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Abstract Cohesive models are used for simulation of

fracture, branching and fragmentation phenomena at vari-

ous scales. Those models require high levels of mesh

refinement at the crack tip region so that nonlinear behavior

can be captured and physical results obtained. This imposes

the use of large meshes that usually result in computational

and memory costs prohibitively expensive for a single

traditional workstation. If an extrinsic cohesive model is to

be used, support for dynamic insertion of cohesive ele-

ments is also required. This paper proposes a topological

framework for supporting parallel adaptive fragmentation

simulations that provides operations for dynamic insertion

of cohesive elements, in a uniform way, for both two- and

three-dimensional unstructured meshes. Cohesive elements

are truly represented and are treated like any other regular

element. The framework is built as an extension of a

compact adjacency-based serial topological data structure,

which can natively handle the representation of cohesive

elements. Symmetrical modifications of duplicated entities

are used to reduce the communication of topological

changes among mesh partitions and also to avoid the use of

locks. The correctness and efficiency of the proposed

framework are demonstrated by a series of arbitrary

insertions of cohesive elements into some sample meshes.

Keywords Parallel fragmentation simulation �
Crack branching � Cohesive elements �
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1 Introduction

Fracture, branching, and fragmentation phenomena can be

modeled by means of cohesive models of fracture. Since

the cohesive model approach requires fine mesh size to

capture the nonlinear behavior at the crack tip region, the

associated simulations generally involve the use of highly

tessellated finite element models. Currently, in order to

avoid exceeding available computational resources, com-

putational simulations are performed using geometries of

reduced dimensions in comparison with original experi-

ments. This imposes new challenges because simulations

of reduced models do not fully represent original experi-

ments due to material-dependent length scales [1]. It has

also been shown that the direction of crack propagation is

highly dependent on the mesh refinement level [1, 2]. As a

result, accurate simulations require large amounts of

computational processing power and memory space. This

makes fragmentation simulations prohibitively expensive

on a single traditional workstation. As a consequence, the
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development of parallel environments for distributed

numerical simulations has become substantially important.

On the other hand, the classical finite element mesh rep-

resentation (table of nodes and element incidence) does not

suffice for supporting adaptive analysis [3–5], in which the

mesh geometry and/or topology may change during the

course of the simulation. This is the case of dynamic frag-

mentation simulation based on the extrinsic cohesive ele-

ment model [6–11]. Extrinsic fragmentation requires

efficient identification of fractured facets (edges in 2D and

faces in 3D) and for inserting cohesive elements along them.

These operations change the topology of the mesh by

inserting new elements and nodes, and by modifying element

incidences. This cannot be performed efficiently without the

support of a topological data structure. Otherwise, it would

be necessary to traverse all the elements or nodes (global

search) in order to gather the required information. Topo-

logical data structures usually represent some other entities,

like faces, edges and vertices, rather than only the traditional

elements and nodes, and need to store additional data, such as

adjacency information, in order to provide efficient access to

adjacency relationships among all the topological entities.

In this paper, we focus on achieving a new topological

framework for supporting parallel extrinsic fragmentation

simulations. Although parallel processing enables simula-

tions to be scaled up, by decomposing computations among

many processors, it also imposes some challenges that have

to be addressed by system developers. These include:

dynamic mesh partitioning, which is related to load bal-

ancing among processors; efficient communication between

partitions; and the adaptation of current serial algorithms

for parallel execution. In extrinsic fragmentation simula-

tions, an appropriate parallel mesh representation that

supports dynamic insertion of cohesive elements is needed

in order to enable efficient execution of analysis algorithms.

We propose a topological framework for parallel rep-

resentation of finite element meshes. The framework sup-

ports dynamic insertion of cohesive elements, in a uniform

way, for both 2D and 3D unstructured meshes, with finite

elements of any order (T3, T6, Q4, Q8, Tetr4, Tetr10,

Hex8, Hex10, etc.). It is implemented as an extension to the

serial topological data structure named TopS [4, 12, 13]. To

demonstrate its capabilities, it has been implemented on

top of Charm?? [14, 15], an object-oriented framework

for the development of parallel applications based on

asynchronous method invocations. Of special interest, we

develop a new parallel algorithm for inserting cohesive

elements ‘‘on-the-fly’’, extending the serial algorithm pro-

posed by Paulino et al. [13]. The parallel algorithm uses

‘‘symmetrical’’ modifications of duplicated entities to

reduce the communication of topological changes. Yet, no

access locks are required when entities are simultaneously

modified in different mesh partitions. Linear scaling with

the number of cohesive elements inserted is expected.

Computational experiments are realized decoupled from a

mechanical analysis computer code in order to test and

explore the proposed topological framework.

This paper is organized as follows. Section 2 reviews

some issues with distributed mesh representation and pre-

vious related research on parallel topological data struc-

tures. Section 3 presents a short review of TopS, the serial

topological data structure that is extended for parallel

environments. Section 4 briefly reviews the topological

operations proposed in Ref. [13] for inserting cohesive

elements. Section 5 describes the proposed framework for

topological representation of finite element meshes in

parallel. In Sect. 6, we present an algorithm for parallel

insertion of cohesive elements, based on the topological

framework described in Sect. 5. Next, Sect. 7 discusses

some computational experiments used to demonstrate this

work. Concluding remarks and directions for future work

are presented in Sect. 8.

2 Motivation and related work

Distributed mesh representations [16–18] are used to pro-

vide the necessary support for finite element analyses in

parallel. The approach consists of decomposing the domain

into a number of partitions, or sub-domains. These parti-

tions represent units of execution that are assigned to a

group of processors. Parallel analysis provides a work-

around for memory and processing bottlenecks of tradi-

tional workstations and thus permits both enlarging the

model and reducing the simulation time. However, it also

introduces some issues that must be addressed in order to

be advantageous over the traditional serial approach, as

parallel algorithms tend to be slower than serial when

executed on a single processor.

One of these issues is related to communication and

synchronization among partitions. For an explicit simula-

tion model, partitions must communicate with each other in

order to exchange data needed for the simulation at each

time step, and the data must be available for computation in

a consistent and up-to-date way. In shared memory systems

[19], data communication is straightforward, as all the

processors reside in the same (virtual) memory space, and

thus memory can be directly used to send or receive data

asynchronously. Synchronization, when needed, can be

efficiently performed by the use of memory locks. On the

other hand, in distributed systems [19], processors have

their own private memory space and are connected by a

network. In this case, message passing is the most common

way to communicate data among two or more partitions,

and synchronization can be done explicitly by means of

specific function calls. Shared memory architecture has
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been used in the development of high-performance sys-

tems, and algorithms may be simpler than for distributed

memory. As a consequence, many algorithms have been

developed targeting at this architecture. In the context of

topological data structures, Waltz [20] has presented a set

of parallel algorithms for accessing topological entity

relationships useful for finite element solvers. However,

distributed memory systems tend to scale better, and in the

last years new massively parallel systems [21] have been

developed based on a large number of computing nodes

connected by a very fast network. In this paper, we focus

on algorithms suitable for distributed memory systems.

Most of the time, communication occurs only among

adjacent partitions. Even so, network communication over-

heads tend to be considerable in comparison with the serial

processing at each partition. Hence, it is crucial to minimize

these communications, in reference to both number and

length of messages sent and received. This must be taken

under consideration by applications responsible for gener-

ating and partitioning the mesh. For each element or node,

the analysis code usually needs to access adjacent entities in

order to compute corresponding results for the current sim-

ulation time step. Then, it is important to cluster elements or

nodes in a way to minimize the number of adjacent entities

belonging to different partitions, thus reducing the need for

communication. Two well-known sets of serial and parallel

graph partitioners are METIS [22, 23] and ParMETIS [24],

the parallel version of METIS. They are able to partition and

rearrange large finite element meshes, by modeling them as

graphs, and can also be used in the decomposition of sparse

matrices. Both METIS and ParMETIS try to distribute finite

elements evenly among the partitions and to minimize the

interfaces shared by different partitions.

Balancing the load among processors [25] is another

important issue of parallel systems. Poorly distributed

workload may eliminate all the advantages of using parallel

algorithms, as the required computation time is at least the

time of the busiest processor. For a simulation involving

static meshes, a partitioning program like METIS can be

used once in a preprocessor step to generate or repartition the

distributed mesh. No dynamic load balancing scheme is

needed after that, and usually one partition is assigned per

processor. However, in adaptive analysis, the size of each

partition (number of elements and nodes) may vary signifi-

cantly after the execution of each simulation step. In this

case, load balancing algorithms are important so that parallel

analysis can perform efficiently. The Zoltan library [26]

provides many utilities that may be helpful for the manage-

ment of distributed dynamic meshes, including partitioning,

load balancing, and communication procedures. The

Charm?? framework [14, 15] provides support for auto-

matic load balancing in the development of parallel

applications.

Efficient parallel mesh modification operations must be

provided by a topological framework for dynamic meshes.

These operations are used in mesh adaptation procedures

and for the migration of elements between partitions during

load balancing. Maintaining data structure consistency

after parallel modifications may be difficult, but is a req-

uisite for any framework that provides support for parallel

adaptive analysis.

Some parallel topological data structures with support

for dynamic meshes have been proposed in several papers

[16–18, 27–30]. They either address specifically issues

related to mesh representation or attempt to manage the

entire analysis process.

2.1 MDB/PMDB [3, 27, 28]

The Parallel Mesh Database (PMDB) [27, 28] is a

framework implemented on top of Mesh Database (MDB)

serial data structure [3] and provides operators for manip-

ulation of a general distributed mesh. Entities such as

region, face, edge, and vertex are represented. Each region

is assigned to a unique processor, while faces, edges and

vertices are duplicated on the processors that contain

regions incident to them. Each duplicated entity maintains

a list of references to its copies in the other partitions. The

framework PMDB employs the concept that an entity is

owned by a single partition. The owner partition may be

determined by the minimum of the tuple (pi, ei) among the

list of uses of an entity, where pi is a processor id and ei is

the entity’s local id on that processor. Manipulation oper-

ations include querying of adjacency information and

insertion and removal of entities. Mesh partitioning and

load balancing procedures are also provided.

2.2 AOMD/PAOMD [17, 31]

The Parallel Algorithm Oriented Mesh Database (PAOMD)

[17] extends the Algorithm Oriented Mesh Database

(AOMD) [31] to support distributed meshes. It provides a

general parallel mesh management framework in which

mesh representation can be adapted to different types of

applications. All the possible sets of entities (vertices,

edges, faces and regions) and adjacencies among them can

be represented; the application may select which ones are

needed. Except for the vertex, an entity is represented and

described by a set of entities of lower dimension and their

associated ordering. Like PMDB, each partition is assigned

to a processor, and the local mesh is represented by a serial

AOMD mesh. Mesh entities that are classified on partition

boundaries must exist in the parallel data structure and may

be shared with other partitions. Connection of an entity

with its representations in other partitions is made by a

message that must be sent to every partition whenever the
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mesh is modified. This message contains the local address

of the entity and the list of the ids of its vertices. Moreover,

PAOMD requires that each vertex must be assigned a

unique global id, and an entity may be identified by its list

of vertices. Mesh adaptivity, dynamic load balancing, and

entity migration procedures are provided by PAOMD.

2.3 FMDB [18]

Seol and Shephard [18] have presented a parallel mesh

infrastructure called Flexible distributed Mesh DataBase

(FMDB), for general non-manifold models. Similarly to

PAOMD, this framework allows each application to select

the entity types that are needed to be present in the mesh.

Each partition is represented by a serial mesh, with a dif-

ferent treatment for entities on its boundaries. Boundary

entities are duplicated in all the partitions in which they are

needed by adjacency relations. However, a single partition

is assigned as the owner of an entity. This is the one with

the least number of partition objects among the partitions in

which the entity is duplicated, in order to keep load bal-

ancing during mesh modification. An algorithm for effi-

cient migration of mesh entities based on FMDB is also

presented in Ref. [18].

2.4 LibMesh [29]

The parallel framework LibMesh [29] provides physics-

independent aspects of FEM analysis. It includes a dis-

tributed mesh data structure, adaptivity routines and

interfaces to other existing libraries used by FEM appli-

cations. The data structure is based on the classic repre-

sentation of elements and nodes. Each element or node is

assigned a unique global id. In addition to its own id,

elements also contain a processor id, pointers to their

incident nodes (nodal connectivity), and to other adjacent

elements (face neighbors). Unfortunately, despite the log-

ical domain decomposition used to assign elements to

individual processors, a complete copy of the mesh is

stored on each processor. This limits the use of the

framework for large-scale applications. Nevertheless,

according to the authors, a fully parallelized implementa-

tion of the data structure is under consideration [29]. The

libMesh framework has been explored by Wang [32, 33] in

large scale topology optimization problems.

2.5 SIERRA [30]

The SIERRA framework [30] provides a set of general tools

for supporting the development of mechanics applications.

Among its features, it includes a distributed unstructured

mesh data structure, along with adaptivity and load bal-

ancing, an interface to linear solvers, and support for

creating multiphysics applications. The SIERRA’s FEM

data structure represents node, edge, face, and element

entities (or objects). Edges, faces, and elements are specified

by a set of vertex nodes and can be connected to other

entities of different types. The connections used can be

configured and additional entities or relations can also be

created by SIERRA (for instance, the faces of all elements or

the ghost elements on partition boundaries). Like other

previous data structures, mesh entities on the boundary of a

partition may be shared with other partitions, although only

one is chosen as the owner of an entity. Entities are uniquely

identified in the entire mesh by the tuple (type, id), where

type is the type of the entity (e.g. node, element, etc.) and id

is a unique integer among all the entities of the given type.

2.6 ParFUM [16, 34]

The framework ParFUM [16, 34] deals with unstructured

meshes. It is based on Charm?? [14, 15], a framework for

the development of parallel object-oriented applications,

and AMPI [35], an MPI [36] implementation built on top of

Charm??.

In fact, ParFUM implements the usual concepts of ele-

ment and node, with domain attributes associated to these

mesh entities. It also includes some adjacency information,

like node-to-node, node-to-element, and element-to-ele-

ment, useful for some types of analysis. Mesh partitions are

called chunks, and are usually associated to exactly one

MPI process [16].

Communication between chunks is implicitly done

through special shared and ghost entities [16] (see Fig. 1).

While elements are assigned to exactly one chunk, nodes

can be shared by elements of different chunks, and thus are

duplicated in each of them. These nodes are referred as

shared nodes. Yet, during a simulation step, entities may

need information from neighboring entities from other

chunks. For that, ParFUM allows the creation of ghost

layers on the boundary of each chunk. These layers consist

Fig. 1 In ParFUM, meshes are decomposed into distinct chunks. Two

neighboring chunks are shown. Shared nodes are represented by solid
circles. Those nodes lie on the interface between the chunks. A ghost

layer composed of read-only copies of elements (shaded triangles)

and nodes (hollow circles) from the neighboring chunk has been

added around the shared nodes of each chunk
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of read-only copies of neighboring entities from other

partitions, referred as ghost elements and nodes. A local

index is assigned to each entity in a chunk. If two chunks

share nodes, in order to map between local and remote

indices, both maintain a list of each other, with the local

indices of the shared nodes ordered in a consistent way.

Similarly, in the case of ghost entities, the chunk that has

the real entity maintains a sendghost list, while the one

with the ghost entity maintains a receivenode list. Collec-

tive communication procedures are provided to synchro-

nize data stored at the entities of the ghost layer.

Notice that ParFUM supports two-dimensional incre-

mental parallel mesh modification based on atomic opera-

tions [37]. Atomicity is ensured by the locking of entities. In

this manner, if an element on the boundary of a chunk is to

be modified, locks that define exclusive access to the con-

cerning nodes are requested. When all the locks have been

acquired, the modification operation takes place locally and

communication messages are exchanged in order to syn-

chronize the neighboring chunks. Finally, the acquired locks

are released and can thus be requested by other interested

chunks. This scheme allows adaptive algorithms to use the

operators as simple serial procedures and to perform mesh

modifications without the need for explicit synchronization.

On the other hand, the overhead of entity locking and the

number of exchanged messages can be significant. Cho-

udhury [37] removes the overhead of locking by running

multiple chunks on each physical processor in order to

increase concurrency and reduce idle times.

Fracture simulations [34] are limited to 2D triangular

meshes and use pre-inserted cohesive elements that are

activated on demand. A complete and general topological

support for parallel insertion of explicit cohesive elements,

both for 2D and 3D meshes, is needed. This is the focus of

the present paper.

3 TopS: serial topological data structure

A compact adjacency-based topological data structure with

support for dynamic insertion of cohesive elements has

been presented in Refs. [4, 12, 13] and named TopS. One

of the benefits of TopS is that it requires small storage

space while access to all adjacency relationships is pro-

vided in time proportional to the number of retrieved

entities. The main concepts of TopS that are closely related

to this work are briefly presented (see Refs. [4, 12, 13] for a

detailed exposition of TopS).

3.1 Topological entities

The topological data structure TopS is able to represent

meshes consisting of any type of elements defined by

templates of ordered nodes, in 2D or 3D, under the same

topological framework. Although several types of entities

are defined by the data structure, only two of them are

explicitly represented: element and node. As explicit enti-

ties, node and element are allocated and exist in the

memory space of the data structure. Element represents

finite elements, and has references to its boundary nodes

and to its adjacent elements (i.e. elements that share a

facet). Node represents finite element nodes, either corner

or mid-side nodes, and stores its coordinates in the geo-

metric domain and a reference to one of its incident ele-

ments. Some of the types of elements supported by TopS

are shown in Fig. 2.

Other entities are implicitly represented by TopS: ver-

tex, edge and facet. Vertex represents a corner node and

may be shared by several elements. An edge is a one-

dimensional entity bounded by two vertices and may also

be shared by several elements. Edges can also contain one

or more mid-side nodes (higher order). Facet represents the

interface between two elements or between one element

and the boundary of the model. For 3D models, a facet is a

two-dimensional entity, which is bounded by a set of

edges, while, for 2D models, it is a one-dimensional entity

and corresponds to a single edge. Facets offer a convenient

abstraction for implementing operations that act on the

interface between elements in a uniform way for both 2D

and 3D models.

The topological data structure TopS also defines addi-

tional implicit entities associated to the use of vertices,

edges and facets by the elements of the mesh; these addi-

tional entities are vertex-use, edge-use and facet-use,

respectively. The uses of a facet (facet-uses) by the two

elements that share the facet are illustrated in Fig. 3. Each

element in isolation is bounded by a set of local facets,

edges, and vertices. These local entities are mapped to the

corresponding entity-use of an element. The topology of

the element in isolation depends only on element type (e.g.

T3, T6, TET4, TET10). Thus, it can be used to define a

fixed template [3, 4] that is reused by every element of the

same type. This template defines a local order in which

TET10 CohT6T6 CohE3

(a) (b)

Fig. 2 Representative elements available in TopS [13]: a a quadratic

triangle (T6) and the corresponding cohesive element (CohE3); b a

quadratic tetrahedron (TET10) and the corresponding cohesive

element (CohT6)
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entities are referenced by the element, and provides direct

access to adjacency relationships among local entities

within the element.

In contrast to element and node, representations of

implicit entities are created on-the-fly when requested by

the application. Facet-uses, edge-uses and vertex-uses are

each defined by the tuple (Ei, lid), in which Ei is the ref-

erence to one element that uses the corresponding entity

and lid is the local identification of the entity within the

element. Facets, edges and vertices are defined by one of

their uses. In that manner, edges consisting of the same

nodes can be identified as two different edges, what would

not be possible if they were defined by the set of bounding

nodes. It is important to note that different edges with the

same bounding nodes are common in fractured models.

The element of the entity-use used to represent a given

facet, edge, or vertex holds an ‘‘anchor’’. The anchor is

important to enable the enumeration of entities without

duplications.

All the 25 possible adjacency relationships defined

between every pair of entity types can be obtained in time

proportional to the number of retrieved entities in TopS.

The retrieval of the uses of an edge, for instance, can be

done as follows: starting from the edge, we first access one

of its uses directly from its representation. Then, we access

the adjacent facet-uses in the element of the edge-use, by

using the element template. From the facet-uses, we have

access to the adjacent elements and thus to the corre-

sponding edge-uses. This is repeated until all the uses of

the edge are visited [4].

When a reference to an entity (either explicit or implicit)

is requested by the application, an opaque handle is

returned. An entity handle can be respectively: an element

id (Ei), a node id (Ni) or the representation of an implicit

entity (Ei, lid), and uniquely identifies the corresponding

entity. Handles establish a uniform way in which entities

are accessed in TopS. Every entity and its analysis attri-

butes are always accessed through the corresponding han-

dle. Thus, there is no distinction from the application point

of view between either explicit or implicit entities.

3.2 Cohesive elements

The topological data structure TopS represents cohesive

elements explicitly and treats them like any other type of

element. They are defined by element templates and can

hold analysis attributes. In this manner, the topology of

cohesive elements can be naturally handled by TopS when

the mesh is modified. This is different from other approa-

ches, in which cohesive elements are treated as attributes

attached to facets of bulk elements [8, 9].

Cohesive elements are represented by two facets (see

Fig. 2). The region in between the facets represents the

boundary of the mesh. Differently from bulk elements,

incident nodes of a cohesive element may be duplicated,

indicating that the two facets share a common node. The

following incidence is thus valid for a CohE2 element (the

two-dimensional linear cohesive element): nodeA, nodeB,

nodeA, nodeC. Even though the same node can be referenced

by the two facets, two distinct local vertex-uses are defined.

These vertex-uses are each incident to exactly one facet.

The same applies for shared edges in 3D cohesive elements.

4 On serial insertion of cohesive elements

In actual extrinsic fragmentation simulation, cohesive ele-

ments are inserted on demand at facets that are determined

by the analysis application, according to the fracture cri-

terion in use. When a new cohesive element is inserted, the

topology of surrounding entities is modified. This requires

the data structure to be correctly updated. Paulino et al.

[13] have presented a systematic topological classification

of fractured facets that can be applied in order to identify

the topological operations needed for updating the data

structure. One of the advantages of this classification is that

it can be uniformly applied to any type of element, both 2D

and 3D. It is briefly reviewed in this section.

Consider a cohesive element that is to be inserted at a

facet shared between elements E1 and E2. This facet has

two associated facet-uses, fu1 and fu2, respectively. The

steps for updating the data structure for inserting a new

cohesive element are:

1. The cohesive element is created and inserted in-

between E1 and E2 (see Fig. 4a). The adjacency of

both elements is then updated so that E1 is no longer

adjacent to E2, and vice versa. Now, both are adjacent

to the new cohesive element.

fu fu

f

f

fufu

(a)

(b)

Fig. 3 A facet f used by the two adjacent elements in 2D a and 3D b
cases. The implicit representation of the facet is given by one of the

incident facet-uses
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2. For each edge-use (eu) of the facet-use (fu1) associated

to E1, retrieve all the other uses of the same edge

considering the new adjacencies of E1 and E2 (see

Fig. 4b). If the corresponding edge-use at the facet-use

(fu2) of E2 cannot be reached, the edge must be

duplicated. In this case, the mid-side nodes are also

duplicated, if they exist.

3. A similar procedure is done for each vertex-use (vu) of

the facet-use fu1 (see Fig. 4c). If the corresponding

vertex-use at the facet-use (fu2) of E2 cannot be

reached, the vertex must be duplicated. In this case, the

corresponding corner node is also duplicated.

Element connectivity must be updated for each node

that is duplicated. This is done by replacing the original

node for the new one in all the elements that are visited

when edge-uses and vertex-uses are retrieved in steps 2 and

3. The elements that are not reached are not changed.

5 ParTopS: parallel TopS

In order to address parallel insertion of cohesive elements,

we have extended the data structure named TopS [4, 12,

13] for supporting distributed meshes, creating the topo-

logical framework named ParTopS. According to the ori-

ginal TopS philosophy, we aim to keep ParTopS simple

and compact, including the set of features that are needed

for parallel insertion of cohesive elements.

Like other distributed mesh representations, the FEM

model is decomposed into a set of disjoint partitions,

defined by distinct subsets of the elements of the mesh.

Each partition consists of a serial TopS mesh along with

additional communication infrastructure. The extensions to

TopS that make up ParTopS are described in the following

subsections.

5.1 Communication layer

During the analysis, computations performed on elements

or nodes may need to access data from adjacent entities.

However, elements or nodes on the boundary of a mesh

partition may be adjacent to entities that are represented in

another partition. In order to reduce the amount of inter-

partition communication needed to access the required

data, a communication layer is constructed around the

boundaries of each partition.

The communication layer consists of local copies of

remote entities. It is built when the original mesh is first

partitioned and maintained during partition’s lifetime.

Local copies of remote entities are represented by two

different entity types: proxies and ghosts.

• Proxy entities, nodes and elements, are exact local

copies of real entities from other partitions (remote

entities). They are treated like any other local entity,

and thus can be accessed, edited, and assigned

attributes. Implicit entities are identified by one of

their uses by surrounding elements (see Sect. 3). As a

consequence, they are considered as proxies when

associated to a proxy element.

• Ghost entities are read-only copies of remote entities.

They define the boundaries of the communication layer

(see next subsection), and thus can only be incident to

proxy or other ghost entities. The main purposes of

ghosts are to provide attributes that may be needed to

the analysis program for computations on the incident

proxy entities and to ensure local mesh consistency on

the boundaries of the communication layer. As a

consequence, topology of ghost entities is required to

be consistent with respect to local partition, but not

with corresponding entities in other partitions. For

example, every node in TopS holds a reference to one

of its incident elements. If we consider a ghost of the

local partition, it may reference an element that is

different from the one referenced by a corresponding

real or proxy node in another partition. In ParTopS, any

entity, except for elements, can be represented as a

ghost in a given partition. Implicit entities are consid-

ered as ghosts if all of their nodes are ghosts.

Each element is naturally assigned to a single partition,

while other entities, like nodes, may be used by two or

more elements of different partitions (see Fig. 5). Never-

theless, in ParTopS, exactly one partition is labeled as the

owner of any entity. This partition is responsible for

E1 E2

E2E1

(a) (b) (c)

(d) (e) (f)

Fig. 4 Operations for updating the topology of the mesh when a new

cohesive element is inserted, both in 2D (a–c) and 3D (d–f) cases. a, d
A new cohesive element is inserted at the facet shared by E1 and E2.

b, e For each edge, all the corresponding edge-uses are visited in

order to determine whether E2 can be reached starting from E1. If E2
was not visited, then the edge is split and the respective mid-side

nodes (if they exist) are duplicated. c, f For each vertex, all the

corresponding vertex-uses are visited in order to determine whether

E2 can be reached starting from E1. If E2 was not visited, then the

vertex is split and the respective corner node is duplicated
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representing and managing the real entity and associated

attributes, while other partitions represent it by a proxy or a

ghost entity.

Each proxy or ghost holds a reference to the corre-

sponding real entity. This reference is defined by the tuple:

(owner_ part, owner_ handle). Thus, owner_ part is the

index of the partition in which the real entity is represented

and owner_ handle is the serial TopS handle of the entity

with respect to that partition. In ParTopS, every entity can

be uniquely identified by this tuple.

In Fig. 6a, a sample mesh is decomposed into two par-

titions, with a communication layer added to the boundary

of each one. References from a proxy and a ghost node to

the corresponding real nodes are illustrated in Fig. 6b. The

elements referenced by the nodes are also indicated in the

figure by markers placed at them in each partition. As in

serial TopS, these markers (or ‘‘anchors’’) define the

implicit vertices associated to the nodes. Note that the

highlighted proxy node is consistent between both parti-

tions (global topological consistency), while the ghost node

is only consistent within each partition (local topological

consistency).

5.2 Construction of the communication layer

When a new mesh partition is created, some nodes and ele-

ments are first assigned to it (see Fig. 7a, b). All these entities

are represented as local entities. However, elements are

defined by a set of nodes, some of which may be owned by a

different partition (see Fig. 7b). In order to minimize com-

munication and to provide transparent access to remote

entities, proxy nodes are created to represent the corre-

sponding real entities in local partition. Similarly, proxy

elements are inserted around all the nodes that are on the

boundaries of the partition interfacing with other partitions in

order to provide local access to adjacent data (see Fig. 7c).

Implicit entities are represented by the elements at which

they are anchored and thus are kept consistent when the

corresponding local or proxy elements are constructed. The

boundaries of the communication layer are treated differ-

ently. Rather than proxies, ghost nodes are created (see

Fig. 7d). These entities delimit the communication layer and

ensure local topological consistency of the partition.

A partition must be aware of its neighbors in order to be

able to communicate efficiently. In ParTopS, two partitions

are neighbors if one of them has a proxy for an entity that is

owned by the other partition. Ghost entities do not influ-

ence the neighborhood of partitions, as their data can be

retrieved and accessed through incident proxy elements.

Partition neighborhood is determined during the construc-

tion of the distributed mesh. The algorithm for inserting

cohesive elements proposed in Sect. 6 does not change the

sets of neighboring partitions; the new elements and nodes,

and consequently implicit entities, are assigned to parti-

tions that are already neighbors.

Fig. 5 A node may be shared by several partitions. However, it is

owned by only one of them. In the owner partition, the node is

represented as a local entity, while in the other partitions it is

represented by proxy entities

Proxy node

Ghost node

Proxy element

(a)

(b)

Fig. 6 a A mesh is decomposed

into two distinct partitions.

Proxy and ghost entities are

added to each partition in order

to represent remote entities

locally. b A proxy and a ghost

node are emphasized. The proxy

node has a reference to the

corresponding real entity in the

other partition. The associated

vertex has the same

representation in both partitions

(expressed by the anchor—

‘‘x’’—placed at the same

incident element). The ghost

node also has a reference to the

corresponding real entity.

However, the representation of

the associated vertex may be

different at each partition
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At each simulation step, computation can be performed

on local and proxy entities of each partition. Then an

update procedure synchronizes the attributes of ghost

entities with the corresponding real entities so that they can

be accessed seamlessly by the analysis application. In order

to update ghosts, a partition must request data from its

neighbors. However, as ghosts are not used to determine

partition neighborhood, they may refer to real entities from

a partition that is not in the neighborhood set of the current

one. Thus, requests for a ghost entity are directed to one of

the neighboring partitions that own an element incident to

it. The partition then replies with the attributes associated

to the ghost entity. If we consider that topological modi-

fications to proxy entities are symmetrical among all

involved partitions, as in the algorithm of Sect. 6, then no

topological synchronization is required for proxy entities,

except for the newly created ones.

5.3 Implementation

The ParTopS algorithm is general and can be implemented

directly in parallel environments such as MPI [36] or

Charm?? [14, 15]. To demonstrate the flexibility to

interface with an existing framework, the ParTopS com-

munication mechanism has been implemented on top of

Charm??.

The software Charm?? is an efficient C?? framework

for developing objected-oriented parallel applications

based on asynchronous method invocations. By sending

messages asynchronously, an application is able to overlap

computation and communication steps. A Charm?? pro-

gram is composed of parallel objects, named ‘‘chares’’,

each one being assigned to a virtual processor. In fact,

‘‘chares’’ are automatically mapped by Charm?? to the

available physical processors and may be migrated when

necessary. In ParTopS, each mesh partition is implemented

as an individual ‘‘chare’’. Moreover, Charm?? has built-in

support for dynamic load balancing, which can be extended

to incorporate new algorithms. Although load balancing

issues were not explored in this paper, good load balancing

is of great interest for adaptive analysis.

6 Parallel insertion of cohesive elements

In this section, we present a parallel algorithm for insertion

of cohesive elements. Unlike previous approaches, this

algorithm can be applied in a uniform fashion for 2D or 3D

meshes composed of any type of element. Cohesive ele-

ments are explicitly represented, and may be used by an

application like any other regular elements. They can be

inserted on demand and hold analysis attributes.

For this purpose, the parallel mesh representation (Par-

TopS) described in the last section is combined with the

systematic topological classification of facets proposed by

Paulino et al. [13]. In addition, we explore the use of

procedures that generate the same topological results in

every partition in order to reduce the amount of inter-par-

tition communication needed to update mesh topology.

6.1 Lock-free approach

The parallel insertion of cohesive elements is based on a

lock-free approach. Therefore, no access locks are required

when an entity is concurrently modified by different par-

titions. Although entity locks may represent a convenient

way to implement other parallel mesh adaptivity operators,

we have not found a simple and efficient algorithm for

inserting cohesive elements based on them. The main issue

regards the duplication of nodes on the boundary of a

mesh’s partition or the communication layer, resulting

from the insertion of a new cohesive element. In order to

(a) (b) (c) (d)

Fig. 7 Construction of the communication layer. a Original mesh.

b The mesh is decomposed into four partitions. c One of the partitions

is shown. Proxy nodes are created to represent remote nodes incident

to local elements. Then, proxy elements and nodes are inserted around

the boundaries of the partition. d Ghost nodes are inserted to fill the

boundaries of the communication layer
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determine whether the nodes must be duplicated and thus

keep mesh topology consistent, one partition may depend

on modifications that occur in other partitions, thereby

creating a cyclic dependence, which has to be addressed.

The approach adopted in this work consists in employ-

ing symmetrical topological operations on corresponding

real and proxy entities and treating boundary (ghost) enti-

ties separately. As a result, our approach avoids the use of

locks, thus eliminating idle times in the algorithm. In the

end, the use of symmetrical operations also reduced the

communication among partitions. There is still an impor-

tant advantage of using a lock-free approach: it fits nicely

with the asynchronous programming paradigm of the

Charm?? framework.

6.2 Algorithm overview

The first step for adaptively inserting cohesive elements in

the mesh is the identification of fractured facets. This has to

be accomplished by the analysis application. Once frac-

tured facets are identified, the parallel algorithm for

inserting cohesive elements is performed in three phases:

Phase 1. Cohesive elements are inserted at both local and

proxy fractured facets, using a serial algorithm

that produces symmetrical topological results in

every partition for a given facet.

Phase 2. The newly created proxy entities (cohesive

elements and nodes) are updated.

Phase 3. The ghost entities affected by new cohesive

elements are updated.

A sample mesh decomposed into four partitions is used

in this section to illustrate the phases of the algorithm. This

mesh is presented in Fig. 8. The procedure to identify

fractured facets and the phases of the proposed algorithm

are described in details in the next subsections.

6.3 Identification of fractured facets

At each simulation step, the analysis application identifies

new fractured facets, along which cohesive elements have

to be inserted (see Fig. 9). The fracture criterion can be

applied to local facets only and then synchronized with the

corresponding proxy facets in other partitions. So, the

procedure has to be subdivided in two phases. First, at each

partition, the application checks the fracture criterion on all

local facets. Then, a network communication phase is

needed in order to unambiguously assign the fractured

classification to the corresponding proxy facets. There is no

need to assign fractured classification to ghost facets

because they are read-only entities and, thus, no cohesive

elements are inserted along them. In Fig. 9, the sample

mesh with some random fractured facets is shown. Once

the update phase is concluded, the three phases of the

parallel algorithm for inserting the corresponding cohesive

elements are executed.

6.4 Serial insertion of cohesive elements (Phase 1)

In Phase 1, cohesive elements are locally inserted at

fractured facets of distinct mesh partitions using the serial

algorithm proposed by Paulino et al. [13] (see Sect. 4).

When a cohesive element is created, some nodes may have

to be duplicated. If the same topological results can be

obtained for a set of entities in every partition, regardless of

the order in which cohesive elements are inserted, then the

topology of local and proxy entities is consistent after

Phase 1, without the need for inter-partition communica-

tion. Ghost nodes, however, are not duplicated. These

entities are separately updated in Phase 3.

In order to ensure symmetrical behavior among partitions,

we add two constraints to the original serial algorithm. The

first constraint requires that, for any partition in which a

Fig. 8 Sample mesh used to

illustrate the algorithm for

parallel insertion of cohesive

elements. The original mesh has

been decomposed into four

distinct partitions
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newly created node is present, the node has a reference to the

same element (in TopS, and thus ParTopS, every node holds

a reference to one of the elements that is connected to it). This

can be achieved by using a uniform criterion for selecting

that element. For simplicity, we choose, among the elements

currently adjacent to the node, the one with the smallest

tuple: (owner_ partition, owner_ handle). Tuples are com-

pared in lexicographic order, first by owner_ partition and

next by owner_ handle. That means that the values of

owner_ partition are first compared; if they are equal, the

values of owner_ handle are compared.

The second constraint requires that all the copies of a

new node or a cohesive element are assigned to the same

owner partition. In the case of a node, the second constraint

is achieved by assigning it to the partition of the referenced

element. As all the copies of the node refer to the same real

element (according to the first constraint), then they are

naturally assigned to the same owner partition. We assign

cohesive elements to the partition of one of its adjacent

elements. In this case, the representative element is selec-

ted based on the criterion applied for the first constraint

(smallest tuple (owner_ partition, owner_ handle)). The

anchors that define implicit entities can also be updated

using this same procedure.

Phase 1 of the algorithm is illustrated in Fig. 10 for two

neighboring partitions. Three cohesive elements are

simultaneously inserted around a node that is present in

both partitions (see Fig. 10a). Although the order of

insertion is different in each partition, the same topological

results are achieved in the end (see Fig. 10c). Note that the

same elements are referenced by each of the newly created

nodes in either partition (as indicated by the ‘‘x’’ marks in

Fig. 10), as a result of the two topological criteria descri-

bed above.

6.5 Updating new proxy entities (Phase 2)

After Phase 1, the topology of local and proxy entities is

ensured to be consistent. However, references from new

proxy entities (cohesive elements and duplicated nodes) to

the corresponding real entities still have to be computed (see

Fig. 11). Although the owner partition of a new entity can be

Proxy element

Proxy node
Ghost node

Fig. 9 Fractured facets are highlighted on the distributed mesh. The

determination of those facets is done by the analysis application.

Proxy elements and nodes are represented by shaded shapes, while

ghost nodes are represented by hollow circles

(a) (b) (c)

Fig. 10 Execution of Phase 1
of the algorithm. Three cohesive

elements are inserted, in

different orders, around a node

present in two neighboring

partitions (a–c). In spite of the

order in which the elements are

inserted, symmetrical

topological results are obtained

at local and proxy entities in

both partitions (c). The ‘‘x’’

marks indicate the element

referenced by each modified

node. Ghost nodes are not

duplicated. They will be

updated in Phase 3 of the

algorithm
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inferred directly during Phase 1, as it is the partition of one of

the elements adjacent to the entity, the handle of the entity

with respect to the owner partition is not known. This

information must be requested from the owner partition.

Phase 2 is responsible for updating the missing refer-

ences of new proxy cohesive elements and nodes, and

works as follows: a list of requests for the references is sent

to each neighboring partition, which accesses the respec-

tive real entities and replies with the corresponding han-

dles. Then, current partition updates the references of the

new entities with the received values.

Note that we cannot use the new proxy entities to

request their own missing references. We observe, though,

that any element (cohesive or not) can be uniquely iden-

tified by one of its adjacent elements. This is expressed by

the tuple: (owner_ partition_ adj, owner_ handle_ adj, lid),

where owner_ partition_ adj is the id of the partition that

owns the adjacent element, owner_ handle_ adj is the local

handle of the adjacent element in that partition, and lid is

the local id of the facet-use of the adjacent element that is

incident to the current one. Correspondingly, a node can

also be uniquely identified by one of its incident elements

and its local id with respect to that element, as illustrated

by the markers in Fig. 11.

Therefore, adjacent elements are used to obtain missing

references of new proxy entities. The owner partition of a

cohesive element is the same partition as one of its adjacent

elements (see Sect. 6.4). Thus, the representative adjacent

element is used for requesting the reference of the cohesive

element. Similarly, the element referenced by a new proxy

node is used for requesting the missing reference from this

node to the corresponding real entity (as, by definition, the

node is owned by the same partition as that element). Note

that Phase 1 does not change the set of neighboring

partitions.

The messages exchanged between two partitions to

update proxy references are illustrated in Fig. 12. Local

partition sends a request message, consisting of a list of

tuples: (owner_ handle_adj, lid), to each remote partition

(owner_ partition_adj) that owns the corresponding adja-

cent elements. The reply message consists of the handles of

the required entities with respect to the owner partition.

6.6 Updating affected ghost entities (Phase 3)

The last phase of the algorithm is responsible for updating

ghost nodes that have been affected by duplication of nodes

at other partitions, due to the insertion of new cohesive

elements (see Fig. 13). As ghost nodes lay on the

Fig. 11 The complete mesh after Phase 1. The partition chosen as

the owner of a new cohesive element or node is the owner of one of

its incident elements (as indicated by ‘‘x’’ marks). The new cohesive

elements and nodes are highlighted. Respective proxy entities are

represented with dotted lines. Although the topology of proxy and

local entities is ensured to be consistent at this time, the references to

the corresponding real entities are still missing

Local 
Partition

{(owner_handle_adj, lid)1, …}

{handle1, …}

1

2

Remote
Partition

Fig. 12 Messages exchanged between local and remote partitions in

order to update the references from new proxy entities to the

corresponding real entities

Fig. 13 The complete mesh before Phase 3. The highlighted ghost

nodes were duplicated in other partitions when new cohesive

elements were inserted, and thus need to be updated

Engineering with Computers

123



boundaries of the communication layer of each partition,

the ones that have changed cannot be determined based

only on local information. For example, a cohesive element

may have been inserted at a remote facet that is not known

by the current partition, resulting in the duplication of the

real node corresponding to a ghost node in the current

partition. In Fig. 13, ghost nodes affected by duplication of

nodes from other partitions are shown. In order to keep

mesh topology consistent, the update procedure for a ghost

node may either have to replace the reference to the cor-

responding real entity or to split the node into two or more

new ones (see Fig. 13).

The simplest way to keep topology of ghost nodes

consistent is to update all of them. However, it is common

that few cohesive elements are inserted during each sim-

ulation step. Thus, we prefer an approach that is propor-

tional to the number of affected entities. Then, each

partition that owns duplicated nodes that may affect ghost

nodes in other partitions is responsible for sending notifi-

cation messages.

However, in ParTopS, real entities do not keep a list of

references to their remote proxies or ghosts. In that manner,

we avoid the overhead of storing and maintaining dynamic

reference lists. On the other hand, this constrains all the

communication related to a real entity to be initiated by the

partitions that have a proxy or ghost of the entity (as real

entities do not know of the existence of associated proxies

or ghosts). Thus, in order to allow a partition to efficiently

notify other partitions of node duplications, we need a

procedure to identify which real entities might have asso-

ciated ghosts, without explicitly maintaining dynamic ref-

erence lists.

In this work, instead of storing for each local node the

list of corresponding ghosts, we have opted for a per-

element approach: each real element has references to the

partitions of its proxies. Thus, elements with proxies in

other partitions are responsible for notifying changes on

ghost nodes and transfer required data. The advantage of

this approach is that existing references to proxies do not

have to be updated when new cohesive elements are

inserted, because no proxy elements are replaced or

removed from the mesh during this process. In addition,

communication can be entirely done through proxy ele-

ments. Therefore, a partition holding a ghost node does not

have to be considered as neighbor of the partition with the

corresponding real entity. Then, two partitions are only

considered neighbors if one has a proxy for an entity from

the other. This is consistent with the definition of partition

neighborhood introduced in Sect. 5.2. As existing proxies

are not replaced or removed, and new cohesive elements

are assigned to the same partition as one of their adjacent

elements, neighborhood sets of partitions do not have to be

updated.

Topological changes on a node affect its incident ele-

ments because they hold a reference to the node. Conse-

quently, when a ghost node is modified, incident proxy

elements are also affected (notice that ghost nodes can only

be incident to proxy elements). If a local node is created

when a cohesive element is inserted and the node is inci-

dent to elements with proxies in other partitions, then it is

possible that the node has corresponding ghosts in those

partitions. Hence, the ghost nodes and the affected proxy

elements should be updated accordingly. Thus, affected

proxy elements are notified by the corresponding real ele-

ments in order to update all of their ghost nodes. In this

manner, we ensure that modified ghost nodes and incident

proxy elements are kept up-to-date.

As discussed in Sect. 6.5, a node can be uniquely

identified by one of its adjacent elements and its local id in

the element. Consequently, we can use proxy elements to

request data for the incident ghost nodes. In this case,

however, requests are sent to the owner partition of the

proxy elements, rather than the owners of the ghost nodes.

Thus, the corresponding nodes may be represented as

proxies in the owner partition of the proxy elements, and

the retrieved data might be outdated regarding the real

nodes when requested by the local partition. Nevertheless,

modified proxy entities were updated in Phase 2, and then

ghost data received through incident proxy elements will

be consistent during Phase 3.

This approach has one drawback, which is discussed

next. With per-element notifications, all the ghost nodes of

a proxy element that received a notification are updated (as

the element does not know which ones have actually

changed). Although this results in a few unnecessary

updates, the number tends to be small and the procedure

still remains proportional to the amount of duplicated

nodes.

For the purpose of the present distributed data structure,

rather than storing lists of all the partitions that have

proxies for a given local element, we use a single integer to

indicate the existence of those proxies. If there is only one

partition with a proxy for the element, which is the most

common case, the integer value is the id of the partition. If

there are two or more partitions, a negative value is used to

indicate the number of such partitions. In this case, noti-

fications must be sent to all the neighboring partitions. If no

partition has a proxy for the element, the value of the

integer is zero.

The procedure for updating ghost nodes starts by

determining the local elements with proxies in other par-

titions that are incident to newly duplicated nodes (see

Fig. 14). Although several of the elements incident to a

node may have a proxy in the same partition, only one per-

partition has to be selected. Then, a notification message is

sent to the partitions containing the proxy elements. This
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message consists of the handles of the selected local ele-

ments (see Fig. 17).

When the notification message is received by a partition,

the handles are mapped to the corresponding proxy ele-

ments and all their ghost nodes are marked as outdated. For

each proxy element that is incident to an outdated ghost

node (see Fig. 15), a request for the corresponding nodal

data is sent to the owner partition of the element. Requests

consist of the tuple: (owner_ partition, owner_ handle, lid),

where owner_ partition is the id of the owner partition of

the element, owner_ handle is the handle of the element

with respect to the owner partition, and lid is the local id of

the node in the element. Note that more than one request

for the same node may be sent, as several elements may be

incident to that node. However, with this approach, the

duplication of ghost nodes is handled naturally and in a

consistent way within each incident proxy element. The

remote partitions then reply with the up-to-date nodal data

(see Fig. 17), and the ghost nodes are replaced. After ghost

nodes have been updated, the anchors of the incident

implicit entities are adjusted so that local topological

consistency is maintained. The final mesh configuration is

shown in Fig. 16.

The messages exchanged between two partitions to

update ghost nodes are summarized in Fig. 17. The local

partition receives notification messages consisting of han-

dles (owner_ handle) of remote real elements correspond-

ing to local proxies. The handles are mapped to respective
Fig. 14 Local elements that are incident to duplicated nodes and

have a corresponding proxy element in another partition are

emphasized. These elements notify of nodal duplications that may

affect ghost nodes. However, only one element per duplicated node

and remote partition need to be used (highlighted elements and

dashed arrows). All the ghost nodes of notified proxy elements are

marked as outdated. The highlighted ghost nodes with solid lines have

actually changed and must be updated, whereas the ones with dotted

lines were marked as a consequence of the per-element notification

scheme used

Fig. 15 For each proxy element incident to a ghost node marked as

outdated, a request for the corresponding node is sent to the partition

that owns the element. Node requests are indicated by square marks
besides ghost nodes

Fig. 16 The final mesh configuration with cohesive elements and

up-to-date ghost nodes

{owner_handle1, …}

{(owner_handle, lid)1, …}

{(node_handle, x, y, z, attrib)1, …}

1

2

3

Local 
Partition

Remote
Partition

Fig. 17 Messages exchanged between local and remote partitions in

order to update ghost entities affected by duplication of remote nodes
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proxy elements and all their ghost nodes are marked as

outdated. A request message, consisting of tuples:

(owner_ handle, lid), is sent to each remote partition that

owns proxy elements incident to outdated ghost nodes.

Remote partitions then reply with up-to-date nodal data:

(node_ handle, x, y, z, attributes).

7 Computational experiments

In order to test the present topological framework for

parallel fragmentation, we have run a set of computational

experiments with meshes of different types of elements,

both in 2D and in 3D, linear and quadratic. In the experi-

ments, the insertion of cohesive elements is decoupled

from the mechanics analysis. The goal is to verify the

proposed data structure and algorithm as a valid topologi-

cal framework for parallel fragmentation simulation.

The two basic models used in the experiments are

illustrated in Fig. 18. The two-dimensional model consists

of a simple Cartesian grid of (nx 9 ny) quadrilateral cells

decomposed into four triangles each. Equivalently, the

three-dimensional model consists of a grid of (nx 9

ny 9 nz) hexahedral cells decomposed into six tetrahedra

each. In order to run in parallel, those models are divided

into a set of distinct partitions, each representing an indi-

vidual processing unit.

For each mesh type, the correctness and efficiency of the

proposed topological framework was tested by varying the

following parameters: mesh discretization, number of

partitions, and number of processors. In each experiment,

cohesive elements were randomly inserted at about 50% of

the total internal facets (not on the boundary) of each

partition of the mesh. This results in arbitrary and complex

crack patterns. Additionally, in order to mimic the behavior

of real fragmentation simulations, in which the number of

new cohesive elements at each simulation step is usually

much smaller than the total number of facets, we have

inserted the cohesive elements in an incremental way: at

each iteration, cohesive elements are inserted at 1% of the

internal facets. At the end of each step, partitions are

synchronized as described: new proxies (cohesive elements

and nodes) have their references updated and modified

ghost nodes are re-assigned. After 50 steps, the total

number of inserted cohesive elements is about 50% of the

total number of internal facets of the initial model. In

Fig. 19, a linear tetrahedral mesh that was used in the

experiments is presented, after inserting cohesive elements

at about 10% of the internal facets.

The experiments were executed on a cluster of 12

machines connected by a Gigabit Ethernet network. Each

machine has an Intel(R) Pentium(R) D processor 3.40 GHz

(two cores) and 2 GB of RAM. The operating system is

Red Hat Linux 3.4.6-9, with a 32-bit kernel, and the

compiler is gcc v. 3.4.6.

The results achieved are summarized in Tables 1 and 2.

Table 1 shows the various meshes used in the experiments

and the corresponding average serial times for inserting

cohesive elements at 50% of the internal facets of each

model. The largest models did not fit in the memory of one

machine. Table 2 presents the results of the parallel algo-

rithm executed with varying number of machines, and for

one and two mesh partitions per machine (each partition

associated to a processor core), respectively. Parallel times

correspond to average times of running each experiment 5

times. The reported times correspond to the total time

needed to execute all the 50 steps of cohesive element

insertion. At the end, the total number of cohesive elements

is about the same as in the serial experiment.
Fig. 18 Examples of basic mesh templates used to validate the

proposed parallel framework

Fig. 19 Distributed linear tetrahedral (TET4) mesh with

16 9 16 9 16 discretization after randomly inserting cohesive ele-

ments at about 10% of the internal facets. Element insertion was

incrementally performed at a rate of 1% of the facets per iteration.

Communication layer and cohesive elements are emphasized
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Table 1 Times, in seconds, for serial insertion of cohesive elements in various meshes

Element type Mesh discretization # bulk elements # nodes # cohesive elems inserted Time (s)

T3 256 9 256 262,144 131,585 196,352 1.20

512 9 512 1,048,576 525,313 785,920 4.99

1,024 9 1,024 4,194,304 2,099,201 3,144,704 21.24

1,536 9 1,536 9,437,184 4,721,665 7,076,352 58.43

2,048 9 2,048 16,777,216 8,392,705 12,580,864 n/a

T6 256 9 256 262,144 525,313 196,352 1.42

512 9 512 1,048,576 2,099,201 785,920 5.99

1,024 9 1,024 4,194,304 8,392,705 3,144,704 30.19

1,536 9 1,536 9,437,184 18,880,513 7,076,352 n/a

2,048 9 2,048 16,777,216 33,562,625 12,580,864 n/a

TET4 16 9 16 9 16 24,576 4,913 23,808 0.80

32 9 32 9 32 196,608 35,937 193,536 5.39

64 9 64 9 64 1,572,864 274,625 1,560,576 45.87

96 9 96 9 96 5,308,416 912,673 5,280,768 161.52

128 9 128 9 128 12,582,912 2,146,689 12,533,760 n/a

TET10 16 9 16 9 16 24,576 35,937 23,808 0.93

32 9 32 9 32 196,608 274,625 193,536 6.21

64 9 64 9 64 1,572,864 2,146,689 1,560,576 53.55

96 9 96 9 96 5,308,416 7,189,057 5,280,768 n/a

128 9 128 9 128 12,582,912 16,974,593 12,533,760 n/a

Table 2 Times, in seconds, for the parallel insertion of cohesive elements in various meshes

Element type Mesh discretization Time (s) serial Time (s)—parallel

Number of machines

(one partition per machine)

Number of machines

(two partitions per machine)

2 4 8 12 2 4 8 12

T3 256 9 256 1.20 1.17 0.84 0.62 0.58 0.97 0.84 0.78 0.77

512 9 512 4.99 4.30 2.37 1.60 1.26 2.66 2.28 1.62 1.49

1,024 9 1,024 21.24 17.68 10.79 4.75 3.83 9.41 6.25 4.65 3.72

1,536 9 1,536 58.43 40.48 19.96 10.86 7.27 21.16 11.98 8.96 7.75

2,048 9 2,048 n/a 83.91 36.52 20.20 14.57 47.35 21.80 16.05 12.51

T6 256 9 256 1.42 1.42 0.86 0.68 0.64 1.03 0.95 0.84 0.84

512 9 512 5.99 5.32 2.88 1.75 1.50 3.27 2.68 1.90 1.69

1,024 9 1,024 30.19 21.88 11.04 5.96 4.38 11.96 7.23 5.49 4.60

1,536 9 1,536 n/a n/a 25.07 13.45 9.72 47.46 16.29 9.90 8.58

2,048 9 2,048 n/a n/a 56.29 24.40 18.77 n/a 42.17 18.31 15.07

TET4 16 9 16 9 16 0.80 0.94 0.89 0.71 0.83 0.85 0.92 1.19 1.62

32 9 32 9 32 5.39 6.57 4.66 4.92 4.99 4.71 4.48 4.85 4.96

64 9 64 9 64 45.87 43.30 27.31 19.95 18.64 30.83 22.26 19.61 19.61

96 9 96 9 96 161.52 154.74 89.13 56.82 45.17 91.44 61.09 45.58 39.46

128 9 128 9 128 n/a 348.55 189.11 104.29 87.05 199.48 113.92 79.99 69.45

TET10 16 9 16 9 16 0.93 1.34 1.36 1.30 1.14 1.17 1.35 1.72 1.97

32 9 32 9 32 6.21 7.54 6.43 7.10 7.52 6.35 6.72 8.34 8.64

64 9 64 9 64 53.55 56.07 36.61 26.58 25.39 39.98 29.91 27.47 28.09

96 9 96 9 96 n/a 192.18 111.65 73.61 60.98 122.28 79.53 63.26 54.00

128 9 128 9 128 n/a n/a 266.16 137.73 117.47 n/a 183.68 110.59 92.66

Engineering with Computers

123



In Figs. 20 and 21, we plot time versus approximate

total number of cohesive elements inserted in linear tri-

angular (T3) and tetrahedral (TET4) meshes, with the

parallel and serial versions of the algorithm. As can be

noted, in these experiments, when using four or more

machines, the time spent by the parallel algorithm scaled

approximately linearly with the number of cohesive ele-

ments inserted. Linear behavior was expected because the

time required for the serial insertion of cohesive elements

in each partition (Phase 1) is proportional to the number of

new elements (see Ref. [13]) and communication is pro-

portional to the number of affected entities near partition

boundaries (number of new proxy cohesive elements and

modified ghost nodes). The serial algorithm and the parallel

version with only two machines did not scale linearly

probably because of substantial use of the available

memory.

In Fig. 22, we plot the time spent to insert all cohesive

elements versus the number of machines used for the T3

(with 1,536 9 1,536 discretization) and TET4 (with 96 9

96 9 96 discretization) meshes. Those two mesh discreti-

zations were chosen because they are the largest ones for

which the serial algorithm could be executed in our

computational environment. The results are compared to
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Fig. 20 Time versus average number of cohesive elements inserted

for meshes of T3 elements with varying number of machines: a one

mesh partition per machine; b two mesh partitions per machine. Note

that the results for the 2,048 9 2,048 mesh discretization could not be

computed for the serial algorithm
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Fig. 21 Time versus average number of cohesive elements inserted

for meshes of TET4 elements with varying number of machines:

a one mesh partition per machine; b two mesh partitions per machine.

Note that the results for the 128 9 128 9 128 mesh discretization

could not be computed for the serial algorithm
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the time required by the serial algorithm. For these mesh

sizes, the most significant performance gains occurs when

up to four machines are used. The addition of new

machines does not yield proportional performance benefits,

as communication costs tend to be higher while less pro-

cessing is done per machine.

The proportional time spent at each step of the parallel

algorithm is depicted in Fig. 23. The figure illustrates the

time spent by inserting 1% of the facets in the TET4

meshes, with four machines and two partitions per

machine. It can be seen that proportional time for the

network communication (Phase 2 ? Phase 3) decreases

inversely with the size of the mesh. This is natural because

the communication cost is proportional to the number of

cohesive elements inserted along the partition’s interfaces,

while the serial cost (within each partition) is proportional

to the total number of inserted cohesive elements. In that

manner, the performance penalty of the parallel imple-

mentation, due to the need of synchronization, is substan-

tially reduced if larger meshes are used.

To address the practical application of ParTopS, Fig. 24

presents two unstructured tetrahedral meshes decomposed

into three (Fig. 24a) and four domains (Fig. 24b). Cohesive

elements were randomly inserted at about 10% of the total

number of internal facets. Communication layers and

cohesive elements are emphasized in the figure.

The main purposes of creating a framework for sup-

porting parallel finite element analysis are: (1) to handle

large models; (2) to improve the performance of model

computation. The achieved results demonstrate that our

proposal meets both goals. Besides enabling the insertion

of cohesive elements in meshes that could not be fit within

a single machine memory, the proposed parallel algorithm

resulted in considerable performance gains for inserting

cohesive elements in those meshes, if compared with the

serial version of the algorithm.

7.1 Scalability issues

Scalability of a parallel system is related to how efficiently

an increasing number of resources may be used to solve

larger complex problems [19]. Several approaches have

been developed to measure scalability under different cir-

cumstances [19, 38, 39]. In this section, we use the isoef-

ficiency metric presented in [40] to estimate the scalability

of the proposed algorithm for 2D test models. This metric
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Fig. 22 Time for the parallel insertion of cohesive elements versus

number of machines considering two partitions per machine: a mesh

of T3 elements with 1,536 9 1,536 discretization; b mesh of TET4

elements with 96 9 96 9 96 discretization
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Fig. 23 Percentage of the total time required by each step of the

proposed algorithm when cohesive elements are inserted at 1% of the

facets in a TET4 mesh. Various mesh discretizations are presented
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relates the problem size to the number of processors nec-

essary to maintain the efficiency of a system. Similar

results can be obtained for 3D models.

Consider the execution time T(n, p) of a parallel system

with problem size n on p processors. The sequential time is

T1 = T(n, 1), and T0 = T0(n, p) is the total overhead time

introduced due to the parallel implementation. Then, the

efficiency of the system [40] can be defined as: E ¼ 1=ð1þ
T0=T1Þ; or equivalently: T1 ¼ ðE=ð1� EÞÞT0 ¼ KT0:

In order to maintain efficiency, the time for the serial

computation T1 must increase in a rate that is greater than

or equal to the parallel overhead T0. Hence, T1�KT0: As

shown in Ref. [13], the serial time for insertion of cohesive

elements scales approximately linearly with the number of

elements inserted. Thus, for the test meshes in which n

cohesive elements have been inserted, the sequential exe-

cution time can be expressed as T1 ¼ ntc; where tc is the

average cost per operation. In that manner, efficiency is

maintained if n�CT0; where C ¼ K=tc: Parallel overhead

T0 is due to replicated computation at communication layer

and messages exchanged between neighboring partitions,

as illustrated in Fig. 25. We observe that the amount of

Fig. 24 Two unstructured

tetrahedral meshes (a, b) used to

test the proposed algorithm.

Cohesive elements were

randomly inserted at about 10%

of the total number of internal

facets. Element insertion was

incrementally performed at a

rate of 1% of the internal facets

per iteration. Communication

layers and cohesive elements

are emphasized
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replicated computation is proportional to the size of the

communication layer, and thus to
ffiffiffi

n
p

=
ffiffiffi

p
p

: The number of

messages exchanged between neighboring partitions during

the execution of the algorithm is constant and the size of

each message is proportional to the size of the communi-

cation layer. The parallel overhead per processor can be

expressed as: Tp � c1ð
ffiffiffi

n
p �

ffiffiffi

p
p Þtc þ c2ts þ c3ð

ffiffiffi

n
p �

ffiffiffi

p
p Þtw;

where c1, c2 and c3 are constant multipliers, ts is the

average startup time of a message and tw is the average

time to send a unit of data. Then, the total overhead is

T0 ¼ pTp ¼ c1tc
ffiffiffiffiffi

np
p þ c2ts þ c3tw

ffiffiffiffiffi

np
p

: We assume that

load is balanced among partitions and thus processor idle

times are not expected to be significant.

For a large number of processors, efficiency is main-

tained when the problem size n asymptotically grows at

least as fast as T0. With the growing rate of T0 proportional

to
ffiffiffiffiffi

np
p

; we have the following relation: n�C
ffiffiffiffiffi

np
p

; which

yields n�C2p: Therefore, when n grows proportionally to

p, efficiency of the algorithm is maintained, and thus the

algorithm is expected to scale linearly with the number of

processors.

8 Concluding remarks

ParTopS is a parallel topological framework for moving

boundary simulations and fragmentation. In order to pro-

vide support for parallel topological operations, we have

extended the serial topological data structure named TopS

[4, 12, 13] for distributed mesh representation. A minimum

amount of data was added to the data structure so that the

compactness and reduced representation of TopS was

maintained. The proposed framework includes a parallel

algorithm for dynamic insertion of cohesive elements that

is based on the criteria for fracture facet classification

introduced by Paulino et al. [13], and thus, can be applied

in a uniform way to different types of finite element

meshes. The time spent to update the distributed data

structure is expected to be proportional to the number of

cohesive elements inserted in the mesh.

A set of computational experiments that demonstrate the

correctness of the proposed topological framework was

executed. The achieved results have shown that the

framework is capable of handling relatively large models,

while presenting significant performance gains for inserting

cohesive elements in those models. The present topological

framework represents an important step towards the ability

to perform moving boundary and extrinsic fragmentation

simulation of massive models.

In the present work, ParTopS has been implemented on

top of Charm??. However, the ParTopS algorithm is

general and could be implemented directly in another

parallel environment (e.g. MPI) without any difficulty. The

current implementation covers the representation of entities

and the corresponding procedures needed for parallel

insertion of cohesive elements. To extend its range of

application to other types of adaptive analyses (e.g.

h-version), it may be necessary to represent additional

information. We also expect to extend ParTopS with

additional topological operators to support general mesh

modifications, including ‘‘on-demand’’ refinement and

coarsening.
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