; ð2; 2Þ, (50a)

kijðy; rÞ ¼

Z 1
0

sNijðsÞ �N12
� 

cos sðr� yÞds; ði; jÞ ¼ ð1; 2Þ; ð2; 1Þ, (50b)

k13ðy; rÞ ¼
k1

a�1

Z 1
0

sL1ðsÞ � L0
1ðsÞ

� 
sin sðr� yÞds, (50c)

k23ðy; rÞ ¼
k1

a�1

Z 1
0

sL2ðsÞ � L0
2ðsÞ

� 
cos sðr� yÞds. (50d)

Now that the punch slides relative to the coated medium against friction, generating the frictional heat, the
following relations hold within the contact area:

s1xxð0; yÞ ¼ sðyÞ ¼ �pðyÞ; y
�� ��oc, (51)

t1xyð0; yÞ ¼ tðyÞ ¼ �mfpðyÞ; y
�� ��oc, (52)

qf ðyÞ ¼ mfVpðyÞ; y
�� ��oc, (53)

hence the formulation of the thermoelastic contact problem is reduced to solving a Cauchy-type singular
integral equation of the second kind for the unknown contact pressure p(y) as

mf
k� 1

kþ 1
pðyÞ þ

1

p

Z c

�c

pðrÞ

r� y
drþ

Z c

�c

k1ðy; rÞpðrÞdr ¼ f ðyÞ; y
�� ��oc, (54)

where the function f(y) and the bounded kernel k1(y,r) are written as

f ðyÞ ¼
4m1
kþ 1

qu1

qy
ð0; yÞ, (55)

k1ðy; rÞ ¼ �
1

p
4m1
kþ 1

k11ðy; rÞ þ mfk12ðy; rÞ �
mfVa�1

k1
k13ðy; rÞ � p

a�3k1

a�1k3
sgnðr� yÞ

� �� �
(56)

subjected to the satisfaction of equilibrium with the resultant contact force PZ c

�c

pðyÞdy ¼ P. (57)

Because the dominant singular kernel in the integral equation is the Cauchy-type, the contact pressure p(y)
can be expressed as (Muskhelishvili, 1953)

pðyÞ ¼ ðc� yÞwðcþ yÞoF ðyÞ; y
�� ��oc, (58)
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where F(y) signifies a continuous and bounded function, and in the normalized interval as r ¼ cZ, y ¼ cx, the
fundamental function that characterizes the nature of the contact pressure is found to be the weight function
of Jacobi polynomials (Gradshteyn and Ryzhik, 1980). As a result, the solution to the singular integral
equation can be expressed in terms of the series expansion such that

pðyÞ ¼ fðxÞ ¼ wðxÞ
X1
n¼0

cnPðw;oÞn ðxÞ; wðxÞ ¼ ð1� xÞwð1þ xÞo; xj jo1, (59)

where cn, nX0, are unknown coefficients to be evaluated via the procedure developed by Erdogan
(1978), Pðw;oÞn ðxÞ are the Jacobi polynomials associated with the weight function w(x), and the physics
of the problem for the rigid flat punch requires that both the constants w and o be negative and
determined as

w ¼
y
p
; o ¼ �

y
p
� 1; tan y ¼ �

1

mf

kþ 1

k� 1
; �1oðw;oÞo0 (60)

from which it is evident that the values of w and o as the powers of stress singularity at the leading
(y ¼ c) and the trailing (y ¼ �c) edges of the punch, respectively, are dependent only on the friction
coefficient mf and the Poisson’s ratio through k, as for the case of the isothermal counterpart (Guler and
Erdogan, 2004).

With the surface slope of the flat punch being zero within the contact area by Eq. (9), i.e., f(y) ¼ 0 in
Eq. (55), after substituting from Eq. (59) into Eqs. (54) and (57), truncating the series at n ¼ N,
and regularizing the singular part based on the properties of the Jacobi polynomials (Gradshteyn
and Ryzhik, 1980), one can show that the singular integral equation and the equilibrium condition
become

XN

n¼0

cn �
1

2 sin pw
P
ð�w;�oÞ
n�1 ðxÞ þ hnðxÞ

� �
¼ 0, (61)

XN

n¼0

cn

Z 1

�1

wðxÞPðw;oÞn ðxÞdx ¼
P

c
, (62)

where the function hn(x) is given by

hnðxÞ ¼ c

Z 1

�1

k1ðx; ZÞPðw;oÞn ðZÞð1� ZÞwð1þ ZÞo dZ (63)

and the functional equations in Eqs. (61) and (62) can be recast into solvable form by means of the
orthogonality of Pðw;oÞn ðxÞ to construct a system of linear algebraic equations for cn, 0pnp(N+1) as

c�0y
ðw;oÞ
0 ¼ 1; �

yð�w;�oÞk

2 sin pw
c�kþ1 þ

XN

n¼0

dknc�n ¼ 0; k ¼ 0; 1; 2; . . . ;N, (64)

along with the following definitions:

c�n ¼
c

P
cn; n ¼ 0; 1; 2; . . . ; ðN þ 1Þ, (65a)

dkn ¼

Z 1

�1

hnðxÞP
ð�w;�oÞ
k ðxÞð1� xÞ�wð1þ xÞ�o dx, (65b)

yðw;oÞk ¼

2wþoþ1

2k þ wþ oþ 1

Gðk þ wþ 1ÞGðk þ oþ 1Þ

k!Gðk þ wþ oþ 1Þ
; kX1;

2wþoþ1Gðwþ 1ÞGðoþ 1Þ

Gðwþ oþ 2Þ
; k ¼ 0:

8>>><
>>>:

(65c)
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By solving the system of equations in Eq. (64), the normal contact traction beneath the flat punch can be
evaluated as

s1xxð0; yÞ ¼ �pðyÞ ¼ �Pðc� yÞwðcþ yÞo
XNþ1
n¼0

c�nPðw;oÞn

y

c

� 	
; y
�� ��oc, (66)

where the expression for the in-plane stress component s1yy(0,y) acting on the surface of the coating can be
obtained from the constitutive relations in Eqs. (3a)–(3c) and Eq. (49) as (Guler and Erdogan, 2004)

s1yyð0; yÞ ¼ �pðyÞ þ
2mf
p

Z c

�c

pðrÞ

r� y
drþ 2

Z c

�c

k2ðy; rÞpðrÞdr�
8m1a

�
1

kþ 1
Y1ð0; yÞ; y

�� ��o1, (67)

where the function k2(y,r) is the bounded kernel such that

k2ðy; rÞ ¼
1

p
4m1
kþ 1

k21ðy; rÞ � mfk22ðy; rÞ �
mfVa�1

k1
k23ðy; rÞ þ

2a�3k1

a�1k3

k
kþ 1

ln r� y
�� ��� �� �

. (68)

Moreover, in order to characterize in a quantitative manner the severity of singular behavior of the contact
pressure at the edges of the flat punch, in parallel with the concept used for analyzing the crack-like flaws in
linear elastic materials, the stress intensity factors are defined and evaluated in terms of the solution to the
integral equation as

KT ¼ lim
y!�c

pðyÞðcþ yÞ�o ¼ K0T

XNþ1
n¼0

c�nPðw;oÞn ð�1Þ, (69)

KL ¼ lim
y!c

pðyÞðc� yÞ�w ¼ K0L

XNþ1
n¼0

c�nPðw;oÞn ðþ1Þ, (70)

where K0T ¼ P(2c)w and K0L ¼ P(2c)o are the normalizing factors, and the suffix T refers to the trailing edge
of the punch (y ¼ �c) and the suffix L is for the leading edge of the punch (y ¼ c).

5. Results and discussion

Numerical results are obtained for various combinations of geometric (h1/h2), loading (V, c/h2, mf), and
thermoelastic parameters (k1/k3, m1/m3, a1/a3) of the coated medium. The state of plane strain is assumed with
the constant Poisson’s ratio, n ¼ 0.3. The Jacobi-type integrals in Eqs. (63) and (65b) are evaluated based
on the Gauss–Jacobi quadrature formula with 60 collocation points and the improper integrals in
Eqs. (50a)–(50d) are evaluated employing the Gauss–Legendre quadrature formula (Davis and Rabinowitz,
1984), with a 12-term expansion of the Jacobi polynomials in Eq. (59). The outlined numerical scheme is found
to be sufficient for the solutions to converge to the desired degree of accuracy for the geometric, loading, and
material configurations considered in this study, such that neither increasing the number of integration or
collocation points nor increasing the number of terms in the expansion of the Jacobi polynomials has an
appreciable effect on the results. It is to be remarked that for verification purposes, the work by Guler and
Erdogan (2004) for isothermal contact of graded coatings can be recovered when h1/h2 ¼ 0.0 and V ¼ 0.0 as a
particular case of the present formulation and implementation for thermoelastic contact.

5.1. Effects of geometric and loading parameters

Specific results are first presented for the material pair that is representative of a zirconia ceramic coating
(ZrO2) deposited on a titanium-based metallic substrate (Ti–6Al–4V), with k1/k3 ¼ 0.1125, m1/m3 ¼ 1.7674,
a1/a3 ¼ 0.6903 (Fujimoto and Noda, 2001) and h1/h2 ¼ 1.0, c/h2 ¼ 0.2, mf ¼ 0.5, unless otherwise stated (see
Table 1 for the actual material properties). To be additionally mentioned at this point is that in the resolution
of thermoelastic contact problems, the excessive amount of heat flux between the contacting bodies may give
rise to the separation of contacting surfaces, enforcing the contact stress distribution to turn into positive and
tensile around the edges of the punch (Barber and Comninou, 1989). In order to circumvent such erratic
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Table 1

Thermoelastic properties of ceramic and metal (Fujimoto and Noda, 2001)

Properties ZrO2 Ti–6Al–4V

Thermal conductivity: k1, k3 2.036W (mK)�1 18.1W (mK)�1

Elastic modulus: E1, E3 117.0GPa 66.2GPa

Thermal expansion coefficient: a1, a3 7.11� 10�6K�1 10.3� 10�6K�1
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Fig. 2. (a) Contact stress s1xx(0,y)/so and (b) in-plane stress s1yy(0,y)/so distributions on the surface of the coated medium for different

values of the nondimensional sliding speed V0 ¼ m1a1
*mfVc/k1(k+1) of the flat punch (h1/h2 ¼ 1.0, c/h2 ¼ 0.2, mf ¼ 0.5, so ¼ P/2c).
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behavior and, at the same time, to satisfy the condition of perfect contact between the punch and the coating,
the heat flux should remain below certain levels, which, in this case, depends on the sliding speed of the punch
as well as the friction coefficient. For the current analysis, the sliding speed of the punch should thus be
properly chosen to maintain such a magnitude of the frictional heat flow that ensures the complete
thermoelastic contact condition during the indentation of the punch (Joachim-Ajao and Barber, 1998).

For the graded interlayer, h1/h2 ¼ 1.0, the resulting distributions of normalized contact stress s1xx(0,y)/so
and in-plane stress s1yy(0,y)/so are plotted in Figs. 2a and b, respectively, where so ¼ P/2c is the average
contact pressure for different values of nondimensional sliding speed of the punch defined as V0 ¼ m1a1

*mfVc/
k1(k+1). In this case, the powers of stress singularity at the leading (y ¼ c) and the trailing (y ¼ �c) edges of
the flat punch as determined from Eq. (60) are w ¼ �0.4548 and o ¼ �0.5452, respectively. The fact that the
stronger singularity prevails at the trailing edge than at the leading edge is reflected in Fig. 2a such that there
are greater stress concentrations around the trailing end of the punch. When the nonisothermal effect is taken
into account accompanied by the increase in the sliding speed of the punch, the contact stress distributions
tend to be markedly skewed near the leading edge of the punch and become attenuated. The in-plane
component of the stress as illustrated in Fig. 2b clearly depicts that its magnitude is also unbounded and
discontinuous at both edges of the punch. In particular, when the punch is stationary as V0 ¼ 0.0
corresponding to the isothermal contact, the in-plane stress just behind the trailing edge (yo�c) exhibits
tensile and unbounded behavior as well, which is recovered by the present solution. This has relevance to the
well-known experimental findings (Suresh et al., 1999) that the trailing edge is a more likely location of surface
crack initiation and propagation in load transfer components. When the sliding speed of the punch becomes
greater, however, it is predicted that the in-plane stress is rendered less tensile behind the trailing edge and
more compressive in the other region of the coating surface (y4�c), indicating the suppression of the
aforementioned tendency of surface cracking at the trailing edge.
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Fig. 3. (a) Contact stress s1xx(0,y)/so and (b) in-plane stress s1yy(0,y)/so distributions on the surface of the coated medium for different

values of the nondimensional sliding speed V0 ¼ m1a1
*mfVc/k1(k+1) of the flat punch (h1/h2 ¼ 0.0, c/h2 ¼ 0.2, mf ¼ 0.5, so ¼ P/2c).

Table 2

Normalized stress intensity factors KT/K0T and KL/K0L at the edges of the flat punch for different values of V0 and h1/h2 (c/h2 ¼ 0.2,

mf ¼ 0.5, K0T ¼ P(2c)w, K0L ¼ P(2c)o)

V0 h1/h2 ¼ 1.0 h1/h2 ¼ 0.0

KT/K0T KL/K0L KT/K0T KL/K0L

0.0 0.3340 0.2990 0.3723 0.3110

0.05 0.3139 0.2432 0.3609 0.2761

0.1 0.2965 0.1786 0.3503 0.2380

0.15 0.2867 0.0993 0.3411 0.1958
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The problem of the graded coating, h1/h2 ¼ 0.0, is next considered with the aid of Figs. 3a and b. A notable
feature to be found from the comparison between Figs. 2 and 3 is that, despite the same strength of stress
singularities as for the graded interlayer model, the near-edge stress state for the graded coating appears to
become somewhat intensified and the leading edge is experiencing less skewed stress distributions as the sliding
speed V0 increases. In addition, the in-plane stress component behind the trailing edge remains tensile for the
given values of V0, with the implication that the two-layer graded coating/substrate system, to some extent,
would be more vulnerable to the sliding-contact surface damage near the trailing edge of the punch than the
three-layer coating/substrate system with a graded interlayer.

Although the results in Figs. 2 and 3 confirm the existence of the severe stress field in the close vicinity of the
punch edges, they are not explicit enough to measure the criticality of the singular nature of the pressure
distributions inherent in all rigid flat punch problems. In this respect, the normalized stress intensity factors,
KT/K0T and KL/K0L, are evaluated from Eqs. (69) and (70) and provided in Table 2 for different values of V0

and h1/h2, from which it is obvious that those at the trailing edge are of greater magnitude than at the leading
edge. Moreover, it is demonstrated that the stress intensities decrease at both edges of the punch as the sliding
speed V0 is increased and the presence of the homogeneous coating over the graded interlayer, e.g., h1/h2 ¼ 1,
tends to alleviate the severity of stress state at the edges.

Figs. 4a and b illustrate how the width of the sliding punch, c/h2, affects the contact stress field, where in
these figures and the others that follow, the results are for the coating/substrate system with a graded
interlayer (h1/h2 ¼ 1.0) and the nondimensional sliding speed is set equal to V0 ¼ 0.1. A comment to be made
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Fig. 4. (a) Contact stress s1xx(0,y)/so and (b) in-plane stress s1yy(0,y)/so distributions on the surface of the coated medium for different

values of the width c/h2 of the flat punch (V0 ¼ 0.1, h1/h2 ¼ 1.0, mf ¼ 0.5, so ¼ P/2c).

Table 3

Normalized stress intensity factors KT/K0T and KL/K0L at the edges of the flat punch for different values of c/h2 (V0 ¼ 0.1, h1/h2 ¼ 1.0,

mf ¼ 0.5, K0T ¼ P(2c)w, K0L ¼ P(2c)o)

c/h2 ¼ 0.2 c/h2 ¼ 0.4 c/h2 ¼ 0.6 c/h2 ¼ 0.8

KT/K0T 0.2965 0.3242 0.3500 0.3735

KL/K0L 0.1786 0.1820 0.1948 0.2125
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for Fig. 4a is that some reduction in the magnitude of contact pressure (within the contact area) in proportion
to c/h2 is offset by the greater stress concentrations near the edges of the punch for the enlarged punch width.
Such a near-edge response is also predictable, especially at the trailing edge of the punch, from the values of
stress intensity factors given in Table 3. The results in Fig. 4b, however, depict the less significant effect of the
punch width on the in-plane stress component.

With the coefficient of friction mf ranging from 0.1 to 0.8 and c/h2 ¼ 0.2, the variations of contact traction
distributions are examined in Figs. 5a and b. When the sliding contact between the punch and the coating
surface is more frictional, it can be pointed out from Fig. 5a that the stress concentration becomes greater in
the region close to the trailing edge of the punch. On the other hand, the reverse trend of stress relaxation is
observed near the leading edge. Note that the above descriptions regarding the near-edge behavior are in
parallel with those of the stress intensity factors evaluated and specified in Table 4 for different values of mf. In
addition, such a response near the trailing edge in Fig. 5a is well correlated with that of the in-plane stress
component shown in Fig. 5b such that the increase in the friction coefficient may cause the in-plane stress to be
totally tensile and unbounded behind the trailing edge of the contact area.

5.2. Effects of thermoelastic parameters

In the sequel, additional results are presented in Figs. 6–8 in order to gain an insight into the influences of
material property variations on the contact stress field that develops during the heat-generating frictional
sliding of the punch. To this end, one of the three thermoelastic parameters (k1/k3, m1/m3, a1/a3) is taken to be
variable and the other two parameters remain the same as those specified in the beginning of this section.
Table 5 provides the corresponding values of the normalized stress intensity factors.
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Fig. 5. (a) Contact stress s1xx(0,y)/so and (b) in-plane stress s1yy(0,y)/so distributions on the surface of the coated medium for different

values of the friction coefficient mf (V0 ¼ 0.1, h1/h2 ¼ 1.0, c/h2 ¼ 0.2, so ¼ P/2c).

Table 4

Normalized stress intensity factors KT/K0T and KL/K0L at the edges of the flat punch for different values of mf (V0 ¼ 0.1, h1/h2 ¼ 1.0,

c/h2 ¼ 0.2, K0T ¼ P(2c)w, K0L ¼ P(2c)o)

mf ¼ 0.1 mf ¼ 0.3 mf ¼ 0.5 mf ¼ 0.8

KT/K0T 0.2541 0.2763 0.2965 0.3217

KL/K0L 0.2296 0.2043 0.1786 0.1399
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Fig. 6. (a) Contact stress s1xx(0,y)/so and (b) in-plane stress s1yy(0,y)/so distributions on the surface of the coated medium for different

values of the thermal conductivity ratio k1/k3 (V0 ¼ 0.1, h1/h2 ¼ 1.0, c/h2 ¼ 0.2, mf ¼ 0.5, so ¼ P/2c).
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From Fig. 6a, it appears that the increase in the thermal conductivity of the coating layer, k1/k3, relieves the
stress concentration in the vicinity of the leading edge of the punch. The fact that the coating with the higher
thermal conductivity can facilitate the heat transfer within the coated system is understood to be accountable
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Fig. 8. (a) Contact stress s1xx(0,y)/so and (b) in-plane stress s1yy(0,y)/so distributions on the surface of the coated medium for different

values of the thermal expansion coefficient ratio a1/a3 (V0 ¼ 0.1, h1/h2 ¼ 1.0, c/h2 ¼ 0.2, mf ¼ 0.5, so ¼ P/2c).

Table 5

Normalized stress intensity factors KT/K0T and KL/K0L at the edges of the flat punch for different values of k1/k3, m1/m3, and a1/a3
(V0 ¼ 0.1, h1/h2 ¼ 1.0, c/h2 ¼ 0.2, mf ¼ 0.5, K0T ¼ P(2c)w, K0L ¼ P(2c)o)

k1/k3 KT/K0T KL/K0L m1/m3 KT/K0T KL/K0L a1/a3 KT/K0T KL/K0L

0.05 0.2972 0.1816 0.2 0.2599 0.2067 0.3 0.2953 0.1738

0.5 0.2937 0.1665 1.0 0.2828 0.1890 0.5 0.2963 0.1778

1.0 0.2914 0.1554 3.0 0.3126 0.1668 1.0 0.2966 0.1793

1.5 0.2898 0.1466 5.0 0.3316 0.1533 5.0 0.2969 0.1807
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for such stress relaxation. The trailing edge is observed, however, to be quite insensitive to the variations of
k1/k3, which is also clear from the stress intensity factors given in Table 5. Equally notable are the in-plane
stress distributions shown in Fig. 6b that become substantially compressive with the increase in the values of
k1/k3, especially behind the trailing edge, which implies that the use of coating materials with the higher
thermal conductivity may reduce the likelihood of contact-induced surface cracking.

The effect of variations of the shear modulus of the coating, m1/m3, is demonstrated in Figs. 7a and b. As can
be inferred from Fig. 7a and the values of stress intensity factors in Table 5, the increase in the stiffness of the
coating results in the greater stress concentration around the trailing edge of the punch, but the opposite trend
is seen to exist near the leading edge. Fig. 7b further shows that under the current thermoelastic condition
involving frictional heating, the stiffer coating may render the in-plane stress component on its surface more
compressive, counteracting the brittle failure of the coating materials in general. Another interesting feature to
be revealed is the effect of the thermal expansion coefficient, a1/a3, of the coating layer as provided in Fig. 8a
and Table 5, where the dependence of contact pressure distributions on the variations of a1/a3 is observed to
be negligible. The results in Fig. 8b indicate, however, that the distributions of the in-plane stress component
may be affected rather significantly by the values of a1/a3 such that the larger values of a1/a3 may make the
coating material more susceptible to surface damage when subjected to the sliding contact with frictional heat
generation.
6. Closure

The thermoelastic contact analysis has been performed for the coating/substrate system with graded
properties using the framework of steady-state plane thermoelasticity, where the rigid flat punch was assumed
to slide slowly over the surface of the coating generating the frictional heat. The graded material was modeled
as a nonhomogeneous interlayer between the dissimilar, homogeneous phases of the coated system or as a
nonhomogeneous coating deposited directly on the substrate, with continuous variations of its thermoelastic
moduli expressed in exponential form. As a result, the distributions of the contact pressure and the in-plane
surface stress component were obtained for various combinations of geometric, loading, and material
parameters of the coated medium under prescribed thermoelastic contact loading conditions. The stress
intensity factors were also evaluated at the edges of the flat punch to quantify the degree of severity of singular
behavior of contact stresses that are inherent at such locations.

Specifically, it was manifested that the highly concentrated stresses that are largely responsible for the
sliding-contact surface damage, especially near the trailing edge of the punch, tend to be relieved by the
frictional heating effect that is generated during the sliding of the punch. Another noteworthy feature was that
the two-layer graded coating/substrate system is more likely to be vulnerable to the contact damage when
compared with the three-layer coated system with the graded interlayer. Furthermore, the coating material
with the enhanced thermal conductivity was shown to lower the likelihood of failure initiation that may occur
at the coating surface. On the other hand, increase in the stiffness of the coating resulted in greater stress
concentrations around the trailing edge of the punch, while the in-plane stress component was rendered more
compressive, offsetting the tendency of the brittle failure of the coating materials. Although the contact
pressure distribution was affected to a negligible extent by the variations of the thermal expansion coefficient
of the coating material, it was predicted that the increased thermal expansion could exert some adverse
influence such that the in-plane stresses behind the trailing edge may become tensile, implying greater
susceptibility of the coating damage during the contact process.

The work presented herein offers room for further viable and promising extensions. For instance, the
assumptions set forth in Section 2 could influence the contact stress field and could thus be relaxed requiring
extra elaborations in order to cover a broader range of applications. The current solutions could also be
valuable resources in verifying and calibrating computational models (e.g., finite and boundary element
methods) for the thermoelastic contact of graded coating/substrate systems with frictional heat generation.
Besides, in the sense that the frictional contact on the surface of a brittle coating may eventually give rise to
damage patterns in the form of surface and/or interface cracking (Suresh et al., 1999), the feasible coupled
crack/contact analysis in the graded coatings incorporating the contact-induced frictional heating effect would
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pose another interesting research topic of technological significance. Such issues need to be addressed and will
be reported in the forthcoming papers.

Appendix A

The unknowns, Akj(s), k ¼ 1,2, j ¼ 1,2, and A31(s), involved in the general solutions for the temperature
field are determined in terms of the transformed heat flux q̄f ðsÞ by applying the thermal boundary and interface
conditions in Eqs. (6) and (7) to be expressed as
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where q̄f ðsÞ is defined in Eq. (38b).
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