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SUMMARY

Micro-tools offer significant promise in a wide range of applications such as cell manipulation, micro-
surgery, and micro/nanotechnology processes. Such special micro-tools consist of multi-flexible structures
actuated by two or more piezoceramic devices that must generate output displacements and forces at
different specified points of the domain and at different directions. The micro-tool structure acts as a
mechanical transformer by amplifying and changing the direction of the piezoceramics output displace-
ments. The design of these micro-tools involves minimization of the coupling among movements generated
by various piezoceramics. To obtain enhanced micro-tool performance, the concept of multifunctional and
functionally graded materials is extended by tailoring elastic and piezoelectric properties of the piezo-
ceramics while simultaneously optimizing the multi-flexible structural configuration using multiphysics
topology optimization. The design process considers the influence of piezoceramic property gradation
and also its polarization sign. The method is implemented considering continuum material distribution
with special interpolation of fictitious densities in the design domain. As examples, designs of a single
piezoactuator, an XY nano-positioner actuated by two graded piezoceramics, and a micro-gripper actuated
by three graded piezoceramics are considered. The results show that material gradation plays an important
role to improve actuator performance, which may also lead to optimal displacements and coupling ratios
with reduced amount of piezoelectric material. The present examples are limited to two-dimensional
models because many of the applications for such micro-tools are planar devices. Copyright q 2008 John
Wiley & Sons, Ltd.

Received 15 November 2006; Revised 30 April 2008; Accepted 16 May 2008

∗Correspondence to: Glaucio H. Paulino, Newmark Laboratory, Department of Civil and Environmental Engineering,
University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, Urbana, IL 61801, U.S.A.

†E-mail: paulino@uiuc.edu, http://cee.uiuc.edu/paulino

Contract/grant sponsor: University of Illinois at Urbana-Champaign
Contract/grant sponsor: National Science Foundation; contract/grant number: CMS-0303492
Contract/grant sponsor: Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq); contract/grant
numbers: 140687-3, 476251/2004-4
Contract/grant sponsor: Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP); contract/grant number:
2008/51070-0

Copyright q 2008 John Wiley & Sons, Ltd.



302 R. C. CARBONARI, E. C. N. SILVA AND G. H. PAULINO

KEY WORDS: nano-positioners; micro-electro-mechanical systems (MEMs); functionally graded material
(FGM); piezoelectric actuators; topology optimization; multiphysics

1. INTRODUCTION

Piezoelectric micro-tools offer significant promise in a wide range of applications involving
nanopositioning and micromanipulation [1]. For instance, piezoelectric positioners are applied in
atomic force microscopes and scanning tunneling microscopes for positioning the sample or the
probe, respectively [2–4]; piezoelectric micro-grippers are applied to micromanipulation [5, 6], cell
manipulation, and micro-surgery [7]. The micro-tools considered in this study essentially consist
of multi-flexible structures actuated by two or more functionally graded piezoceramic devices
that must generate different output displacements and forces at different specified points of the
domain and at different directions. The multi-flexible structure acts as a mechanical transformer
by amplifying and changing the direction of the piezoceramics output displacements [8]. Thus, the
development of these piezoelectric micro-tools requires the design of actuated compliant mecha-
nisms [9] that can accurately perform detailed specific movements. Although the design of such
micro-tools is complicated due to the coupling between movements generated by various piezoce-
ramics, it can be realized by means of topology optimization [10–12]. For instance, Figure 1 shows
prototypes of a planar (XY) nanopositioner and a piezoelectric gripper. Here, topology optimization
techniques are explored in conjunction with the concept of piezoceramic material gradation (to
achieve enhanced micro-tool design), as discussed below.

Material gradation can be achieved by means of functionally graded materials (FGMs), which
are special materials that possess continuously graded properties and are characterized by spatially
varying microstructures created by nonuniform distributions of the reinforcement phase as well
as by interchanging the role of reinforcement and matrix (base) materials in a continuous manner
[13–15]. The smooth variation of properties may offer advantages such as local reduction of stress
concentration and increased bonding strength [15].

Topology optimization is a powerful structural optimization method that seeks an optimal
structural topology design by determining which points of space should be solid and which points
should be void (i.e. no material) inside a given design domain [16]. However, the binary (0–1) design
is an ill-posed problem and a typical way to seek a solution for topology optimization consists
of relaxing the problem by defining a material model that allows for intermediate (composites)

Figure 1. Micro-tools prototypes: (a) XY nanopositioner and (b) piezoelectric gripper.
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property values [17]. In this sense, the relaxation yields a continuous material design problem that
no longer involves a discernible connectivity. Typically, it is an improperly formulated (ill-posed)
topology optimization problem for which no optimum solution exists (0–1 design). In general, a
feasible topology solution can be obtained by applying penalization coefficients to the material
model to recover the binary design (and thus, a discernible connectivity), together with some
gradient control of material distribution, such as a filter [18].

The relaxed problem is related to the FGM design, which essentially seeks a continuous transition
of material properties [13–15]. In contrast, although the 0–1 design problem needs complexity
control (such as a filter) and does not admit intermediate values of design variables, the FGM
design problem does not need complexity control and does admit solutions with intermediate
values of the material field.

Owing to the attractive possibilities of tailoringmaterial properties, some researchers have applied
optimization methods to design FGMs. The study of Cho and Choi [19] presents a volume frac-
tion optimization of each phase inside a domain considering reduction of thermal stress levels. The
design of FGM structures with topology optimization has been considered by Turteltaub [20–22]
focusing mainly on thermal and thermomechanical applications, including transient analysis, by
defining the design variable in a piecewise fashion in the discretized domain. The application of
a generic optimization method to tailor material property gradation has been proposed by Paulino
and Silva [23]who applied topology optimization to solve the problem ofmaximum stiffness design.

Recently, the FGM concept has been explored in piezoelectric materials to improve their prop-
erties and to increase the lifetime of piezoelectric actuators [24]. Usually, elastic, piezoelectric,
and dielectric properties are graded along the height of an FGM piezoceramic. Previous studies
[24, 25] have shown that the gradation of piezoceramic properties can influence the performance
of piezoactuators, such as generated output displacements. This suggests that optimization tech-
niques can take advantage of the property gradation variation to improve the FGM piezoactuator
performance. Thus, the objective of this work is to study the influence of piezoceramic property
gradation and also its polarization sign variation in the design of multi-flexible micro-tool structures
actuated by FGM piezoceramics using topology optimization. Two design problems are considered
simultaneously: the optimum design of the piezoceramic property gradation in the FGM piezoce-
ramic domain, including polarization, and the design of the coupling structural topology. Figure 2
illustrates the concept of multi-actuated flextensional FGM piezoelectric devices, as explored in
the present study.

The optimization problem is posed as the design of a flexible structure, as well as each
piezoceramic property gradation and polarization sign variation that maximizes different output
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Figure 2. Concept of multi-actuated flextensional FGM piezoelectric devices: (a) FGM XY nanopositioner
and (b) FGM piezoelectric gripper.
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displacements or output forces at specified directions and points of the domain, in response to
different excited piezoceramic portions while minimizing the effects of movement coupling [12].
For simplicity, the method is implemented based on the solid isotropic material with penalization
(SIMP) model where fictitious densities are interpolated at each finite element (FE), providing a
continuous material distribution in the domain. The optimization algorithm employed is based on
sequential linear programming (SLP) [26, 27]. Other material models or optimization algorithms
may also be explored. The examples provided include designs of a single piezoactuator, a planar
(XY) nano-positioner actuated by two FGM piezoceramics, and a micro-gripper actuated by three
FGM piezoceramics. The resulting designs are compared with designs considering conventional
homogeneous piezoceramics.

Our approach to treat functionally graded piezoceramic materials requires three design variables:
�1 (design variable associated to material distribution in the structural region), �2 (design variable
associated to piezoceramic material distribution), and �3 (binary design variable associated to
polarization sign). Previous study in this area [12] did not account for any material gradation effects
and considered ‘fixed’ piezoceramics. Thus, the main contributions of this study are as follows:

• treatment of functionally graded piezoceramic materials (FGMs);
• progressive change of electrode position induced by the piezoceramic gradation;
• material optimization within the piezoceramic domain;
• optimization of polarization sign;
• consideration of material gradation and change of polarization to explore bending in the

piezoceramic (the resulting stress levels are low compared with stresses generated by the
usual range of applied electrical field).

This paper is organized as follows. In Section 2, a brief introduction about the FE formulation for
piezoelectricity considering the FGM concept is presented. In Section 3, the continuous topology
optimization method, the underlining material model, and the formulation of the topology opti-
mization problem applied to piezoelectric micro-tool design considering FGM piezoceramics are
described. In Section 4, some aspects of the numerical implementation are discussed. In Section 5,
an account of sensitivity analysis is given using the adjoint method. In Section 6, a technique
for explicit control of material gradation through projection is presented. In Section 7, numerical
examples are given including FGM piezoelectric micro-tool designs. In this study, the dielectric
properties are not altered in the piezoceramic domain. Finally, in Section 8, conclusions are
inferred.

2. FE FGM PIEZOELECTRIC MODELING

The micro-tools considered here operate in quasi-static or low-frequency applications (inertia
effects are neglected). The weak formulation of the equilibrium equations of the piezoelectric
medium considering linear piezoelectricity is well developed and it is given by [28]∫

�
ε(u)tcEε(v)d�+

∫
�
(∇�)tetε(v)d� =

∫
�t

t ·vd�
∫

�
ε(u)t e∇�d�−

∫
�
(∇�)teS∇�d� =

∫
�d

d�d�

for u, �∈V and ∀v, ∀�∈V (1)
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where

t=T ·n, d=D ·n (2)

T, D are the stress tensor and the electrical displacement vector, respectively, n is the normal
vector to the surface, and

V ={v=viei ,� with v=0 on �u and �=0 on ��, i=1 or 3} (3)

� is the domain of the piezoelectric medium (but it may also contain non-piezoelectric materials),
∇ is the gradient operator, and cE, e, and eS denote the elastic, piezoelectric, and dielectric
properties, respectively, of the medium. The superscript ‘t’ denotes transpose, v and � are virtual
displacements and electric potential, respectively, u is the displacement field, t is the mechanical
traction, d is the electrical charge, and � is the electric potential in the piezoelectric medium.
The index i assumes value either 1 or 3 because the problem is considered in the 1–3 plane.
The piezoceramic is polarized in the local 3 direction, and the strain–displacement relation is
given by

�i j (u)= 1

2

(
�ui
�x j

+ �u j

�xi

)
(4)

The linear FE matrix formulation of the equilibrium equations for the piezoelectric medium is
given by [28]

⎡
⎣Kuu Ku�

Kt
u� −K��

⎤
⎦

{
U

U

}
=

{
F

Q

}
�⇒[K]{U}={Q} (5)

where Kuu , Ku�, and K�� denote the stiffness, piezoelectric, and dielectric matrices, respectively,
and F, Q, U, and U are the nodal mechanical force, nodal electrical charge, nodal displacements,
and nodal electric potential vectors, respectively [28].

In the case of FGM piezoceramics, the properties change continuously inside the piezoceramic
domain, which means that they can be described by some continuous function of position x in the
piezoceramic domain, that is

cE=cE(x), e=e(x), eS=eS(x) (6)

From the mathematical definitions of Kuu, Ku�, and K��, these material properties should remain
inside the matrices integrals and be integrated together by using the graded FE concept [29] where
properties are continuously interpolated inside each FE based on property values at each FE node.
An attempt to approximate the continuous change of material properties by a stepwise function
where a property value is assigned for each finite element may result in less accurate results with
undesirable discontinuities of the stress and strain fields (see, for example, Reference [29]).

When a non-piezoelectric conductor material and a piezoceramic material are distributed in
the piezoceramic domain, the electrode positions are not known ‘a priori,’ as discussed ahead.
Therefore, the electrical excitation is given by an applied electric field [30] (∇�=constant), and
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thus, Equation (1) becomes∫
�

ε(u)tcEε(v)d� =
∫

�t

t ·vd�−
∫

�
(∇�)tetε(v)d�

∫
�

ε(u)te∇�d� =
∫

�
(∇�)teS∇�d�+

∫
�d

d�d�

for u, �∈V and ∀v, ∀�∈V (7)

In this case, all electrical degrees of freedom are specified in the FE problem, and Equation (5)
becomes

[Kuu]{U} = {F}−[Ku�]{U}
[Kt

u�]{U} = {Q}+[K��]{U}
(8)

as {U} is specified. Accordingly, the mechanical and electrical problems are decoupled, and only
the upper problem of Equation (8) needs to be directly solved. Essentially, the optimization problem
is based on the mechanical problem. As a consequence, the dielectric properties do not influence
the design.

3. DESIGN PROBLEM FORMULATION

The basic topology optimization framework used in this study is described in detail by Carbonari
et al. [12] and it is based on the continuous topology optimization concept where a continuum
distribution of the design variable inside the finite element is considered through interpolation using
a continuous function. In this case, the design variables are defined for each element node [31]
instead of each finite element as usual [18]. This formulation, known as ‘continuous approximation
of material distribution’ (CAMD) [31, 32] appears to be robust for designing the piezoelectric
micro-tools [12] of interest in this study. As indicated in the Introduction, the material model is
based on the SIMP [18] method combined with the CAMD approach and states that at each point
of the domain, the local stiffness of the mixture CH as

CH=�p
1C0 (9)

where CH and C0 are the elastic properties of the mixture and basic material that is distributed in
the domain, respectively, �1 is a pseudo-density describing the amount of material at each point of
the design domain, which can assume values between 0 and 1, and p∈[1,3] is a penalization factor
to recover the discrete design. For �1 equal to 0 the material corresponds to void, and for �1 equal
to 1 the material corresponds to solid material. For a domain discretized into finite elements with
continuum distribution of design variable, Equation (9) is considered for each element node, and
the material property (e.g. Young’s modulus) inside each finite element is given by a function �1(x),
where x denotes the Cartesian coordinates. This formulation leads to a continuous distribution of
material in the design domain (instead of the traditional piecewise material distribution applied to
previous formulations of topology optimization), and it is also compatible with the FGM concept
considered in the piezoceramic domain.

Because the objective of this study also consists of optimizing the material gradation in the
piezoceramic domain, an additional material model must be defined for this domain. Therefore,
a new design variable �2 is introduced to describe the type of piezoelectric material. In addition,
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the polarization sign in the piezoelectric domain must be taken into account to increase design
flexibility. This can be achieved by changing the sign of the piezoelectric property e. Thus, a new
design variable �3 is introduced, which describes the polarization of the piezoelectric material [33].
As shown later, it is very important that the polarization be part of the optimization process—this
improves significantly the design and performance of the final actuator. The following material
models are introduced based on an extension of the traditional SIMP model [18]:

CH = �2C1+(1−�2)C2 (10)

eH = (2�3−1)pe [�2e1+(1−�2)e2] (11)

where �2, a pseudo-density function defined at each point of the domain, is described as follows:

• �2=1.0 denotes piezoelectric material type 1;
• �2=0.0 denotes piezoelectric material type 2.

The design variables can assume different values at each finite element node. The tensors CH

and eH are stiffness and piezoelectric properties, respectively. The tensors C j and e j are related to
the stiffness and piezoelectric properties for piezoelectric material type j ( j =1,2), respectively.
These are the properties of basic materials that are distributed in the piezoceramic domain.

The specific material model described by Equation (9) allows material change from void to non-
piezoelectric material (e.g. Aluminum), while the material model described by Equations (10) and
(11) allows change from material type 1 to type 2 (one of these materials maybe Aluminum). Note
that these material models are independent from each other and are defined in independent design
domains. Thus, the material model described by Equation (9) and the material model described by
Equations (10) and (11) are uncoupled. The main motivation to formulate problem in this manner
is to achieve designs that are more realistic in terms of manufacturing. For instance, the Aluminum
structure can be (and has been) fabricated using electrical discharge machining, as illustrated by
Figure 1, while the graded piezoceramic could be fabricated using a processing technique such as
spark plasma sintering [15].

The material model described by Equations (10) and (11) does not allow material change
involving void phase, material type 1 and material type 2. Of course, we expect that by distributing 3
phases (rather than 2), different topologies will be obtained. Actually, inclusion of void phase is
not within the scope of the present study. Ongoing study by the authors considers material change
from void and FGM made of materials type 1 and type 2 following the idea of coupling the material
model given by Equation (9) and the material model given by Equations (10) and (11). Preliminary
results can be found in Reference [34]. Moreover, Carbonari et al. [35] discuss the distribution of
void, material type 1 and type 2; however, the FGM concept has not been explored.

The dielectric properties are not considered because a constant electric field is applied to the
design domain as electrical excitation and, as explained later (Section 4), this approach decouples
the electrical and mechanical problems eliminating the influence of dielectric properties in the
optimization problem. Eventually, the piezoelectric material type 2 can be substituted by the flexible
structure material (non-piezoelectric material, such as Aluminum, for example), and in this case
e2=0. Analogous to the material model described by Equation (9), �2 does have a continuous
distribution along the piezoceramic design domain, that is, �2=�2(x), and so does the material
properties. For a discretized domain into finite elements, �2 and Equations (10) and (11) are
considered for each finite element node. Thus, by finding the nodal values of the unknown �2
function, we are indirectly finding the optimum material distribution functions, which are described
by Equation (6).
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The design variable �3 is related to the polarization sign in the piezoceramic domain. Its
value should tend to zero or unity, indicating that the polarization is either negative or positive,
respectively. The penalization factor pe is an odd number that is applied to avoid intermediate
values of �3 as we are interested only in positive or negative polarization signs. Thus, this material
model allows the algorithm not only to optimize the material distribution but also to choose a
suitable polarization (either positive or negative) at each point.

Essentially, a piezoelectric multi-actuator consists of a coupling structure actuated by two or more
piezoceramics [8] where each piezoceramic is responsible for actuating a specific multi-actuator
movement. In addition, there is a coupling among actuated displacements due to the fact that it is
a flexible structure. Thus, when a piezoceramic is excited to generate a desired displacement, other
undesired displacements may also be generated. These undesired displacements can be reduced
by decoupling as much as possible the actuated and undesired displacements. Figure 3 shows an
example of a coupling structure multi-actuated by piezoceramics.

The electrical excitation approach is discussed next. When the distribution of a non-piezoelectric
conductor material and a piezoceramic material is considered in the piezoceramic domain, the elec-
trode positions are not known ‘a priori.’ To circumvent this problem, an electric field is applied as
electrical excitation [30]. If two piezoelectric materials are considered, then the electrode positions
are known and an electric field excitation can be achieved by applying an electric voltage to the
electrodes whose positions are known and correspond to the boundary of the piezoceramic domain.

Therefore, in the formulation of the piezoelectric multi-actuator design optimization, the objec-
tive is to design a device such that when each piezoceramic is actuated, it generates an output
displacement at a specified point and direction, which has minimum coupling with displacements
generated by other piezoceramics at other points and directions. Thus, this design problem is related

(a) (b)

Figure 3. Coupling structure multi-actuated by FGM piezoceramics. Here, E j
i =−∇�i denotes

the electrical field associated with load case i applied to piezoceramic j . Load cases for
calculation of (a) mean transduction and coupling constraint function (for first piezoceramic

only, i.e. PZT1) and (b) mean compliance.
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to flexible structures design theory considering multi-flexibility [36]. The objective function is
defined in terms of a combination of output displacements generated for a specified applied electric
field to each piezoceramic, and it must also minimize the coupling among displacements, which
can be achieved by including coupling constraints. The objective function is composed of three
types of functions: mean transduction, mean compliance, and coupling constraint terms. Their
mathematical expressions are given by Carbonari et al. [12]; however, they are also presented here
considering the electric field excitation.

The mean transduction (Li
2(u

i
1,�

i
1)) concept is related to the electromechanical conversion

represented by the displacements generated for a specific actuation movement i at region �i
t2

along a specified direction due to an input electrical excitation in the medium (in this study, Ei
1 is

prescribed) as described in load case (a) of Figure 3. Its mathematical expression is given by [12]
Li
2(u

i
1,�

i
1)=

∫
�i
t2

ti2u
i
1 d�+

∫
�i
d2

di2�
i
1 d�=

∫
�i
t2

ti2u
i
1 d� (12)

as di2=0 in this problem. Thus, the maximization of output displacement generated in a region �i
t2

is obtained by maximizing the mean transduction quantity (Li
2(u

i
1,�

i
1)). The load cases considered

for calculation of mean transduction are shown in case (a) of Figure 3.
To provide some stiffness to the multi-flexible structure, the mean compliance Li

3(u
i
3,�

i
3)

must also be minimized. The mean compliance for each actuation movement i is calculated by
considering the load described in case (b) of Figure 3 where a traction ti3=−ti2 is applied to region
�i
t2 and the electric field is kept null inside the medium (Ei

3=0). Thus, the mean compliance for
each actuation movement i is defined by [12]

Li
3(u

i
3,�

i
3)=

∫
�i
t2

ti3u
i
3 d� (13)

The coupling constraint is obtained by minimizing the absolute value of the corresponding mean
transduction Li

4(u
i
1,�

i
1) between actuated piezoceramic and generated undesired displacements.

The mean transduction for each actuation movement i is calculated by using Equation (12);
however, considering the load case described in case (a) of Figure 3 instead, where traction ti4,
normal to ti2, is applied to region �i

t2 . Therefore, the coupling constraint function for each actuation
movement i is given by the following expression [12]:

Li
4(u

i
1,�

i
1)=

∫
�i
t4

ti4u
i
1 d� (14)

Finally, a multi-objective function, which combines the above three functions to find an appro-
priate optimal solution that can incorporate all design requirements for each actuation movement i ,
is given by

F(�1,�2,�3) = w∗ ln
{
− 1

�l

[
n∑

i=1
exp[−�l L

i
2(u

i
1,�

i
1)]

]}

− 1

2
(1−w)∗ ln

{
n∑

i=1
�i (L

i
3(u

i
3,�

i
3))

2+
n∑

i=1
�i (L

i
4(u

i
1,�

i
1))

2
}

0�w�1,
n∑

i=1
�i =1, �l>0 (15)
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where w,�l ,�i , and �i are weight coefficients and n is the number of piezoceramics. In the design
of multi-actuated FGM piezoelectric micro-tools, an extra optimization problem of the same type
is solved for the piezoceramic domain to find the optimum gradation of the piezoelectric material;
however, the optimization problem has the nodal values of �2(x) and element values of �3(x), as
design variables. The final optimization problem is defined as follows:

Maximize: F(�1,�2,�3)

�1(x)∈ S, �2(x) and �3(x)∈ SPZT

subject to: ti3=−ti2 (�i
t3 =�i

t2), i=1 . . .n

ti4 ·ti2=0 (�i
t4 =�i

t2)

A(ui1,v
i
1)+B(�i

1,v
i
1)= Lt (ti1,v

i
1), B(�i

1,u
i
1)−C(�i

1,�
i
1)= Ld(d1,�1)

for ui1, �i
1∈Va and ∀vi1, ∀�i

1∈Va

A(ui3,v
i
3)+B(�i

3,v
i
3)= Lt (ti3,v

i
3), B(�i

3,u
i
3)−C(�i

3,�
i
3)= Ld(d3,�3)

for ui3, �i
3∈Vc and ∀vi3, ∀�i

3∈Vc

0��1�1, 0��2�1, 0��3�1

�1(�)=
∫
S
�1 dS−�1S�0, �2(�)=

∫
SPZT

�2 dS−�2S�0

(16)

where

A(u,v) =
∫

�
ε(u)tCHε(v)d�, B(�,v)=

∫
�
(∇�)t(eH)tε(v)d� (17)

C(�,�) =
∫

�
(∇�)teS∇�d�, Lt (t,v)=

∫
�t

t ·vd�, Ld(d,�)=
∫

�d

d�d� (18)

and

Va = {v=viei ,� with v=0 on �u and ∇�=∇�S in SPZT, i=1 or 3}
Vc = {v=viei ,� with v=0 on �u and ∇�=0 in SPZT, i=1 or 3}

Note that B(�,v) and C(�,�) are known. Here S denotes the design domain � without
including the piezoceramic, �1 is the volume of this design domain, and �1S is an upper-bound
volume constraint defined to limit the maximum amount of material used to build the coupling
structure. Moreover, SPZT denotes the piezoceramic domain, �2 is the constraint related to �2
design variable, and �2S is an upper-bound constraint defined to limit �2 values when optimizing
the FGM gradation function. The other constraints are equilibrium equations for the piezoelectric
medium considering different load cases. The equilibrium equations are solved separately from
the optimization problem. They are stated in the problem to indicate that, whatever topology is
obtained, it must satisfy the equilibrium equations. The present notation follows closely the one
by Bendsøe and Kikuchi [37].
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4. NUMERICAL IMPLEMENTATION

The continuum distribution of design variables �1(x) and �2(x) are given by the functions [31, 32]

�1(x)=
nd∑
I=1

�1I NI (x), �2(x)=
nd∑
I=1

�2I NI (x) (19)

where �1I and �2I are nodal design variables, NI is the finite element shape function that must
be selected to provide non-negative values of the design variables, and nd is the number of nodes
at each finite element. The design variables �1I and �2I can assume different values at each node
of the finite element. The additional design variable �3(x) is assumed to be uniform inside each
finite element and, in the discretized form, becomes the design variable �3e.

Owing to the definition of Equation (19), the material property functions (Equations (10) and
(11)) also have a continuum distribution inside the design domain. Thus, considering the mathemat-
ical definitions of stiffness and piezoelectric matrices of Equation (5), the material properties must
remain inside the integrals and be integrated together by means of the graded finite element concept
[29]. The finite element equilibrium equation (8) is solved considering 4-node isoparametric finite
elements under either plane stress or plane strain assumption.

When a non-piezoelectric conductor material (usually a metal, such as Aluminum) is considered
in Equations (10) and (11), a relevant problem to be solved is how to define the piezoceramic
electrodes. If different types of distinct piezoelectric materials are considered, the position of
electrodes surface is known and is defined by the piezoceramic domain geometry. However, if a non-
piezoelectric conductor material (for example, Aluminum) is also distributed in the piezoceramic
design domain, we cannot define ‘a priori’ the position of the piezoceramic electrodes because we
do not know where the piezoceramic is located in the design domain. To circumvent this problem,
we consider the electrical problem independently for each finite element of the piezoceramic
domain by defining a pair of electrodes at each finite element, that is, each finite element has its
own electrical degrees of freedom as illustrated by Figure 4.

Thus, each finite element has 4 electrical degrees of freedom given by [�a,�b,�c,�d ] (nodes are
ordered counterclockwise starting from the upper right corner of each finite element) considering

Figure 4. Finite elements with their corresponding electrical degrees of freedom. Here,
ui and vi denote the node i horizontal and vertical displacement, respectively, and �i j

denotes the j th potential at the i th node.
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that one of the electrodes is grounded. Electrical voltage �0 is applied to the two upper nodes
and thus, the four electrical degrees of freedom are prescribed at each finite element, as follows
([�0,�0,0,0]) [30]. This is equivalent to applying a constant electrical field along the 3-direction
in the design domain (see Figure 4). In this case, all electrical degrees of freedom are prescribed
in the FE problem (as already mentioned in Section 2).

By means of the FE matrix formulation, Equation (8), the discrete forms of mean transduction,
Equation (12), mean compliance, Equation (13), and the coupling constraint, Equation (14), for
the actuation movement i can be calculated numerically through the following expressions:

Li
2(U

i
1,U

i
1) = {Ui

1}t{Fi
2} (20)

Li
3(U

i
3,U

i
3) = {Ui

3}t{Fi
3} (21)

Li
4(U

i
1,U

i
1) = {Ui

1}t{Fi
4} (22)

Note that {Ui
1}t{Qi

2}=0 (since {Qi
2}=0) and {Ui

3}t{Qi
3}=0 (since {Ui

3}=0). The expression for
Li
4(U

i
1,U

i
1) is equal to (20) by substituting {Fi

2} by {Fi
4} and {Qi

2} by {Qi
4}.

The discretized form of the optimization problem given by Equation (16) is restated as

Maximize: F(�1I ,�2I ,�3e)

�1I ∈ S, �2I and �3e∈ SPZT

subject to: {Fi
3}=−{Fi

2} (�i
t3 =�i

t2), i=1 . . .n

{Fi
4}t.{Fi

2}=0 (�i
t4 =�i

t2)

[Ki
1]{Ui

1}={Qi
1}, [Ki

3]{Ui
3}={Qi

3}
0<�min��1I�1, 0��2J�1, I =1 . . .Ne, J =1 . . .Np

0��3e�1, e=1 . . .NE

NE∑
I=1

∫
SI

�1 dSI −�1S�0

NN∑
J=1

∫
SJ

�2 dSJ −�2S�0

(23)

where the integrals in the volume constraint expressions are evaluated by using Gauss quadrature
(4 points) and considering Equation (19). The parameter Ne is the number of nodes in the non-
piezoceramic design domain, and Np is the number of nodes in the piezoceramic design domain.
Moreover, NE and NN denote the number of elements in the piezoceramic and non-piezoceramic
design domains, respectively. The matrices [Ki

1] and [Ki
3] are reduced forms of the matrix [Ki ]

considering non-zero and zero specified voltage degrees of freedom (applied electric field) at the
piezoceramic domain, respectively. The initial domain is discretized by finite elements and the
design variables (�1, �2, and �3) are the values of �1I defined at each finite element node in
the non-piezoceramic domain, �2J defined at each finite element node, and �3e defined at each
finite element in the piezoceramic domain. The lower-bound �min=0.001 is necessary to avoid
numerical problems such as singularity of the stiffness matrix in the finite element formulation
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~

(a) (b)

Figure 5. Boundary conditions for the piezoceramic domain: (a) mean transduction and coupling constraint
function (∇�=constant) and (b) mean compliance (∇�=0).

Initialization and
Data Input

Calculation of Mean Transduction,
Mean Compliance and Coupling

Constraint Functions

Calculation of Objective Function and Constraints

Converged?

Calculate Sensitivities

Solve LP problem with 
respect to ρ1I , ρ2I=f(d2I), and ρ3e

Update ρ1I , ρ2I and ρ3e 

END
Y

N

F1

Figure 6. Flowchart of optimization procedure (LP means linear programming).

due to zero stiffness. In practical terms, regions with �min have no structural significance and can
be considered void regions.

The boundary conditions for the piezoceramic domain for load cases (a) and (b) of Figure 3
are shown in Figures 5(a) and (b), respectively. They represent constant and null electric field,
respectively, applied to the domain.

A flowchart of the optimization algorithm describing the steps involved is shown in Figure 6.
The software was implemented using the C language. The mathematical programming method
of SLP is applied to solve the optimization problem because there are a large number of design
variables and different objective functions and constraints [26, 27, 38]. The linearization of the
problem at each iteration requires the sensitivities (gradients) of the multi-objective function and
constraints. These sensitivities depend on gradients of mean transduction and mean compliance
functions in relation to �1I , �2J , and �3e and are derived in Section 5.

Suitable moving limits are introduced to assure that the design variables do not change by more
than 5–15% between consecutive iterations. A new set of design variables �1I , �2J , and �3e are
obtained after each iteration, and the optimization continues until convergence is achieved for the
objective function. The results are obtained using the continuation method where the penalization
coefficient p varies from 1 to 3 along the iterations. The continuation method alleviates the
problem of multiple local minima [39]. If the optimization scheme is initiated with large values of
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penalization coefficient, the continuum problem is close to a discrete problem and, thus, there are
many local minima. As a consequence, the optimization method may get trapped in a undesired
local minimum. By starting with small values of penalization coefficients, undesired local minima
can be avoided, and chances of the algorithm stopping in a more appropriate local minimum are
increased. The value of penalization coefficient pe is equal to 1.0.

5. SENSITIVITY ANALYSIS USING THE ADJOINT METHOD

The gradient of the function F relative to the design variable AI (either �1I , �2J , or �3e) is
obtained by differentiating (15), and it results in a expression that depends on the sensitivities of
mean transduction, mean compliance, and coupling constraint function. These sensitivities have
been derived in detail in the study of Carbonari et al. [12]. Thus, only changes concerned to the
new problem formulation are addressed here.

The mean transduction sensitivity �Li
2(U

i
1,�

i
1)/�AI considering electrical field excitation is

obtained by differentiating Equation (20) and is given by

�Li
2(U

i
1,�

i
1)

�AI
=

{
�Ui

1

�AI

}t

{Fi
2}={Fi

2}t
{

�Ui
1

�AI

}
(24)

Note that �Fi
2/�AI is equal to zero as it does not depend on design variables because it is a unit

dummy load. The sensitivity �Ui
1/�AI is obtained by differentiating Equation (8), resulting in the

following expression:

[Kuu]{Ui
1} = {Fi

1}−[Ku�]{Ui
1}

⇒ [Kuu]�{Ui
1}

�AI
=−�[Ku�]

�AI
{Ui

1}−
�[Kuu]
�AI

{Ui
1} (25)

Note that �Fi
1/�AI=0 as it does not depend on design variables because it is an applied load.

Moreover, �{Ui
1}/�AI =0 because all electrical voltage degrees of freedom are prescribed. Thus,

�Li
2(U

i
1,�

i
1)

�AI
= −{Fi

2}t([Kuu])−1

{
�[Ku�]
�AI

{Ui
1}+

�[Kuu]
�AI

{Ui
1}

}
(26)

= −({K}i2)t
{

�[Ku�]
�AI

{Ui
1}+

�[Kuu]
�AI

{Ui
1}

}
and [Kuu]{K}i2={Fi

2} (27)

The sensitivity can be obtained by solving the adjoint problem (27) and substituting {K}i2 into
(26). Actually, the same expressions are valid for calculating the sensitivity of Li

4(U
i
1,�

i
1) by

substituting the subscript 2 by 4.
Similarly, the sensitivity of the mean compliance is given by [38]

�Li
3(U

i
3,�

i
3)

�AI
=−({K}i3)t

{
�[Ku�]
�AI

{Ui
3}+

�[Kuu]
�AI

{Ui
3}

}
and [Kuu]{K}i3={Fi

3} (28)
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Considering (19), one obtains the derivatives �[Ku�]/��1I and �[Kuu]/��1I , which are given by[
�Kuu

��1I

]
=

NEL∑
e=1

∫
�e

Bt
u
�CH

��1

��1
��1I

Bu d�e

=
n f∑
e=1

∫
�e

Bt
u
�CH

��1
NI (x)Bu d�e

[
�Ku�

��1I

]
= 0

(29)

The derivatives �[Ku�]/��2I and �[Kuu]/��2I are[
�Kuu

��2I

]
=

NEL∑
e=1

∫
�e

Bt
u
�CH

��2

��2
��1I

Bu d�e

=
n f∑
e=1

∫
�e

Bt
u
�CH

��2
NI (x)Bu d�e

[
�Ku�

��2I

]
=

n f∑
e=1

∫
�e

Bt
u
�eH

��2
NI (x)B� d�e

(30)

and the derivatives �[Ku�]/��3e and �[Kuu]/��3e are[
�Kuu

��3e

]
= 0

[
�Ku�

��3e

]
=

∫
�e

Bt
u

�eH

��3e
B� d�e

(31)

where the definitions of Kuu and Ku� were used. The parameter NEL is the total number of finite
elements, Bu is a function of the derivative of shape functions defined in the literature [40], n f
is the number of elements connected to node I (that is, the summation is performed considering
only these elements), and �CH/��1, �eH/��1, �CH/��2, �eH/��2, and �eH/��3e can be easily
obtained by differentiating Equations (9)–(11). In Equation (31), note that only element e depends
on the design variable �3e.

6. MATERIAL GRADATION CONTROL THROUGH PROJECTION

When designing graded structures, it is important to be able to explicitly control the material
gradation. In addition, gradient control is helpful to avoid mesh-dependent solutions. The CAMD
approach ensures a continuous material distribution across elements. However, it does not control
the local gradient of material distribution. In this study, we introduce a new layer of design variables
and use a projection function to obtain material densities at nodes. The implementation of nodal
design variables and projection functions [41] is applied on top of the CAMD and leads to explicit
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rmin

i

w(r)

1

rmin rmin

r

Figure 7. Projection technique using the CAMD concept. Note that rmin is a characteristic length scale,
which is independent of mesh discretization.

control of the material gradation. This projection technique is applied only to the design variable
�2, which describes the distribution of piezoelectric materials.

Let yn denote all design variables associated with nodes, and �2n denote the values of material
density at nodes. Assume that the required change of material density occurs over a minimum
length scale denoted by rmin. By means of the projection function ( f ), �2n can be obtained from
yn as follows:

�2n = f (yn) (32)

where f is the projection function defined by

�2i = f (y j )=
∑

j∈Si y jW (ri j )∑
j∈Si W (ri j )

(33)

and ri j is the distance between nodes j and i , i.e.

ri j =‖x j −xi‖ (34)

The set of nodes in the domain under influence of node i is denoted as Si . It consists of a circle
of radius rmin centered at node i . The weight function W (defined in Equation (33)) is defined as
follows:

W (ri j )=

⎧⎪⎨
⎪⎩
rmin−ri j
rmin

if x j ∈ Si

0 otherwise

(35)

Figure 7 illustrates the idea of the projection technique. As a consequence, the topology optimization
implementation must be revised according to the projection technique [42].

7. EXAMPLES: MULTIFUNCTIONAL AND FUNCTIONALLY GRADED ACTUATORS

The following examples illustrate the design of piezoelectric micro-tools with FGM piezoceramics
using the proposed methodology. They consist of regions of piezoceramics whose shape remains
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Figure 8. Piezoceramic design domain divided into horizontal layers. Design variables �2J and �3e are
defined for each layer interface and each layer, respectively.

Table I. Material properties of piezoceramic (PZT5A) [43].
cE11 (1010N/m2) 12.1 e13 (C/m2) −5.4

cE12 (1010N/m2) 7.54 e33 (C/m2) 15.8

cE13 (1010N/m2) 7.52 e15 (C/m2) 12.3

cE33 (1010N/m2) 11.1

cE44 (1010N/m2) 2.30

cE66 (1010N/m2) 2.10

unchanged during the optimization, and a domain (S) for the Aluminum frame. The objectives of
optimization are to find the optimum material property gradation and polarization sign variation
in the piezoceramic domain, and the optimum topology of the flexible structure in the domain S.

The piezoceramic design domain is divided into horizontal layers, and design variables �2J and
�3e are considered for each layer interface and each layer, respectively, as described in Figure 8.
All piezoceramic domains are discretized into 20 layers; thus, there are 21 design variables �2J
and 20 design variables �3e. Note that �2 is defined by nodes while �3 is defined by elements
(layer). If there are n elements, then there are (n+1) nodes.

Table I presents the piezoelectric material properties used in the simulations for all examples.
Here, cE and e denote the elastic and piezoelectric properties of the medium, respectively. Young’s
modulus and Poisson’s ratio of Aluminum are equal to 70GPa and 0.33, respectively. Two-
dimensional isoparametric finite elements under plane-stress assumption are used in the finite
element analysis. The following examples are investigated (see Figure 9):

1. single piezoactuator;
2. XY piezoelectric nanopositioner;
3. piezoelectric gripper.

For all examples, unless otherwise specified, the values of �l and w coefficients are equal to
106 and 0.5, respectively (see the objective function of Equation (15)). The initial values of design
variables �1I and �2J are set equal to 0.25. The penalization coefficient p is continued from 1
to 3 linearly along the iterations. The value of penalization coefficient pe is equal to 1, which
does not change during iterations [33]. The projection technique is applied only for the design
variable �2. The value of rmin (see Figure 7) is equal to 0.1mm (4 elements) for all examples. The
volume constraint �1S is equal to 25% of the volume of the whole domain � without piezoceramic
domain. The amount of electric field applied to any of the piezoceramic domains is 400V/mm.
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The optimization problem starts in the feasible domain (all constraints satisfied). The results are
shown by plotting the average value for design variables �1I and �2J inside each finite element.
The post-processed topology results are obtained by applying a threshold to the value of the �1I
design variable. This causes a decrease in performance in the piezoactuator design because it may
enlarge the stiffness of the coupling structure topology in some cases.

7.1. Single piezoactuator design

The first example illustrates the design of a single-type piezoactuator considering the influence
of the FGM piezoceramic material composition and polarization sign. The design domain for this
problem with corresponding mechanical and electrical boundary conditions is shown in Figure 9(a).
It is discretized with 3600 finite elements and 3721 nodes. The value of the �1 coefficient (see
Equation (15)) is equal to 1.0.

First, the results considering homogeneous piezoceramics are presented for comparison purposes.
They are obtained by keeping the piezoceramic domain full of piezoelectric material and out of
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Figure 9. Initial design domains. The piezoceramic design domains are indicated by regions: (a) single
piezoactuator; (b) XY piezoelectric nanopositioner; and (c) piezoelectric gripper.
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(a)

(b) (c)

Figure 10. Optimal topology results considering homogeneous piezoceramics: (a) �3e =0.0 and �1=0.0
(or 0.00001); (b) �3e =1.0 and �1=0.0; and (c) �3e =1.0 and �1=0.00001.

the optimization domain. The values of �3e are kept fixed and equal to either 0.0 or 1.0. Thus, the
corresponding piezoactuator designs obtained considering �1 coefficients equal to 0.0 or 0.00001
are shown in Figure 10. The result for �3e equal to 0.0 and �1 equal to 0.00001 is quite similar
to the result shown in Figure 10(a); thus, it is not explicitly shown. In this case, the magnitude of
the coupling ratio �1 is quite low. The corresponding deformed configuration obtained by using
FE of post-processed results are shown in Figure 11.

Table II describes X and Y displacements at point A (ux and uy) (see Figure 9(a)) and coupling
factors (Ryx =ux/uy) for previous piezoactuator designs considering 400V/mm electric field
applied to the piezoceramic. The largest displacement is obtained for �3e equal to 0.0. This
performance is probably due to bending deformation of the piezoceramic as shown in Figure 11(a).
Such bending deformation is not relevant for the other configurations, as shown in Figures 11(b)
and (c). The coupling constraint function reduces the coupling ratio (Ryx ) as expected, by slightly
changing the topologies (see Figures 10(b) and (c)). This tendency will be observed in most of
the reported results.

Now the results considering material gradation and change of polarization sign (design variable
�3e) are presented. In the first results, the material in the piezoceramic domain is allowed to
change from piezoelectric to Aluminum. The piezoactuator is designed by specifying a volume
constraint of the piezoceramic material �2S equal to 50 or 100%. In the latter situation, we allow
the optimization method to fill the entire domain with piezoelectric material if necessary.

Initially, the results are obtained by keeping fixed the value of design variable �3e in the
optimization problem, that is, the polarization sign is not changed. The topology optimization
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(a)

(b) (c)

Figure 11. Deformed configurations of post-processed results considering homogeneous piezoceramics:
(a) Figure 10(a), �3e =0.0 and �1=0.0 or (0.00001); (b) Figure 10(b), �3e =1.0 and �1=0.0; and

(c) Figure 10(c), �3e =1.0 and �1=0.00001.

results obtained by specifying values of �2S equal to 50%, �3e equal to 0.0 (negative electric
field) or 1.0 (positive electric field), and non-zero �1 coefficients are shown in Figures 12. The
corresponding deformed configuration obtained by using FE of post-processed results are shown
in Figures 13(a) and (b), respectively. Figures 14(a) and (b), respectively, describe values of �2
along the layer numbers. In all results, �2S is active at the end of the optimization. The results
obtained specifying �2S equal to 100% are not presented because they are quite similar to the
homogeneous piezoceramic results of Figure 10. Table II describes generated displacements at
point A (ux and uy) (see Figure 9(a)) and coupling factors (Ryx ). For these results (see Figure 12),
the largest displacement is also obtained for �3e equal to 0.0, even though the bending deformation
is also observed in the topology obtained for �3e equal to 1.0.

The piezoceramic domain in the design from Figure 12(a) seems to have a natural tendency to
bend, as shown in the results of Figure 11(a) considering a homogeneous piezoceramic. However,
for Figure 12(b) the bending deformation occurs due to material gradation in the piezoceramic
domain. Note that bending deformation was not observed in Figures 11(b) and (c) (homogeneous
piezoceramic results). We conclude that an applied electric field corresponding to �3e equal to 0.0
gives topology designs with best performance for this example. In addition, from the data presented
on Table II, the results for �3e equal to 0.0 with material gradation have larger displacements
(uy) and lower coupling ratios than the corresponding homogeneous piezoceramic results (see
first line of the table either for ‘Topology optimization results’ or for ‘Post-processed results’)
however, using only 50% of piezoelectric material. Thus, we conclude that the material gradation
can contribute to improve the piezoactuator performance.
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Table II. Displacements at point A (E=400V/mm) and coupling factor (Ryx =ux/uy) for single
piezoactuator designs (ux : undesired displacement).

Actuators ux (nm) uy (nm) |Ryx (%)| �2S (%) �3e �1

Topology Figure 10(a) 6.61 455.44 1.45 — 0.0 0.0
optimization results Figure 10(b) −83.72 414.11 20.22 — 1.0 0.0

Figure 10(c) −1.06 381.72 0.28 — 1.0 10−5

Figure 12(a) 2.46 554.68 0.44 50 0.0 10−4

Figure 12(b) −0.90 321.74 0.28 50 1.0 10−5

Figure 18(a) 2.17 607.84 0.36 50 0.0 10−5

Post-processed Figure 11(a) 10.28 442.26 2.32 — 0.0 0.0
Figure 11(b) −79.13 406.92 19.45 — 1.0 0.0
Figure 11(c) −2.56 372.34 0.69 — 1.0 10−5

Figure 13(a) 2.54 594.44 0.43 50 0.0 10−4

Figure 13(b) −7.82 276.40 2.83 50 1.0 10−5

Figure 18(b) −1.64 466.98 0.35 50 1.0 10−5

(a) (b)

Figure 12. Optimal topology considering distribution of piezoelectric (red) and Aluminum (blue) materials
in the piezoceramic domain (�2S =50%): (a) �3e =0.0 and �1=0.0001 and (b) �3e =1.0 and �1=0.00001.

(a) (b)

Figure 13. Corresponding FE-deformed configurations of post-processed results: (a) Figure 12(a),
�2S =50%, �3e =0.0, and �1=0.0001 and (b) Figure 12(b), �2S =50%, �3e =1.0, and �1=0.00001.
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Figure 14. (a) Design variable �2 associated to Figures 12(a) and 13(a) and (b)
design variable �2 associated to Figures 12(b) and 13(b).

For the next results the change of the polarization sign is considered in the optimization problem
by allowing the value of design variable �3e to change. The initial values of design variable �3e
(�3e0) are set equal to 0.1 or 0.9, which implies that the polarization sign starts with a negative
or positive value, respectively, in relation to the applied electric field. The topology optimization
results obtained by specifying the initial values of �3e (�3e0) equal to 0.1 or 0.9, �2S equal to 50%
or 100%, and �1 coefficient equal to 0.0001 are shown in Figure 15. The corresponding deformed
configuration obtained by using FE of post-processed results is shown in Figure 16. Figure 17
describes values of �2 and �3 along the layer numbers.

The coupling structural topologies of results shown in Figures 15(a) and (b) are quite similar, and
so are Figures 15(c) and (d). The main difference between both designs is the material gradation
in the piezoceramic design domain (see Figures 17(a)–(d)). In all results, �2S is active at the
end of the optimization. Thus, the results shown in Figures 15(b) and (d) have a homogeneous
piezoelectric material in the piezoceramic design domain; however, the polarization sign changes
for Figure 15(b). Moreover, Figure 15(d) is quite similar to the homogeneous piezoceramic result
(Figure 10(c)).

Table III describes X and Y displacements at point A (ux and uy) (see Figure 9(a)) and coupling
factors (Ryx =ux/uy) for the piezoactuator designs considering 400V/mm electric field applied
to the piezoceramic.

From Table III, the largest displacements (uy) are obtained for �3e0 equal to 0.1 (Figures 15(a)
and (b)). This better performance seems to be related to bending deformation caused by a change
of the polarization sign (cf. Figures 17(a) and (b)) and material gradation (see, for example,
Figure 17(a)), as seen in Figures 16(a) and (b). The displacement values are usually larger than
those for the corresponding homogeneous piezoceramic design (see Figure 10(a)), which shows
that the change of polarization sign and material gradation contribute to improve performance in
piezoactuator design. The deactivation of the coupling constraint function (�1 coefficient equal to
0.0) does not cause significant changes in the material gradation. This tendency was observed for
most results in this paper. The result from Figure 15(b) displays the largest displacement. It does not
have material gradation (homogeneous piezoceramic), only change of polarization sign (cf. Figures
17(a) and (b)), which shows that the change of polarization sign seems to be more significant
to increase displacement (uy) than material gradation in this particular example. Thus, for this
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(a) (b)

(c) (d)

Figure 15. Optimal topology considering distribution of piezoelectric (red) and Aluminum (blue) materials
in the piezoceramic domain (�1=0.0001): (a) �3e0=0.1 and �2S =50%; (b) �3e0=0.1 and �2S =100%;

(c) �3e0=0.9 and �2S =50%; and (d) �3e0=0.9 and �2S =100%.

actuator configuration, the FGM piezoceramic design (with a reduced amount of piezoceramic)
together with change of polarization sign (Figure 15(a)) generates larger output displacement than
the homogeneous piezoceramic design of Figure 10. The change of polarization sign seems to play
a more important role to increase the performance (in terms of displacement) of this design than
material gradation (cf. either 2nd and 3rd lines of results of Table III or Figures 17(b) with 17(c)).

The bending of the piezoceramic material may generate concern regarding stress levels. However,
the present stress levels are relatively low compared with the material strength. The tensile strength
of the piezoceramic is about 50MPa [44]. In general, the highest stress occurs in the Aluminum
frame. Another alternative to control the bending stresses consists of pre-stressing the piezoceramic
to limit the tensile stresses.

Figures 18 and 19 show results corresponding to those from Figures 12(b) and 15(a), which are
obtained without gradation control. The corresponding output displacements are shown in Tables III
and II, respectively. We note in these results that the displacement value of post-processed topology
ranges from 23.2 to 49.4% of the displacement value of the original topology, respectively. This
difference decreases to less than 7% when the material gradation control is applied, which is the
case for results from Figures 12(b) and 15(a). This happens probably due to the sharp gradients of
material gradation obtained in the piezoceramic domain when a gradation control is not applied.
This effect is less pronounced for �3e (or �3e0) equal to 0.9. Thus, we conclude that the gradation
control contributes to reduce the sensitivity of the results to post-processing.

Now, for �3e0 equal to 0.9 (Figures 15(c) and (d)) the obtained results have smaller output
displacements (see Table III) than results obtained for �3e0 equal to 0.1. Besides, the result from
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(a) (b)

(c) (d)

Figure 16. Corresponding FE deformed configurations of post-processed results with �1=0.0001: (a)
Figure 15(a), �3e0=0.1 and �2S =50%; (b) Figure 15(b), �3e0=0.1 and �2S =100%; (c) Figure 15(c),

�3e0=0.9 and �2S =50%; and (d) Figure 15(d), �3e0=0.9 and �2S =100%.

Figure 15(d) is quite similar to the homogeneous piezoceramic result shown in Figure 10(b). For
this result, there is no significant bending deformation in the piezoceramic domain, as seen in
Figure 16(d). Essentially, an elongation of the piezoelectric domain combined with the presence
of the coupling structure generates an amplified output displacement at point A. The result from
Figure 15(c) has a worse performance in terms of output displacement than the homogeneous
piezoceramic result (Figure 10(b) or (c)). The coupling structure topology of this result and of
homogeneous piezoceramic result (see Figure 10(b) or (c)) is quite similar. The main difference
among these designs is the material gradation in the piezoceramic design domain (see Figure 17(c)).

Thus, we conclude that in this design the polarization sign corresponding to �3e0 equal to 0.9
guides the optimization to a local minimum, which cannot take the advantage of the polarization
sign change and material gradation, while the polarization sign corresponding to �3e0 equal to
0.1 guides the optimization to other local minimum that takes advantage of the polarization sign
change and material gradation generating the largest output displacements. Thus, we have shown
that in this actuator design the polarization sign must be included as a design variable in the
optimization problem to allow the optimization method to explore the advantages of the material
gradation in the piezoceramic domain.

In the next result, the material in the piezoceramic domain is allowed to change from piezoelectric
material type 1 to piezoelectric material type 2. The property values of piezoelectric material 1
and 2 are given by [24]

C1=4.375∗CTab1, e1=2.5∗eTab1, C2=0.1∗CTab1, e2=0.6∗eTab1 (36)
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Figure 17. Design variables �2 and �3 values along layer numbers (�1=0.00001): (a) Figure 15(a), �3e0=
0.1 and �2S =50%; (b) Figure 15(b), �3e0=0.1 and �2S =100%; (c) Figure 15(c), �3e0=0.9 and �2S =

50%; and (d) Figure 15(d), �3e0=0.9 and �2S =100%.

Table III. Displacements at point A (E=400V/mm) and coupling factor (Ryx =ux/uy)
for single piezoactuator designs (ux : undesired displacement).

Actuators ux (nm) uy (nm) |Ryx (%)| �2S (%) �3e0 �1

Figure 15(a) 3.94 676.28 0.58 50 0.1 10−4

Figure 15(b) −8.71 1048.23 0.83 100 0.1 10−4

Figure 15(c) −1.27 321.25 0.40 50 0.9 10−5

Figure 15(d) −0.30 419.83 0.07 100 0.9 10−5

Figure 19(a) −8.53 655.40 1.30 50 0.1 10−5

Figure 16(a) 4.14 695.93 0.59 50 0.1 10−4

Figure 16(b) −17.37 947.80 1.83 100 0.1 10−4

Figure 16(c) −5.97 275.51 2.17 50 0.9 10−5

Figure 16(d) −2.10 412.32 0.51 100 0.9 10−5

Figure 19(b) 9.64 331.49 2.91 50 0.1 10−5
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Figure 18. Topology optimization considering distribution of piezoelectric (red) and Aluminum (blue)
materials in the piezoceramic domain (�2S =50%; �3e =0.0; �1=0.0001). No gradation control is applied
to the piezoceramic domain: (a) optimal topology; (b) corresponding FE deformed configuration of

post-processed result; and (c) design variable �2 along layer numbers.

where CTab1 and eTab1 are elastic and piezoelectric tensors, respectively, whose property values
are described in Table I.

The topology optimization result obtained by specifying �1 coefficient equal to 10−5, �3e0 equal
to 0.1, and �2S equal to 50% is shown in Figure 20(a). The value of �3e0 equal to 0.1 is chosen
based on the conclusion of the previous example. The corresponding deformed configuration
obtained by using FE of post-processed results is shown in Figure 20(b). Figure 20(c) describes
corresponding values of �2 and �3 along layer numbers. Displacements ux and uy at point A
(Figure 9(a)) and coupling factors (Ryx =ux/uy) for the piezoactuator designs are described in
Table IV.

The piezoactuator shown in Figure 20(a) generates output displacements, which are, up to two
times, larger than equivalent homogeneous piezoceramic result (Figure 10(a) or (b)) and with
reasonable coupling ratios (see Table IV). This is possible due to a bending deformation of the
piezoceramic domain caused by a change of the polarization sign and material gradation (see
Figure 20(c)). Thus, we conclude that in this case the presence of the material gradation contributes
to improve the output displacement value and coupling ratio and that for this design the polarization
sign corresponding to �3e0 equal to 0.1 guides again the optimization to a local minimum that takes
advantage of the bending deformation either due to the polarization sign or material gradation,
generating large output displacements and low coupling ratios.
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Figure 19. Topology optimization considering distribution of piezoelectric (red) and Aluminum (blue)
materials in the piezoceramic domain (�2S =50%; �3e0=0.1; �1=0.00001). No gradation control is
applied to the piezoceramic domain: (a) optimal topology; (b) corresponding FE deformed configuration

of post-processed result; and (c) �2 and �3 values along layer numbers.

7.2. XY piezoelectric nanopositioner

The design of a planar piezoelectric nanopositioner is considered, and the influence of piezoceramic
property gradation and polarization sign variation is assessed. The design domain, together with the
mechanical and electrical boundary conditions, is shown in Figure 9(b). The problem is symmetric
and has two piezoceramic domains. The FE discretization of the domain consists of 6400 finite
elements and 6561 nodes. The values of the �1 and �2 coefficients (see Equation (15)) are equal to
0.5. Nanopositioner designs where the material in the piezoceramic domain is allowed to change
from piezoelectric to Aluminum are considered.

The XY nanopositioner is designed by specifying the volume constraint of piezoceramic material
�2S equal to 100%. The change of the polarization sign is considered in the optimization problem
by allowing the value of design variable �3e to change. Figures 21(a) and (b) show topology
optimization results obtained by specifying �3e0 equal to 0.9, and the volume constraint of the
piezoceramic material �2S equal to 50 or 100%, respectively. The corresponding deformed config-
uration obtained by means of FE analysis of post-processed results is shown in Figures 22(a) and
(b), respectively. Note that there is a slightly change between both topologies (cf. Figures 21(a)
and (b)). Figures 23(a) and (b) describe the design variables �2 and �3, respectively, along layer
numbers. Table V describes X and Y displacements at point A (ux and uy) (see Figure 9(b)) and
coupling factors (Ryx ) considering 400V/mm electric field applied to the piezoceramic.
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Figure 20. Topology optimization considering the distribution of two types of piezoelectric materials.
In the piezoceramic domain, the red and green regions indicate piezoceramic materials type 1 and 2,
respectively (�1=10−5, �2S =50%, and �3e0=0.1): (a) topology optimization result; (b) FE-deformed

configuration of post-processed results; and (c) design variables �2 and �3 along layer numbers.

Table IV. Displacements at point A (E=400V/mm) and coupling factor (Ryx =ux/uy) for single piezoac-
tuator designs (ux : undesired displacement) considering �1=10−5, �2S =50%, and �3e0=0.1.

Actuators ux (nm) uy (nm) |Ryx | (%)

Topology optimization results Figure 20(a) −3.70 833.85 0.44
Post-processed topologies Figure 20(b) −2.92 581.20 0.50

Note that in Figure 21(b) (�2S equal to 100%), the values of �2J and �3e are equal to 1 (see
Figures 22(b) and 23(b)), indicating similarity to a result considering homogeneous piezoceramics.
Thus, for comparison purposes, this result is considered as a homogeneous piezoceramic one.
Similarly to the previous single piezoactuator results, bending is the dominant deformation mode
for the piezoceramic domain; however, the optimization method does not change the polarization
sign to improve bending. Thus, for example, in Figure 21(b), where there is no polarization sign
change or material gradation, the bending is caused by the mechanical interaction between the
piezoceramic domain and the coupling structure. However, in Figures 21(a), it is clear that the
material gradation contributes to improve the coupling ratio values, although decreasing the output
displacement, as described in Table V. Note that in Figure 21(a), the polarization sign change
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(a) (b)

Figure 21. Optimal topology results of XY nanopositioners. In the piezoceramic domain, the blue and red
regions indicate Aluminum and piezoceramic materials, respectively (�i =0.0 (i=1,2)): (a) �3e0=0.9

and �2S =50% and (b) �3e0=0.9 and �2S =100%.

(a) (b)

Figure 22. Corresponding FE-deformed configurations of post-processed results: (a) Figure 21(a), �3e0=0.9
and �2S =50% and (b) Figure 21(b), �3e0=0.9 and �2S =100%.

occurs inside the Aluminum region (see Figure 23(a)); thus, it does not influence the actuator
behavior. A slightly smaller displacement and a better (smaller) coupling ratio are obtained when the
piezoceramic property gradation variation is considered, however, using only 50% of piezoelectric
material. We also note that the results have a small sensitivity to post-processing. The difference
between the output displacement of post-processed result and topology optimization result is at
most 4%.

The performance for results considering �3e0 equal to 0.1 is much worse than for results
considering �3e0 equal to 0.9, mainly in terms of coupling ratio. As in the previous example, the
reason is that �3e0 equals to 0.9 guides the optimization to a better local minimum than �3e0 equals
to 0.1, generating almost the same output displacements and much lower coupling ratios. Thus,
those results are not shown.
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Figure 23. Design variables �2 and �3 along layer numbers: (a) Figure 21(a), �3e0=0.9 and �2S =50%
and (b) Figure 21(b), �3e0=0.9 and �2S =100%.

Table V. Displacement at point A (E=400V/mm) and coupling factor (Ryx =ux/uy) for XY nanoposi-
tioner designs (ux : undesired displacement) considering �3e0=0.9 and �i =0.0 (i=1,2).

XY nanopositioner uy (nm) ux (nm) |Ryx | (%) �2S (%)

Topology optimization Figure 21(a) 17.21 356.01 4.83 50
results Figure 21(b) 71.88 477.21 15.06 100

Post-processed Figure 22(a) 24.64 372.86 6.61 50
topologies Figure 22(b) 77.44 480.18 16.13 100

7.3. Piezoelectric gripper

In the third example, the design of a piezoelectric gripper is considered to show the potential of
the method. The design domain for this problem has three piezoceramic domains; however, it is
symmetric, as shown in Figure 9(c). The upper and lower piezoceramic regions are responsible for
the close and open movements of the jaw. Thus, only the half part of the domain is considered in the
design optimization problem, and only two piezoceramic regions are considered. The mechanical
and electrical boundary conditions are shown in Figure 9(c). The values of �1 and �2 coefficient
(see Equation (15)) are equal to 0.5. The material in the piezoceramic domains is allowed to
change from piezoelectric to Aluminum. The domain is discretized into 3750 finite elements and
3876 nodes.

The gripper design is obtained by specifying the volume constraint of piezoceramic material �2S
equal to 100% and by changing the polarization sign (�3e) for piezoceramic regions 1 and 2 (see
Figure 9(c)). Values of �3e0 equal to 0.1 are specified for both regions. Figure 24(a) describes the
gripper design obtained considering �i (i=1,2) coefficients equal to 0.0, and Figures 24(b)–(e),
show corresponding deformed configurations of post-processed results, and graphics of �2 and �3
values along layers for each piezoceramic region, respectively.

Note that a material gradation was obtained for both piezoceramic regions, even though �2S is
equal to 100%. Among the four possible combinations of polarization signs, the method chose a
negative polarization sign for region 1 and a positive polarization sign for region 2 (see Figures 24(d)
and (e)). This occurs because the optimization method takes advantage of the bending deformation
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Figure 24. Optimal topology results of piezoelectric gripper considering �2S =100%, �i =0.0 (i=1,2),
�3e0=0.1 for piezoceramic regions 1 and 2 (see Figure 9(c)): (a) optimal topology; (b) and (c) corre-
sponding FE-deformed symmetric configurations of post-processed topology; (d) design variable �2 along

layers for regions 1 and 2; and (e) design variable �3 along layers for regions 1 and 2.

in both regions to maximize the performance, as described in Figure 24(c), which is achieved by
defining a material gradation. Table VI describes X and Y displacements at point A (ux and uy)
(see Figure 9(c)) and coupling factors (Ryx ) for obtained gripper design considering 400V/mm
electric field applied to the piezoceramic.

A design keeping the polarization sign fixed (design variable �3e) was tried; however, it had
worse performance than the result that considers material gradation and polarization sign change.
Thus, we conclude that in this specific design, material gradation and polarization sign change
play an important role to improve actuator performance leading to larger displacements and lower
coupling ratios with less amount of piezoelectric material.
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Table VI. Displacements at point A (E=400V/mm), shown in Figure 9(c), and coupling factor
(Ryx =ux/uy , Rxy =uy/ux ) for gripper design considering �i =0.0 and �2S =100%.

X movement Closing jaw movement

Grippers ux (nm) uy (nm) |Ryx | (%) ux (nm) uy (nm) |Rxy | (%)

Figure 24(a) 26.71 92.76 28.79 −17.34 104.86 16.54
Figure 24(b) 30.95 109.43 28.28 −5.49 73.13 7.51

8. CONCLUSIONS

The optimized design of FGM piezoactuators including piezoelectric micro-tools actuated by FGM
piezoceramics is achieved by means of topology optimization. The FGM piezoactuator perfor-
mance is obtained by simultaneously optimizing the coupling structural topology, the piezoceramic
property gradation, and polarization sign. In the piezoceramic domain, the optimization problem
allows the simultaneous distribution of either two piezoelectric materials or a non-piezoelectric
(such as Aluminum) and piezoelectric materials. In addition, the polarization sign is also included
as a design variable in the optimization problem. The adopted material model is based on the
density method. It interpolates fictitious densities at each finite element based on pseudo-densities
defined as design variables for each finite element node providing a continuous material distribution
in the domain.

The influence of material gradation and change of polarization sign in the actuator performance
was verified by means of design examples. We conclude that material gradation plays an important
role to improve actuator performance, which may lead to displacements and coupling ratios with
reduced amount of piezoelectric material. The change of polarization sign may also have a strong
influence in the performance, depending on the design.

The optimization method takes advantage of the bending deformation to improve piezoactuator
performance. The bending deformation is obtained either by changing the material gradation or
polarization sign or both of them. We note that there is a slight change in the coupling structure
topology when comparing the designs considering homogeneous piezoceramics (non-FGM) and
FGM piezoceramics.

Extension of this study includes consideration of other performance criteria and other FGM
piezoactuators, which can be optimized using the proposed approach. Potentially, this will broaden
the range of application of functionally graded piezoelectric actuators in the field of smart struc-
tures.

APPENDIX: NOMENCLATURE

List of symbols

(1,3) Cartesian coordinate system
A, B,C variables
Bu,B� functions of the derivative of shape functions
cE elastic tensor
CH elastic tensor for the mixture
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C0 elastic tensor of basic material
Ci elastic tensor for material type i
d electrical charge
D electrical displacement vector
e piezoelectric tensor
ei unit vector
eH piezoelectric tensor for the mixture
ei piezoelectric tensor for material type i

E j
i electrical field associated with load case i applied to piezoceramic j
f (.) projection function f
Fi
k nodal mechanical force for load case k considering piezoceramic i excited

F objective function
Kuu stiffness matrix
Ku� piezoelectric matrix
K�� dielectric matrix
[Ki

k] system matrix for load case k considering piezoceramic i excited
Li
2(u

i
1,�

i
1) mean transduction

L3(ui3,�
i
3) mean compliance

Li
4(u

i
1,�

i
1) coupling constraint function

n normal vector
NI (x) finite element shape function
Ne number of nodes in the non-piezoceramic design domain
Np number of nodes in the piezoceramic design domain
NEL total number of finite elements
n f number of elements connected to node I
NE number of elements in the piezoceramic design domain
NN number of elements in the non-piezoceramic design domain
nd number of nodes at each finite element
n number of desired output movements
p penalization factor
Qi

k nodal electrical charge for load case k considering piezoceramic i excited
{Qi

k} force and electrical charge vector for load case k considering
piezoceramic i excited

ri j distance between nodes i and j
rmin minimum length
S coupling structure design domain
SPZT piezoceramic design domain
Si set of nodes under the influence of node i
t traction
T stress tensor
u displacement field
ui and vi node i horizontal and vertical displacement, respectively
Ui
k nodal displacements for load case k considering piezoceramic i excited

{Ui
k} displacement and electrical degrees of freedom vector for load case k considering

piezoceramic i excited

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 77:301–336
DOI: 10.1002/nme



334 R. C. CARBONARI, E. C. N. SILVA AND G. H. PAULINO

v virtual displacement
V space
Va space for load case 1
Vb space for load case 2
Vc space for load case 3
x position coordinate vector
yn design variable associated with node n
W general weight coefficient
�i weight coefficient for mean compliance
�i weight coefficient for coupling constraint function
eS dielectric tensor
�l weight coefficient for mean transduction
ε(u) strain
� electric potential
� virtual electric potential

�i j j th potential at the i th node
�a,�b,�c,�d electrical degrees of freedom in the finite element
�0 applied electrical voltage
Ui

k nodal electric potential vector for load case k considering piezoceramic i
excited

�u surface of prescribed displacements
�� surface of prescribed electrical degrees of freedom
�i
t j surface of applied mechanical traction for load case j considering piezoceramic

i excited
�i
d j

surface of applied electrical voltage for load case j considering piezoceramic
i excited

{K}ik auxiliary vector for load case k considering piezoceramic i excited
�i volume of design domain i
�i S upper-bound volume constraint for design domain i
�1 design variable to describe the distribution of non-piezoelectric material at

each location
�2 design variable to describe the type of piezoelectric material
�3 design variable for the polarization (of the piezoelectric material)
�i I nodal design variable i related to material distribution
�3e element design variable related to polarization sign
�3e0 initial value of design variable �3e
�e element domain
� domain
∇� gradient of electrical potential
∇ gradient operator
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