
http://jim.sagepub.com

Structures 
Journal of Intelligent Material Systems and

DOI: 10.1177/1045389X09337085 
 2009; 20; 1725 originally published online Jul 31, 2009; Journal of Intelligent Material Systems and Structures

Wilfredo M. Rubio, Emilio C.N. Silva and Glaucio H. Paulino 
 Hybrid Material Systems

Toward Optimal Design of Piezoelectric Transducers Based on Multifunctional and Smoothly Graded

http://jim.sagepub.com/cgi/content/abstract/20/14/1725
 The online version of this article can be found at:

 Published by:

http://www.sagepublications.com

 can be found at:Journal of Intelligent Material Systems and Structures Additional services and information for 

 http://jim.sagepub.com/cgi/alerts Email Alerts:

 http://jim.sagepub.com/subscriptions Subscriptions:

 http://www.sagepub.com/journalsReprints.navReprints: 

 http://www.sagepub.co.uk/journalsPermissions.navPermissions: 

 http://jim.sagepub.com/cgi/content/refs/20/14/1725 Citations

 at UNIV OF ILLINOIS URBANA on October 25, 2009 http://jim.sagepub.comDownloaded from 

http://jim.sagepub.com/cgi/alerts
http://jim.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://jim.sagepub.com/cgi/content/refs/20/14/1725
http://jim.sagepub.com


Toward Optimal Design of Piezoelectric Transducers
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ABSTRACT: This work explores the design of piezoelectric transducers based on functional
material gradation, here named functionally graded piezoelectric transducer (FGPT).
Depending on the applications, FGPTs must achieve several goals, which are essentially
related to the transducer resonance frequency, vibration modes, and excitation strength at
specific resonance frequencies. Several approaches can be used to achieve these goals; how-
ever, this work focuses on finding the optimal material gradation of FGPTs by means of
topology optimization. Three objective functions are proposed: (i) to obtain the FGPT opti-
mal material gradation for maximizing specified resonance frequencies; (ii) to design piezo-
electric resonators, thus, the optimal material gradation is found for achieving desirable
eigenvalues and eigenmodes; and (iii) to find the optimal material distribution of FGPTs,
which maximizes specified excitation strength. To track the desirable vibration mode, a
mode-tracking method utilizing the ‘modal assurance criterion’ is applied. The continuous
change of piezoelectric, dielectric, and elastic properties is achieved by using the graded finite
element concept. The optimization algorithm is constructed based on sequential linear pro-
gramming, and the concept of continuum approximation of material distribution. To illustrate
the method, 2D FGPTs are designed for each objective function. In addition, the FGPT
performance is compared with the non-FGPT one.

Key Words: piezoelectric transducers, hybrid materials, functionally graded materials

(FGMs), topology optimization, mode-tracking, continuum material distribution, mode
assurance criterion (MAC), piezoelectric modal constant (PMC).

INTRODUCTION

P
IEZOELECTRIC materials are multifunctional
materials; they convert electrical energy (electric

field and electric potential) into mechanical energy
(stress and strain) and vice versa. Depending on the
applications, there are different goals for designing
piezoelectric transducers (Silva and Kikuchi, 1999),
which are essentially related to the transducer reso-
nance frequency, vibration modes, and excitation
strength. In general, piezoelectric transducers with
high excitation strength, at user-defined modes, are
desired. Also, piezoelectric transducers oscillated at
user-defined resonance frequencies and user-defined
vibration mode shapes are desirable for resonator
applications.

In the present work, an alternative approach is con-
sidered to achieve the above goals: to design piezo-
electric transducers based on hybrid materials and
functionally graded material (FGM) concepts. This
class of materials includes those possessing continuously
graded properties with gradual change in microstructure
(Miyamoto et al., 1999). These materials are made to
take advantage of desirable features of their constituent
phases. For instance, in a thermal protection system,
FGMs take advantage of heat and corrosion resistance,
typical of ceramics; and mechanical strength and tough-
ness, typical of metals. The piezoelectric transducer
design, based on the FGM concept, is named function-
ally graded piezoelectric transducer (FGPT). It can be
applied for improving transducer performance, such as
local reduction of stress concentration (Wang and
Noda, 2001) and stress redistribution, and increased
bonding strength (and fatigue life) of bilaminar piezo-
electric transducers (Qui et al., 2003). In addition, the
FGM concept allows designing piezoelectric transducers
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with smaller time waveform (large bandwidth) (Guo
et al., 2005; Rubio et al., 2009), which is desirable in
medical imaging and non-destructive testing (NDT)
applications. Essentially, either all FGPT properties
(dielectric, elastic, and piezoelectric) or some of them
vary along a specific direction, as shown in Figure 1.
Although, there exist literature concerning FGPT

manufacturing, research that focuses on the systematic
design and analysis of FGPT is rather scarce at present
(Birman and Byrd, 2007). Most of the research related
to modeling issues deals with applications of analytical
and numerical techniques which, usually, grade a single
material property of the FGPT; for instance, the elastic
property c11 of a cantilever functionally graded piezo-
electric beam subjected to normal load at the free end
(Kruusing, 2000); or the piezoelectric property d31
(Hauke et al., 2000). The analytical modeling of
graded piezoelectric actuators under bending, consider-
ing the simultaneous gradation along thickness of the
piezoelectric property d31 and dielectric property e33, is
discussed by Steinhausen et al. (2004). Other papers elu-
cidating FGPT analytical modeling in free and forced
vibrations include the ones by Yang and Xiang (2007),
and Zhong and Yu (2006), and the nonlinear character-
istics of functionally graded piezoelectric cantilever
transducers under electromechanical loading (Shindo
et al., 2009). On the other hand, for modeling 2D and
3D FGPTs or gradation of two or more properties using
numerical techniques, a multilayer strategy is usually
utilized, where at each lamina of the multilayer piezo-
ceramic, the material properties are uniform, and change
between layers. Almajid et al. (2001) and Taya et al.
(2003) used a modified classic lamination theory
(CLT) to evaluate the stress field and out-of-plane
displacement of laminated piezoelectric transducers.
They concluded that the gradation function changes

the FGPT performance, which suggests that optimiza-
tion of the material property gradation function may
lead to better transducer performance. Another multi-
layer approximation is the thin-layer method, which
combines finite element method (FEM) with the spectral
element method (Chakraborty et al., 2005), and the layer-
wise laminate theory, developed for thermopiezoelectric
beams, adapted to functionally graded piezoelectric
bimorph beam analysis (Lee, 2005). Nevertheless, the
accuracy of the multilayer approach is questionable for
calculating stresses and simulating dynamic behavior
because the stress concentration among layers is
increased, and the numerical result depends on the
number of layers utilized. In order to alleviate this pro-
blem, the material gradation is treated based on the
graded finite element (GFE) concept (Santare and
Lambros, 2000; Kim and Paulino, 2002). The GFE for-
mulation incorporates the material property gradient at
the size scale of the finite element, resulting in smooth
change of properties among finite elements. Following
that idea, Silva et al. (2007) extended the original struc-
tural GFE to quasi-static piezoelectric problems by using
isoparametric finite elements. Other works extend the
quasi-static GFE for structural dynamic modeling
(Banks-Sills et al., 2002) and wave propagation modeling
(Santare et al., 2003; Zhang and Paulino, 2007). In rela-
tion to optimized design of FGPTs, the work of
Carbonari et al. (2007) shows that functionally graded
bimorph-type piezoelectric quasi-static actuators based
on the topology optimization method (TOM) and the
GFE formulation can be achieved. In addition, the
work of Carbonari et al. (2009) applies the TOM for
finding the optimal gradation function of multi-actuated
and flextensional piezoelectric actuators, considering
quasi-static design. Nevertheless, the quasi-static design
does not involve several important problems that arise in
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Figure 1. Piezoelectric transducer design principle: (a) without the FGM concept; (b) with the FGM concept, in conjunction with the topology
optimization method, leading to a FGPT.
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dynamic operations; such as non-smooth objective func-
tions, eigenmode order switching in the optimization pro-
cess, and discontinuous sensitivity of the objective function.
As mentioned above, several papers have shown that

the gradation function can influence the performance of
piezoelectric transducers (e.g., Almajid et al., 2001; Taya
et al., 2003; Rubio et al., 2009); however, what is the best
property gradation function for a specific dynamic
application has not been demonstrated. Thus, in this
work, TOM is applied to address this question. The
TOM usually combines finite elements and optimization
algorithms to maximize a design requirement. It has
been applied to optimize a number of different mechan-
ical and multiphysical systems (Bendsøe and Sigmund,
2003). In dynamic problems, a formulation using homo-
genization has been applied by Diaz and Kikuchi (1992)
for eigenvalue optimization. Soto and Diaz (1993) con-
sidered optimal design of plate structures. They maxi-
mize higher order eigenvalues and also two eigenvalues
simultaneously. Ma et al. (1995) used the same formu-
lation to maximize the sum of a number of the lowest
eigenvalues, aiming to reduce eigenmode order switch-
ing during the iterative optimization process. For piezo-
electricity, TOM has been applied for designing
piezocomposite materials (Silva et al., 1999; Sigmund
and Torquato, 1999), piezoelectric actuators (Kögl and
Silva, 2005) and microgrippers (Carbonari et al., 2005);
piezoelectric resonators (Silva and Kikuchi, 1999; Ha
and Cho, 2006), and graded piezoelectric actuators con-
sidering static analysis (Carbonari et al., 2007).
Usually, the topology optimized design of a structure

consists of determining which points of space should be
solid and which points should be void (i.e., no material);
hence, a main question in topology optimization is how
to change the material from zero (void) to one (mate-
rial). A discrete material distribution function (0�1)
would be very discontinuous resulting into difficulties
in the numerical treatment of the problem due to mul-
tiple local minimum. Therefore, the problem must be
relaxed by allowing the material to assume intermediate
property values and, consequently, the geometric repre-
sentation of the structure becomes similar to black-
white (0�1) images together with some intermediate
material regions or gray scale regions (Bendsøe and
Sigmund, 2003). Generally, the intermediate material
regions are removed in a post-processing state, which
can produce, especially in dynamic design, dramatic
reduction of optimal performance initially obtained by
using the TOM. In this sense, a graded design, asso-
ciated to gray scale (or intermediate material) of the
topology optimization, arise as a more robust approach
to design piezoelectric structures in dynamical analysis,
and it may offer a better connection with manufacturing
techniques (Carrillo-Heian et al., 2001).
In view of the above ideas, this research contributes:

(i) to explore the TOM for designing FGPTs;

specifically, TOM is carried out in this investigation to
modify, systematically, the dynamic characteristics of
transducers; (ii) to extend the quasi-static piezoelectric
GFE to piezoelectric eigenproblems; (iii) to develop a
generic topology optimization formulation to find the
optimum material gradation (Figure 1) in FGPTs in
order to achieve specific goals: maximizing eigenvalues
of user-defined vibration mode shapes, maximizing exci-
tation strength of selective vibration mode shapes, and
designing FGPTs with specified resonance frequencies
and desired eigenmode shapes. Particularly, the
FGPTs are required to oscillate in the piston-like
mode, aiming at acoustic wave generation applications.
To achieve these goals, a mode-tracking method is
implemented to obtain the target eigenmode; specifi-
cally, the modal assurance criterion (MAC) is applied
(Kim and Kim, 2000). To incorporate material grada-
tion, the GFE formulation is implemented. The optimi-
zation algorithm is constructed based on sequential
linear programming (SLP), and the concept of contin-
uum approximation of material distribution (CAMD)
(Matsui and Terada, 2004) for modeling a continuous
distribution of material along the design domain. In
addition, design variable projection (Guest et al., 2004;
Almeida et al., 2008) is used to achieve an explicit mate-
rial gradient control.

This article is organized as follows. In ‘Functionally
Graded Piezoelectric Transducer Modeling’ section, the
piezoelectric equilibrium and constitutive equations are
shown. In ‘Tailored Topology Optimization Formula-
tion’ section, the TOM is described, together with the
three objective functions adopted. In ‘Numerical Imple-
mentation’ section, the numerical implementation and
the sensitivity analysis are discussed. In ‘Results and Dis-
cussion’ section, 2D FGPTs are designed based on the
objective functions defined in ‘Numerical Implementa-
tion’ section. To illustrate the features of the FGPT
design, the performance of the designed FGPT is com-
pared with the non-FGPT one. Finally, in ‘Summary and
conclusions’ section, some conclusions are inferred.

FUNCTIONALLY GRADED PIEZOELECTRIC

TRANSDUCER MODELING

Assuming the second-order strain tensor S, and elec-
trical field, E, are independent variables, the constitutive
piezoelectric equations are written (using Einstein’s con-
vention) (Naillon et al., 1983):

Tij ¼ CE
ijkl x, yð ÞSkl � ekij x, yð ÞEk

Di ¼ eikl x, yð ÞSkl þ "
S
ik x, yð ÞEk for i, j, k, l ¼ 1, 2, 3

ð1Þ

where T and D are the second-order stress tensor and the
electric displacement, respectively. The elasticity tensor,
CE (elastic stiffness at constant electric field), the
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piezoelectric coefficient tensor, e, and the dielectric con-
stant tensor, eS (dielectric susceptibility at constant
strain), are assumed to vary along the Cartesian coordi-
nates x and y (for a bi-dimensional model). To complete
the piezoelectric model, the mechanical and electrical
equilibrium equations are applied. The mechanical bal-
ance corresponds to the calculation of the forces
expressed by the Newton’s equation and the electrical
balance is expressed by Gauss’ theorem (Naillon et al.,
1983). After mathematical manipulation, the equilibrium
balance equations for a piezoelectric medium are
obtained as follows:

� � x, yð Þ!2ui ¼
@

@rj
CE

ijklðx, yÞSkl � ekij x, yð ÞEk

� �
@

@rj
eikl x, yð ÞSkl þ "

S
ik x, yð ÞEk

� �
¼ 0

ð2Þ

where � is the density of the material, which varies along
the Cartesian coordinates x and y; the term r is a unit
vector in the Cartesian coordinate system; the term u is
the displacement tensor; and ! is the circular frequency.

Finite Element Modeling

The matrix formulation of the equilibrium equations
for a piezoelectric medium is given, without structural
damping, as (Naillon et al., 1983; Lerch, 1990):

Muu x, yð Þ 0

0 0

� �
€U

€u

( )

þ
Kuu x, yð Þ Ku’ x, yð Þ

Ku’ x, yð Þ K’’ x, yð Þ

� �
U

u

� 	
¼

F

Q

� 	
ð3Þ

where U is the nodal displacement vector; the term u is
the nodal electric potential vector; and F and Q are the
nodal mechanical force and electric charge vectors,
respectively. The terms Muu, Kuu, Kuu, and Kuu are
respectively the mass, elastic, piezoelectric, and dielectric
matrices. However, when an FGPT is considered, the
properties change continuously inside the piezoelectric
domain, which means that the matrices of Equation
(3) must be described by some continuous function of
Cartesian position (x, y) into a bi-dimensional FGPT.
Hence, the matrices of Equation (3) are expressed as:

Muu x, yð Þ ¼

ZZ
NT

u � x, yð ÞNu dxdy ð4Þ

Kuu x, yð Þ ¼

ZZ
BT
uC

E x, yð ÞBu dxdy ð5Þ

Ku’ x, yð Þ ¼

ZZ
BT
u e

T x, yð ÞB’ dxdy ð6Þ

K’’ x, yð Þ ¼ �

ZZ
BT
’ e

S x, yð ÞB’ dxdy ð7Þ

where Nu are the shape functions for the displace-
ments; and Bu and Bu are the strain-displacement and
voltage-gradient matrices, respectively; and the terms
CE, e, and eS represent the elastic, piezoelectric, and
dielectric material properties, respectively. According
to the theory of conventional finite elements, the matri-
ces and vectors of piezoelectric constitutive equations
result from assembling the vectors and matrices of
single elements (Lerch, 1990).

In modal analysis, the eigenvalues and eigenmodes are
found by solving the second-order system:

� l
Muu x, yð Þ 0

0 0

� �
)u

)’

� 	

þ
Kuu x, yð Þ Ku’ x, yð Þ

KT
u’ x, yð Þ K’’ x, yð Þ

" #
)u

)’

� 	
¼

0

0

� 	

with l ¼ !2

ð8Þ

where l and ! are the eigenvalue and natural frequency,
respectively, and f)g ¼ )u,)’


 �T
represents the eigen-

mode vector.

Resonance and Antiresonance Frequencies

In piezoelectric structures, the electric impedance
curve presents two extremes. The extremes correspond
to resonance frequency (!r) or minimal electrical imped-
ance condition, and antiresonance frequency (!a) or
maximal electrical impedance condition (Naillon et al.,
1983). The resonance and antiresonance frequencies are
found by solving two problems with different boundary
conditions in Equation (8): the resonance frequencies are
found by exciting the FGPT with an electrical potential
or simulating a short-circuit transducer, and the antire-
sonance frequencies are found by exciting the FGPT
with electrical charges or simulating an open-circuit
FGPT (Naillon et al., 1983).

Piezoelectric Modal Constant

The piezoelectric modal constant (PMC) determines,
for a specific vibrating mode, how strong the coupling is
between the mode and the excitation; in other words, the
PMC determines the relative importance of a specific
vibration mode. Accordingly, to increase the contribu-
tion of a specific mode, its PMC must be increased. The
advantage of the PMC approach, in relation to the so
called electromechanical coupling coefficient (widely
used by calculating the excitation strength of a specific
mode (Naillon et al., 1983; Lerch, 1990)), is that the
PMC only requires knowledge of the resonance frequen-
cies and, numerically, it can be easily evaluated, contrary
to electromechanical coupling coefficient calculation,
where several difficulties often arise to clearly identify
both the resonance and antiresonace frequencies of a
mode (Guo and Cawley, 1992).
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The PMC (Ark) depends on the eigenmode )rkof the
resonance mode k, and it is formulated as (Guo and
Cawley, 1992):

Ark ¼W2
rk

ð9Þ

with:

Wrk ¼ )rk


 �T
WFf g ð10Þ

where WF is the equivalent nodal force vector that con-
verts the applied voltage on electrodes to a mechanical
force at each finite element node. The equivalent nodal
vector is given by (Guo and Cawley, 1992):

WFf g ¼
Ku’p

K’o’p

� �
Ip

 �

ð11Þ

where Ip is a vector with length equal to the number of
nodes on the electrode with varying potential (ungrou-
nded electrode), and where the matrix ½Ku’p K’o’p �

T

results from transforming Equation (8) into a finite ele-
ment equationwhere the nodes are grouped into electrode
and non-electrode nodes (Naillon et al., 1983). Thus, for
an FGPT excited by a voltage applied between a grounded
electrode on its bottom surface and an ungrounded elec-
trode on its top surface, Equation (8) becomes:

�l

Muu 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
66664

3
77775

)u

)’g

)’o

)’p

8>>>><
>>>>:

9>>>>=
>>>>;

þ

Kuu Ku’g Ku’o Ku’p

KT
u’g

K’g’g K’g’o K’g’p

KT
u’o

K’o’g K’o’o K’o’p

KT
u’p

K’p’g K’p’o K’p’p

2
666664

3
777775

)u

)’g

)’o

)’p

8>>>><
>>>>:

9>>>>=
>>>>;
¼

0

0

0

0

8>>>><
>>>>:

9>>>>=
>>>>;

ð12Þ

where the subscripts o, p, and g denote the electrical
potential degree of freedom of the non-electrode
nodes, ungrounded electrode nodes, and grounded elec-
trode nodes, respectively. The sub-matrices K’p’p , K’g’g
and K’o’o represent the dielectric stiffness matrices cor-
responding to nodes on the ungrounded electrode, nodes
on the grounded electrode, and nodes which are not on
one of the electrodes, respectively. The terms Ku’p , Ku’g ,
Ku’o , K’o’p , K’o’g and K’g’p are corresponding coupling
‘stiffness’ matrices.

TAILORED TOPOLOGY OPTIMIZATION

FORMULATION

This section addresses design requirements for piezo-
electric transducers. Three objective functions are

implemented to demonstrate the validity and applicabil-
ity of the proposed formulation and numerical techni-
ques (FGM concept and TOM) for controlling and
modifying the dynamic behavior of piezoelectric trans-
ducers in several applications (e.g., wave generations
and resonators). Accordingly, these objective functions
are essentially related to typical dynamic characteristics
of piezoelectric transducers, such as the transducer res-
onance frequency, vibration modes, and the electrome-
chanical coupling. The transducer design goals are
given as:

(i) to maximize the eigenvalue of specified vibration
mode shapes;

(ii) to target specified resonance frequencies (or eigen-
values) and specified mode shapes; and

(iii) to maximize the excitation strength of specified
eigenmodes.

These goals are addressed below.

Frequency Maximization

The present problem consists of finding the optimal
material distribution of an FGPT, which maximizes the
resonance frequency (or resonance eigenvalue) of a
user-defined eigenmode. This problem is interesting
because it is possible to emulate the operation of a
piezoelectric transducer with reduced thickness. This
fact makes FGPT manufacturing easier, especially,
when an FGPT vibrates at a high fundamental
frequency. The proposed multi-objective function is
(Ma et al., 1995):

F1 ¼
1

�

Xm

k¼1
wkl

�1
rk

� �1
with

� ¼
Xm

k¼1
wk; lrk ¼ !

2
rk

ð13Þ

where wk are weight coefficients for mode k (k=1,
2, . . . , m), the term m is the number of modes considered
in the multi-objective function, and the parameters lrk
and !rk are the resonance eigenvalue and resonance
frequency for the mode k, respectively.

Transducer with Specified Resonance Frequencies

Here the goal is to design an FGPT that vibrates at
desirable and user-defined resonance frequencies (or res-
onance eigenvalues) and eigenvectors; thus, the follow-
ing requirements are necessary: (i) the specified
resonance frequency (or resonance eigenvalue) must be
achieved, and (ii) the FGPT is required to oscillate in a
user-defined mode shape; for instance, the piston-like
mode, aiming at acoustic wave generation applications.
Hence, the multi-objective function is related to
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target specified eigenvalues of user-defined eigenmodes
(Ma et al., 1995; Silva and Kikuchi, 1999):

F2 ¼ �
1

�

Xm

k¼1

1

l20k
l2rk � l20k

� �" #1=n

with

� ¼
Xm

k¼1

1

l20k
; lrk ¼ !

2
rk

;

n ¼ �2, �4, �6, �8, . . .

ð14Þ

where lrk and l0k are the current resonance eigenvalue
and user-specified eigenvalue for mode k (k=1, 2, . . .,
m), the term m is the number of modes considered in the
multi-objective function, the constant n is a given power,
and !rk is the corresponding resonance frequency for
mode k (k=1, 2, . . . , m). The objective function of
Equation (14) allows piezoelectric resonator design
with absence of spurious resonance frequencies close
to the desirable one, or single-frequency FGPT.

PMC Maximization

The thirdmulti-objective function consists of maximiz-
ing the PMC (Ar) of a specified mode or set of modes. As
mentioned in ‘Piezoelectric Modal Constant’ section, the
PMC is important because it evaluates how strong the
excitation of a specific mode is in the transducer response.
The multi-objective function is given by:

F3 ¼
1

�

Xm

k¼1
wkA

n
rk

� �� �1=n
with

� ¼
Xm

k¼1
wk;

n ¼ �1, �3, �5, �7, . . .

ð15Þ

where Arkand wk are respectively the PMC and weight
coefficients for mode k (k=1, 2, . . . , m), the term m is
the number of modes considered, and n is a given power.
The constant Ark is defined in Equation (9).

Optimization Problem Formulation

This research explores the TOM for modifying the
dynamic characteristics of FGPT by finding the optimal
gradation function for that modification. Several goals
can be implemented. Specifically, in this work, three
objective functions are implemented Fj (j=1, 2, 3), as
mentioned in ‘Frequency Maximization’ ‘Transducer
with Specified Resonance Frequencies’ and ‘PMC
Maximization’. According to design requirements
(defined above), the optimization problem can be formu-
lated for finding the material gradation of an FGPT, in
order to maximize any of the three multi-objective func-
tions (F1, F2, or F3) subjected to a piezoelectric volume
constraint. That material constraint is implemented to
control the piezoelectric material amount into the

design domain, �. In addition, the optimization
method must target user-defined vibration mode
shapes. Hence, the optimization problem is given as:

maximize
�
TOM
ðx, yÞ

Fj; for j ¼ 1, 2, or 3

subjected to :
R

� �TOM
x, yð Þd���s � 0

0 � �
TOM

x, yð Þ � 1

Equilibrium and Constitutive

Equation, see Equation ð2Þ

ð16Þ

where r
TOM

(x, y) is the design variable (or
pseudo-density) at Cartesian coordinates x and y of a
bi-dimensional FGPT, which does not necessarily repre-
sent the amount of material. The term Xs describes
a constraint for �

TOM
related to material type 1, at

domain X; see Equation (17).
The adopted material model is based on a simple

extension of the traditional SIMP model (Bendsøe and
Sigmund, 2003; Carbonari et al., 2007):

EH x, yð Þ ¼ �
TOM

x, yð ÞE1 þ 1� �
TOM
ðx, yÞ

� �
E2 ð17Þ

where EH denotes the ‘mixed’, homogenized, material
properties. The term Ei is related to any elastic or
piezoelectric or dielectric property for material type
i (i=1, 2). The parameter r

TOM
=1.0 denotes mate-

rial properties type 1, and r
TOM

=0.0 denotes material
properties type 2, which are referred with respect to
Cartesian coordinates x and y of the bi-dimensional
design domain X. Material type 1 and material type 2
refer to the fundamental material properties to be
‘mixed’ for setting up the FGPT properties (Carbonari
et al., 2007).

Because FGPTs can be constructed by sintering a
layer-structured green ceramic without any adhesive
material, the optimization is arranged as a layer-like
optimization problem; in other words, the design vari-
ables are considered equal at each layer, see Figure 2.
This layer-like configuration makes the FGPT manufac-
turing possible. Although a layer-like optimization is
implemented, the topology optimization problem main-
tains its continuous nature, as the GFE formulation (see
‘Numerical Implementation’ section) allows interpolat-
ing the materials properties inside each finite element;
similarly, the design variables continuously change
among finite elements, because they are defined at
nodal level by using the CAMD formulation, see
‘Numerical Implementation’ section.

NUMERICAL IMPLEMENTATION

There are several relevant aspects in the numerical
implementation of this work. A continuous material dis-
tribution is necessary along the bi-dimensional design
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domain X; also, a continuous distribution of the design
variables is necessary; in addition, the gradation func-
tions found by using the TOM must be smooth; and
finally, tracking a user-defined mode shape during the
optimization process is required. To address these
topics, the proposed formulation is based on four
basic ideas: (i) the GFE formulation; (ii) the CAMD
formulation; (iii) a modal-tracking strategy based on
MAC; and (iv) a projection technique of the material
distribution. Each implementation is explained below.

Graded Finite Element Applied to FGPT Design

Usually, in numerical implementations for dynamic
applications, the FGPTs are simulated based on the tra-
ditional homogeneous finite element (HFE) or analytical
approaches. In HFE the material properties are defined
constants at the element level. The properties are eval-
uated at the centroid of each element. This approach is
used in multilayer approaches (Almajid et al., 2001),
which leads to undesirable discontinuities of the stress
and strain fields (Kim and Paulino, 2002), and discon-
tinuous material gradation. On the other hand, the ana-
lytical approaches are very constrained models; they are
limited to 1D or single-property gradation models
(Kruusing, 2000; Hauke et al., 2000). In this research,
the generalized isoparametric formulation (GIF) by Kim
and Paulino (2002) is extended to simulate FGPT in
eigenvalue and eigenmode analysis. The eigenproblem
for piezoelectricity (Equation (8)) is performed accord-
ing to the technique by Yong and Cho (1996).
Contrary to multilayer approach, the GIF leads to a

GFE where the material property gradient is continu-
ously interpolated inside each finite element based
on property values at each finite element node. The
same shape functionsN are used to interpolate unknowns
(displacements and electrical potentials) and to inter-
polate the properties inside each finite element.

Hence, the density, r, and the elastic, CE
ijkl, piezoelectric,

eikl, and dielectric, "
S
ik, material properties are respectively

given by:

� x, yð Þ ¼
Xnd

n¼1
Nn x, yð Þ�n,

CE
ijkl x, yð Þ ¼

Xnd

n¼1
Nn x, yð Þ CE

ijkl

� �
n
,

eikl x, yð Þ ¼
Xnd

n¼1
Nn x, yð Þ eiklð Þn,

"Sik x, yð Þ ¼
Xnd

n¼1
Nn x, yð Þ "Sik

� �
n

for

i, j, k, l ¼ 1, 2, 3

ð18Þ

where nd is the number of nodes per finite element.
When the GFE is implemented, the material properties
must remain inside the integrals in Equations (4)�(7),
and they must be properly integrated. On contrary, in
HFE these properties usually are constants.

Continuous Approximation of Material Distribution

In traditional topology optimization formulations, the
design variable is defined in a piecewise fashion in
the discretized domain, which means that continuity of
the material distribution is not realized between finite
elements. However, considering the results of the topol-
ogy optimization for an FGM-type material, a more
natural way of representing the material distribution
emerges by using the CAMD concept (Matsui and
Terada, 2004; Rahmatalla and Swan, 2004), which essen-
tially consists of finding a continuum optimum material
distribution in the design domain. The CAMD considers
that the design variables inside each finite element are
interpolated by using, for instance, the finite element
shape functions, N. Thus, the pseudo-density �e

TOM
at

each graded finite element e can be expressed as:

�e
TOM

x, yð Þ ¼
Xnd

i¼1
�n

TOMi

Ni x, yð Þ ð19Þ
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Figure 2. Layer-like design variables used in the optimization problem considering gradation along thickness direction.
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where �n
TOMi

and Ni are the nodal design variable and
shape function for node i (i=1, . . . , nd), respectively,
and nd is the number of nodes at each finite element.
This formulation allows a continuous distribution of
material along the design domain instead of the tradi-
tional piecewise material distribution applied by previ-
ous formulations of topology optimization (Bendsøe
and Sigmund, 2003).

Projection of Material Distribution

The CAMD formulation is a useful tool for achi-
eving continuous material distribution in the TOM;
nevertheless, the CAMD does not provide a general
control of the material distribution gradient. In this
work, a scheme is implemented to achieve explicitly
gradient control by introducing a layer of nodal
variables on top of the existing nodal variables
(Guest et al., 2004; Le, 2006; Almeida et al., 2008).
The variables in the new layer are used as design
variables, which are updated by the iterative optimiza-
tion process.
The projection technique employs a function to relate

the nodal design variable, �n
TOM

, to the nodal material
density (pseudo-density), �p

TOM
. The projection function

is defined as (Guest et al., 2004):

�p
TOMi
¼ f �n

TOMj

� �
¼

P
j2Si

�n
TOMj

W rij
� �

P
j2Si

W rij
� �

with rij ¼ xj � xi
�� �� ð20Þ

where �n
TOMj

is the design variable at node j; the term �p
TOMi

is the material pseudo-density at node i; and Si is the set
of nodes under influence of node i, see Figure 3. In other
words, the sub-domain Si corresponds to a circle with its
center located at the node i and user-defined radius
equal to rmin (Guest et al., 2004; Le, 2006) (Figure 3).
The vectors xi and xj represent the Cartesian coordinates
of node i and j, respectively. Moreover, the term W
represents an appropriate weight function, which is
given by:

WðrijÞ ¼

rmin � rij
rmin

if xj 2 Si

0 otherwise

8<
: ð21Þ

However, other types of weight functions (e.g., qua-
dratic or another non-linear function) can also be
used, as explained by Almeida et al. (2008).

Discrete Optimization Problem

Considering a discretized domain by using GFE for-
mulation, and the projection technique of the material

distribution, one obtains the implemented optimization
problem, which is given by:

maximize
�n
TOM

Fj for j ¼ 1, 2, or 3

subjected to :
XNtype1

i¼1
�n

TOMi
Vi � V� � 0

for i ¼ 1 . . .Ntype1

0 � �n
TOMi
� 1 for i ¼ 1 . . .Ndes

Equilibrium FE Equation,

see Equation ð3Þ

ð22Þ

where �n
TOMi

is the design variable of the node i
(i=1, 2, . . ., Ndes). The parameter Vi is the material
volume at node i (i=1, 2, . . ., Ntype1), and V* describes
a constraint for design variables �n

TOM
related to material

type 1. The terms Ndes and Ntype1 denote the number of
nodes of the discretized domain, and number of nodes
with material type 1, respectively.

Mode-tracking Strategy

An important goal in this work is to maximize the
objective functions of ‘Tailored Topology Optimization
Formulation’ section and to target user-defined mode
shapes. Thus, for example, in acoustic wave generations,
such as non-destructive ultrasonic tests or ultrasonic
medical image acquisitions, it is desirable that the piezo-
electric transducer vibrates in the fundamental thickness
extensional mode (also called the thickness dilatation
mode or piston mode) to increase the amplitude of the
emitted acoustic wave. In this work, the mode shape cor-
relation coefficient (MSCC) or the MAC is implemented
by tracking the desirable mode shape (Ewins, 1988).

The MAC has been widely used to compare experi-
mental modal analysis with computational one (Ewins,
1988). However, in topology optimization, it was ini-
tially implemented to maximize eigenvalues associated
with specified target modes of non-piezoelectric struc-
tures (Kim and Kim, 2000). Here, the MAC is utilized

i Si

j

rij

1

i j

rmin

rij

rmin

i Si

j
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1

i j

rmin

rij

W(rij)rmin

Node(a) (b)

i Si

j

rij

1

i j

rmin

rij

rmin

Figure 3. Projection technique: (a) definition of the length scale
rmin; (b) illustration of a linear projection function.
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to compare the user-defined or target mode shape, )ref,
with the current eigenmode shape, )c, obtained from
topology optimization process.
The MAC is defined as (Ewins, 1988):

MAC )ref,)cð Þ ¼
)T

ref)c

�� ��2
)T

ref)ref

� �
)T

c)c

� � ð23Þ

The value of the MAC is a scalar quantity that varies
between 0.0 and 1.0. When the MAC value is equal to
1.0, the vectors )ref and )c represent exactly the same
eigenmode shape. However, it is difficult to provide pre-
cise values which the MAC should take in order to guar-
antee good results. In this work, a MAC value in excess
of 0.9 represent highly correlated modes and a MAC
value of less than 0.05 represent uncorrelated modes
(Ewins, 1988).

Sensitivity Analysis

Usually, the sensitivities of objective functions (F1, F2,

and F3) and constraints with respect to design variables
are required for topology optimization. Thus, the sensi-
tivity calculation with respect to design variables �n

TOM
,

based on sensitivities with respect to nodal pseudo-den-
sities �p

TOM
, must be calculated.

Basically, any of the three objective functions, F, can
be considered as a function of nodal pseudo-densities
�p

TOM
, which are again a function of design variables

�n
TOM

; thus:

F � F �p
TOM

�n
TOM

� �� �
ð24Þ

where the variation (operator �) of the function F
is calculated as (considering the projection technique
of ‘Projection of Material Distribution’ section)
(Le, 2006):

�F �p
TOM

�n
TOMi

� �
, ��p

TOM
�n

TOMi
, ��n

TOMi

� �� �

¼
X

kn2�

@F

@�p
TOMkn

��p
TOMkn

¼
X

j2Si

@F

@�p
TOMj

 !
��n

TOMi
ð25Þ

As the variation of �n
TOMi

causes the variation of
a number of nodal pseudo-densities, which belong to
the influence set Si, see Figure 3, as follows:

��p
TOMj

�n
TOMi

, ��n
TOMi

� �
¼

��n
TOMi

for j 2 Si

0 otherwise

�
ð26Þ

where Si corresponds to the circle with its center located
at the node i and radius equal to rmin, according to
projection technique. Hence, the sensitivity of objective
function F, with respect to design variable �n

TOMi
of the

node i, is expressed as:

@F

@�n
TOMi

¼
X

j2Si

@F

@�p
TOMj

ð27Þ

To complete the sensitivity analysis, the sensitivity cal-
culation for each one of the objective functions, F equal
to F1, F2, or F3, in relation to �p

TOM
is necessary. Each

sensitivity is explained below (it is assumed that the
design domain has been discretized by finite elements).

SENSITIVITY OF THE OBJECTIVE FUNCTION F1

The sensitivity of the objective function F1 can be
obtained by deriving Equation (13) with relation to
nodal pseudo-density �p

TOMj
of the node j and substituting

this derivate at Equation (27). The gradient of F1 with
relation to �p

TOMj
is given as:

@F1

@�p
TOMj

¼
1

�

Xm

k¼1
wkl

�1
rk

� �2Xm

k¼1
wk

1

l�2rk

@lrk
@�p

TOMj

 !
ð28Þ

where @lrk=@�
p
TOMj

is the sensitivity of eigenvalue k with
relation to the pseudo-density �p

TOMj
. The sensitivity of

the resonance eigenvalue is calculated by deriving the
Equation (8) in relation to the pseudo-density �p

TOMj

following a procedure similar to that described by
Haftka et al. (1990), and Silva and Kikuchi (1999).
Hence, the following expression is obtained:

@lrk
@�p

TOMj

¼
)u

)’

� �T
k

@

@�p
TOMj

Kuu x, yð Þ Ku’ x, yð Þ

Ku’ x, yð Þ K’’ x, yð Þ

� �
)u

)’

� �
k

� lrk
)u

)’

� �T
k

@

@�p
TOMj

Muu x, yð Þ 0

0 0

� �
)u

)’

� �
k

ð29Þ

and through Equation (4)�(7), the gradient of the mass
and stiffness matrices is given as:

@

@�p
TOMj

Muu x, yð Þ ¼
XNel

e¼1

ZZ
NT

u

@� x, yð Þ

@�p
TOM

@�p
TOM

@�p
TOMj

Nu dxdy

¼
Xnf

e¼1

ZZ
NT

u

@� x, yð Þ

@�p
TOM

Nj x, yð ÞNu dxdy

ð30Þ

@

@�p
TOMj

Kuu x, yð Þ ¼
XNel

e¼1

ZZ
BT
u

@CE x, yð Þ

@�p
TOM

@�p
TOM

@�p
TOMj

Bu dxdy

¼
Xnf

e¼1

ZZ
BT
u

@CE x, yð Þ

@�p
TOM

Nj x, yð ÞBu dxdy

ð31Þ
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@

@�p
TOMj

Ku’ x, yð Þ ¼
Xnf

e¼1

ZZ
BT
u

@eT x, yð Þ

@�p
TOM

Nj x, yð ÞB’ dxdy

ð32Þ

@

@�p
TOMj

K’’ x,yð Þ ¼�
Xnf

e¼1

Z Z
BT
’

@eS x,yð Þ

@�p
TOM

Nj x,yð ÞB’dxdy

ð33Þ

where the parameter Nel is the total number of finite
elements, and nf is the number of elements connected
at node j; in other words, the summation of the gradient
of the mass and stiffness matrices (@Muu=@�

p
TOMj

,
@Kuu=@�

p

TOMj

, @Ku’=@�
p
TOMj

, and @K’’=@�
p
TOMj

) is performed
considering only those elements connected at node j.
The gradient of the material properties (elastic, piezo-
electric, and dielectric) and density are straightforward
and are obtained by differentiating Equation (18), and
by considering the material model of Equation (17).

SENSITIVITY OF THE OBJECTIVE FUNCTION F2

The sensitivity of objective function F2 can be
obtained by differentiating Equation (14); hence, that
gradient is given as:

@F2

@�p
TOMj

¼ �F
1�nð Þ

2

Xm

k¼1

1

l20k

1

lrk � l0k
� �1�n @lrk

@�p
TOMj

ð34Þ

where the term @lrk=@�
p
TOMj

is expressed in Equation (29).

To find the sensitivity of F2 with relation to design
variables �n

TOMi
, it is necessary to substitute Equation

(34) into Equation (27).

SENSITIVITY OF THE OBJECTIVE FUNCTION F3

The sensitivity of objective function F3 with relation
to pseudo-densities �p

TOMj
can be expressed as (dif-

ferentiating the Equation (15) with relation to �p
TOMj

):

@F3

@�p
TOMj

¼ �F3
1�nð Þ

Xm

k¼1
wk

1

A1�n
rk

@Ark

@�p
TOMj

ð35Þ

To complete the sensitivity of the objective function
F3, the gradient of PMC of the mode k (@Ark=@�

p
TOMj

),
with relation to pseudo-density �p

TOMj
of node j, is

required. This gradient is obtained by differentiating
Equation (9); thus:

@Ark

@�p
TOMj

¼ 2Wrk

 
@ )rk


 �T
@�p

TOMj

Ku’p

K’o’p

" #

þ )rk


 �T @

@�p
TOMj

Ku’p

K’o’p

" #!
Ip

 �

ð36Þ

The sensitivity of the k-th eigenmode )rk , in resonance,
with respect to the j-th pseudo-density �p

TOMj
, is calcu-

lated based on Wang’s approach (Sutter et al. 1988;
Wang, 1990). The basic idea includes using the modal
technique that represents the sensitivity of eigenmodes
as a linear combination of eigenmodes themselves. That
is, the eigenmode sensitivity is obtained as follows:

@ )rk


 �
@�p

TOMj

¼
XNmode

c¼1
aijk )rc


 �
ð37Þ

where:

aijk ¼

)rc


 �T @=@�p
TOMj

Kuu x, yð Þ Ku’ x, yð Þ

Ku’ x, yð Þ K’’ x, yð Þ

� �

�lrk @=@�
p
TOMj

� � Muu x, yð Þ 0

0 0

� �
0
BBB@

1
CCCA )rk


 �

lrk � lrc
for c 6¼ k

ð38Þ

and

aijk ¼ �
1

2
)rk


 �T @

@�p
TOMj

Muu x, yð Þ 0

0 0

� �
)rk


 �
for c ¼ k

ð39Þ

and Nmode is an appropriate number of the eigenmodes
associated with the lowest eigenvalues (Sutter et al.,
1988; Wang, 1990).

Optimization Procedure

Figure 4 shows a flow chart of the optimization algo-
rithm. Initially, the initial domain is discretized by
graded finite elements and the design variables are
defined at each node. The initial guess for design vari-
ables �n

TOM
is chosen to be the same as the initial guess for

material density at nodes, �p
TOM

.
The Q4/Q4 finite element is used (Rahmatalla and

Swan, 2004), see Figure 5, which represents a 2D four-
node quadrilateral FE, each node with three degrees
of freedom: two mechanics (horizontal and vertical dis-
placements), and one electric (electrical potential); in
addition, each node has a design variable. A fully iso-
parametric formulation is developed in the sense that the
same bilinear shape functions are applied to interpolate
the unknown displacements and electric potentials, the
geometry, and the material properties. In this work, the
SLP is applied to solve the non-linear optimization
problem of Equation (16) (Haftka et al., 1990). It con-
sists of the sequential solution of approximated linear
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sub-problems that can be defined by writing a Taylor
series expansion for the non-linear optimization pro-
blem, around the current design point �n

TOM
at each iter-

ation step. This linearization requires the sensitivities
(gradients) of the objective function and constraints in
relation to �n

TOM
and �p

TOM
. The sensitivity calculation is

given in ‘Sensitivity Analysis’ section.
By using the MAC values, the objective eigenvectors

are selected first, and then the sensitivity analysis is car-
ried on those selected eigenvectors. Accordingly, at each
iteration, the MAC values are calculated by comparing,
see Equation (23), the user-defined target or reference
mode shapes with those obtained by solving the eigen-
problem of Equation (8). Then, the eigenvectors having
the MAC value closest to 1 are selected as the objective
eigenmode shapes. When the current shapes substan-
tially change during the optimization process, the refer-
ence eigenmode shapes are updated.
In addition, at each iteration, moving limits are

defined for the design variables �n
TOM

. Typically, during
the iterative process, the design variables will be allowed
to change by 5�15% of the original values. After linear
optimization, a new set of design variables �n

TOM
and

material pseudo-density �p
TOM

are obtained and updated

in the design domain until convergence is achieved for
the objective function. The procedure converges when
the changes in design variables from iteration to itera-
tion are below 10�3. The final material distribution is
found by projecting the design variables onto material
pseudo-density layer. The finite element analysis used
to obtain the response fields (electrical potentials and
displacements) is based on this projected material
distribution.

RESULTS AND DISCUSSION

To illustrate the proposed method, 2D FGPTs
are designed considering plane strain assumption.

End

Calculate sensitivities w.r.t. 

Solve the linear optimization problem 

Update design variables 

Starting guess with homogeneous

Calculate           based on           (Equation (20))

Perform Finite Element Analysis 

(modal analysis, Equation (8)),

based on and GFE concept (Equation (18))

Calculate constraints and objective function 
(either F1,  F2, or F3), see Equations (13) to (15)

Converged?

Final material
distribution

Calculate desirable eigenvector 
based on MAC procedure (Equation (23)) 

n

TOM
r

n

TOM
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Figure 4. Flow chart of the optimization procedure.

Design variable

Displacement and 
electrical potential
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Figure 5. The Q4/Q4 finite element.
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The results are divided into three sets. The first set shows
the results when the resonance frequency of a user-
defined eigenmode is increased. The second set deals
with achieving specified eigenvalues and vibration
mode shapes. Finally, the third set consists of maximiz-
ing the PMC of a specified mode shape. The design
domain used is shown in Figure 6. It is specified as a
20mm by 5mm rectangle with two fixed support at the
ends (left-and right-hand side). The idea is to distribute
simultaneously two types of materials into the design
domain. In all cases, the material type 1 is PZT-5A
piezoelectric ceramic. As material type 2, piezoelectric
and non-piezoelectric materials can be used. Table 1
shows all material properties used. For all results, the
design domain contains initially PZT-5A material.

PZT-5A Dynamic Characterization

Before addressing FGPTs (using the FGM concept), a
brief description of dynamic behavior of PZT-5A cera-
mics (material type 1) is given. The design domain is
shown in Figure 6, and the PZT-5A properties are
given in Table 1. A finite element discretization of
50� 30 finite elements is used. The mesh was chosen
as a compromise between accuracy and efficiency.
Hence, an FE convergence analysis is performed for
finding the adequate mesh for simulations. Figure 7
shows the FE convergence curve. The design domain
of Figure 6 is discretized into 400 (20� 20), 900
(30� 30), 1200 (40� 30), 1500 (50� 30), 2400

(60� 40), 3500 (70� 50), and 5600 (80� 70) finite ele-
ments without considering gradation effects. The con-
vergence on frequency value of the piston-like mode is
reached using 1500 (50� 30) finite elements. Additional
increments in mesh size are accompanied by high
increases in computational time, and the improvements
in computational accuracy on frequency value are
deemed sufficiently small. For instance, if the mesh is
incremented to 5600 FE, the frequency accuracy of the
piston-like mode is only incremented by 0.1%.
Additionally, the mesh density is chosen so there are
enough finite element nodes per wavelength of the high-
est mode required. In this case, as the highest frequency
required is 1MHz, the PZT-5A wavelength is 4.39mm;
hence, with a 50� 30 mesh, there are always 11 and
27 nodes per wavelength on thickness (y direction in
Figure 6) and longitudinal (x direction in Figure 6)
directions, respectively. The simulations do not take
any PZT-5A material loss into account.

Figure 8 shows the types of vibration modes predicted
by FEA, considering the design domain of Figure 6,

Table 1. Material properties (Kino, 2000).

Properties PZT-5A PZT-2 PZT-5H Epoxy polymer

Dielectric properties (F/m) "0 8.85�10�12 8.85�10�12 8.85�10�12 8.85�10�12

"S11 916�"0 504�"0 1700�"0 3.6�"0
"S33 830�"0 260�"0 1470�"0 3.6�"0

Piezoelectric properties (C/m2) e31 �5.4 �109 �6.5 0.0
e33 15.8 9.0 23.30 0.0
e15 12.3 9.8 17.0 0.0

Elastic properties (N/m2) CE
11 12.1�1010 13.5�1010 12.6�1010 9.34�109

CE
12 7.54�1010 7.54�1010 7.59�1010 9.34�109

CE
13 7.52�1010 7.52�1010 8.41�1010 9.34�109

CE
33 11.1�1010 11.3�1010 11.7�1010 9.34�109

CE
44 2.11�1010 2.11�1010 2.30�1010 9.34�109

CE
66 2.28�1010 2.28�1010 2.50�1010 9.34�109

Density (kg/m3) 7500 7500 7500 1340
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Figure 7. Convergence history of the FE mesh for piston-like mode.
The design domain of Figure 6 is discretized with (400, 900, 1200,
1500, 2400, 3500, 5600) FEs.
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Figure 6. Design domain for optimal FGPT. The length is 20mm and
the thickness is 5mm.
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and the material properties of Table 1 (PZT-5A proper-
ties). Also, Figure 8 shows for each mode the res-
pective resonance frequency and the order number
considering both elastic and piezoelectric modes (in
parentheses).
From Figure 8 two vibrational modes can be identi-

fied, according to the classification by Guo and Cawley
(1992): the thickness shear modes (TS modes) and thick-
ness extensional modes (TE modes). The radial modes
(R modes) and edge modes (E modes) are not present as
the used boundary conditions (Figure 6) remove them.
With TS modes the axial mean value (vertical displace-
ment) is zero and with TE modes the axial mean value
is non-zero; hence, usually TE modes are the most
interesting and important modes for piezoelectric
applications. It is observed that the piezoelectric
mode 5 (or mode 23, including elastic and piezo-
electric modes) is similar to piston-like mode of 1D

piezoelectric modes. In addition, mode number 5 (23)
has the highest PMC, see Figure 9(a). This PMC quan-
tifies the excitation strength of a specific mode; in other
words, mode number 5 (23) is the strongest mode excited
by any applied voltage.

Finally, Figure 9(b) shows the corresponding mechan-
ical frequency response function (FRF), with a resolu-
tion of 0.5 kHz, in which the response is the axial
mechanical displacement at the central point on the
top surface of the piezoceramic when it is excited with
an input voltage equal to 100V. Notice that spikes
appear at the resonance frequency, which confirms the
frequency values per mode shown in Figure 8. All the 12
piezoelectric modes shown in Figure 8 are present in
Figure 9(b), although some of them are too weak to
be distinguished. Moreover, in the present article, dis-
placement rather than electrical impedance is used to
illustrate the FRF. This has been done because the

11(46) – 580.5 kHz 12(50) – 618.2 kHz

1(5)–151.6 kHz 2(11)–259.2 kHz

3(15)–327.7 kHz 4(19)–347.5 kHz

5(23)–396.6 kHz 6(25)–400.1 kHz

7(27)–432.0 kHz 8(31)–476.8 kHz

9(36)–514.0 kHz 10(40)–541.0 kHz

11(46) – 580.5 kHz 12(50) – 618.2 kHz

Figure 8. Vibrational mode types predicted by FEA (PZT-5A). The notation # (#) � # kHz means: first number, mode number considering only
piezoelectric modes; second number (in parentheses), mode number considering all modes (elastic and piezoelectric); third number, reso-
nance frequency (kHz).
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resonance peaks are clearer in the displacement plots
than in the impedance plots.

Eigenvalue Maximization of User-defined Mode Shape

In this section, an FGPT with maximized selective
eigenvalues is designed; in other words, the objective
function F1 is maximized. The material type 2 is consid-
ered as a non-piezoelectric material; thus, an FGPT type
piezoelectric/non-piezoelectric is designed. An epoxy
polymer is used as material type 2, with properties
given by Table 1. In this work, the materials are
chosen for demonstrating the capability of FGM con-
cept, together with TOM, to modify the dynamics of
piezoelectric transducers, and it may not represent the
actual material distribution within an actual FGPT as it
will be subjected to other fabrication constraints. A
mesh discretization of 50� 30 finite elements is utilized.
Other parameters adopted in optimization are shown
in Table 2. The target eigenmode is defined as the

piezoelectric mode number 5 (or mode number 23 con-
sidering elastic modes), which vibrates at piston-like
mode, as shown in Figure 8 for the PZT-5A.
Moreover, gradation along thickness is assumed.

Figure 10 shows the convergence history curves for
eigenvalue, mode position during the optimization
process, and MAC value, considering the projection
technique. The curves of multi-objective function
and eigenvalue convergence are the same curve
(Figure 10(a)), since m is equal to 1 in Equation (13).
An increase of 112% is achieved, as FGM concept
allows increasing the initial eigenvalue from
6.20� 1012Hz2 (corresponding to PZT-5A material) to
13.16� 1012Hz2 (corresponding to FGPT). However,
it is observed in Figure 10 that their orders during the
optimization process, which results in a non-smooth
curve. This is evident in Figure 10(b), where it is
noticed that the initial mode (mode number 23 including
elastic modes) moves to mode number 29 at iteration 10,
then it moves to mode number 12 at iteration 12, then
to mode number 34 at iteration 14, and finally, it stabi-
lizes at mode number 35. To turn the objective function
into a smooth curve, it is necessary to use an m value
different from 1 in Equation (13); maximizing a mean-
eigenvalue (Ma et al., 1995), which probably contains
the contribution of all modes. However, this approach
is not useful due to high computational cost when a
high order mode is optimized, as in this example, where
the initial mode number 23 is maximized.

On the other hand, Figure 10(c) shows that MAC
value change from 1 to 0.41; however, this value (0.41)
represents a good correlation between initial user-
defined eigenmode and achieved eigenmode. This fact
is corroborated in Figure 11, where it is observed that
the final mode shape (mode 35) is very close to the initial
mode shape (mode 23), compare Figure 11(a) and
Figure 11(b), respectively. Accordingly, the final topol-
ogy is a thickness extensional mode, which generates a
mean axial displacement higher than zero on the top and
bottom surfaces. In addition, the final mode shape
vibrates like piston mode. Also, Figure 11(c) exhibits
the final material distribution function. This function
depicts an FGPT with material PZT-5A in the middle
and epoxy polymer-rich region on the top and bottom
surfaces. In this example, the projection technique
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Figure 9. Piezoelectric transducer (PZT-5A): (a) PMC and (b) axial
mechanical FRF at the central point of the top surface (Figure 6).

Table 2. Parameters used in TOM.

Data Value

Number of smallest eigenvalues to be
computed in FE analysis

60

Volume constraint of PZT-5A material 80%
Initial guess for design variables 1, which is

equivalent to material
type 1 (PZT-5A)
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presents a smoother gradation function than the non-
projection related curve, see Figure 11(c).
Moreover, Figure 12 shows the axial mechanical FRF

for the FGPT of Figure 11(b). It shows that the final
eigenvalue corresponds to a piezoelectric mode with res-
onance frequency equal to 577.3 kHz. Hence, by using
the technique here presented, a piezoelectric transducer
with a resonance frequency at piston-like mode,
increased by 46%, is obtained, in relation to the initial
resonance frequency of the PZT-5A transducer
(396.6 kHz).
An interesting problem consists of maximizing the

first resonance frequency (!0r ) of an FGPT, aiming to
reduce the time response tresp (tresp ¼ 1=!0r ); specifically,
in quasi-static applications (Silva et al., 2000). In
this example, the material types 1 and 2 are
piezoelectric ceramic PZT-5A and PZT-2, respectively
(see Table 1), which represent an FGPT type piezoelec-
tric/piezoelectric. A mesh of 50� 30 GFEs is used
and the first five eigenmodes are considered into the
multi-objective function, considering m=5 in
Equation (13). All five weights are assumed equal to 1.
Gradation along thickness direction is considered.
Other important data for topology implementation are
shown in Table 2.
The multi-objective convergence history, the final

material distribution, and the axial mechanical FRF
are shown in Figure 13. The projection technique leads
to a smoother material distribution and quicker conver-
gence than the non-projection case. When the projection
technique is not used, the optimization algorithm tends
to obtain a material gradation with high property gra-
dients, almost close to a 0�1 design. The optimized gra-
dation function represents an FGPT with PZT-2-rich
region on the top and bottom surfaces, and also in
the middle; while PZT-5A-rich region appears
between middle-top region and middle-bottom region.

Figure 13(c) confirms the obtained result. The first res-
onance frequency is incremented from 151.6 to 270 kHz,
which represents a frequency increment of 78% in rela-
tion to initial first resonance frequency obtained with
PZT-5A material. This first resonance frequency of the
topology optimized FGPT is higher even than the
second resonance frequency of the initial PZT-5A trans-
ducer (259.2 kHz).

FGPT Design with Specified Resonance Frequencies

In this section, the objective function F2 is maximized.
The utilized design domain is shown in Figure 6, and it is
discretized by using 50� 30 finite elements. The material
type 1 is represented for a PZT-5A piezoelectric ceramic,
and the material type 2 is a non-piezoelectric material
(epoxy resin), see Table 1. Material gradation along the
thickness direction is assumed.

In this example, it is desired that the FGPT oscillates
at piston-like mode (Figure 11(a)) with a prescribed
resonance eigenvalue equal to l01 =11.20� 1012Hz2

(or resonance frequency equal to 532.63Hz). Figure 14
shows the convergence curves for the objective function,
piston-like mode eigenvalue, and the desirable eigen-
mode position during the optimization process. It is
observed that the objective function is minimized
(Figure 14(a)); in other words, at each optimization
step, the difference between the current and desirable
eigenvalue is diminished. Also, the desirable eigenvalue
is achieved; specifically, the reached eigenvalue is equal
to 11.028� 1012Hz2 (Figure 14(b)), which differ from
the desirable eigenvalue in less than 2%. In addition,
the initial eigenvalue of the piston-like mode
(6.209� 1012Hz2) is increased by 78%. The piston-like
mode switches its order vibration number during the
optimization process (Figure 14(c)), which results in a
converging non-smooth objective function.
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Figure 12. Axial mechanical FRF at the central point of the top surface for the FGPT of Figure 11(b).
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On the other hand, Figure 15 shows a good correla-
tion between initial user-defined eigenmode (piston-like
mode shape, Figure 11(a)) and achieved eigenmode
(Figure 15(a)); accordingly, the final mode shape is a
thickness extensional mode. Also, Figure 15(b) exhibits
the final material distribution function with and without
projection technique. This solution depicts an FGPT
with high piezoelectric properties in the middle (close
to PZT-5A material) and non-piezoelectric properties
on the top and bottom surfaces (close to polymer mate-
rial). Again, the projection technique presents a
smoother gradation function with relation to the non-
projection curve.
Figure 16 shows the axial mechanical FRF for the

topology optimized FGPT of Figure 15. The final eigen-
value of the piston-like mode corresponds to a piezo-
electric mode with resonance frequency equal to
528.52 kHz, which is equivalent to achieved eigenvalue
(11.028� 1012Hz2). Thus, the difference between desir-
able (532.63 kHz) and achieved (528.52 kHz) resonance
frequencies is less than 1%.

PMC Maximization of User-defined Mode Shapes

Here, the PMC of a user-defined vibration mode
shape is maximized; by maximizing the objective func-
tion F3 (Equation (15)). Figure 6 shows the design
domain utilized to illustrate the method. A mesh of
50� 30 finite elements is used, which represent an
FGPT graded along thickness by using 31 layers.
Material type 1 represents a PZT-5A ceramic and mate-
rial type 2 represents a PZT-5H ceramic (Table 1). The
reference thickness extensional mode (target mode) to be
tracked along the iterative optimization process is shown
in Figure 11(a) (deformed and non-deformed structure);
in other words, the PMC of the piston-like mode (mode
number 23) of Figure 8 should be maximized.

Figure 17 shows the final material distribution law (to
maximize the PMC when the FGPT vibrates in the
thickness extensional mode (piston-like mode)) and the
vibration mode shapes when several rmin in Equation
(21) are used. Specifically, Figure 17 depicts the grada-
tion functions when non-projection technique and
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projection technique with rmin equal to 1.1; 1.8; 2.5 are
utilized. When rmin is incremented, smoother gradation
functions are obtained because the sub-domain Si is
incremented. On the other hand, Figure 17 shows that,
in all simulated cases, the obtained mode shape is highly
correlated with the initial mode shape (Figure 11(a)),
and the final material distribution of the FGPT

represents a piezoelectric transducer with PZT-5A prop-
erties in the middle, but with PZT-5H-rich regions on
the top and bottom surfaces. The result shows the
advantage of using the FGM concept and TOM to
design piezoelectric transducers with maximized PMC.
Particularly, when an rmin equal to 1.8 is used, the mate-
rial distribution increases the desirable PMC by 65%,
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i.e. 2.299� 104 to 3.794� 104 (Figure 18(a)). In other
words, the strength of the piston-like mode is increased
by 65% when a voltage is applied across the electrodes
of the FGPT in relation to initial non-FGPT (with only
PZT-5A properties). Figure 18(b) confirms that result
and shows the PMC of the first fifty modes (including

elastic and piezoelectric modes) of the optimized FGPT.
The PMC of the desirable piston-like mode (mode
number 24) is the highest; thus, the optimized PMC is
880% and 441% higher than modes number 19 and 27
(adjacent modes), respectively. This dynamical behavior
represents a uni-modal FGPT.
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SUMMARY AND CONCLUSIONS

This article contributes to the optimal design of
piezoelectric transducers based on multifunctional
and smoothly graded hybrid material systems. The
FGPT design is achieved by means of topology
optimization, aiming to control/modify its dynamic
performance. The FGPTs are designed using a contin-
uum topology optimization algorithm based on: (i) GFE
formulation to account for the material gradation
inside each finite element; (ii) the CAMD approach
to model a continuous design variable change; (iii) expli-
cit gradient control via the projection technique; (iv)
layer-like optimization approach for manufacturing
requirements, where the design variables are considered
equal at each interfacial layer, according to the
gradation direction; in examples, along thickness direc-
tion; and (v) the MAC to track a user-defined
mode shape. The TOM leads to the FGPT optimal gra-
dation properties in terms of specific objective functions.
These objective functions are: (i) to maximize eigenva-
lues of user-defined eigenmodes; (ii) to achieve desirable
resonance frequencies and desirable vibration mode
shapes; and (iii) to maximize PMC of specified
eigenmodes.

The following conclusions can be drawn from this
study:

1. The topology optimization method can be success-
fully applied as a systematic tool for designing
FGPT; specifically, TOM can be applied to find opti-
mal gradation function aiming at maximizing a pro-
posed optimization goal.

2. The present technique is applicable to the design of
both piezoelectric/piezoelectric and piezoelectric/non-
piezoelectric FGPTs; in other words, TOM allows the
simultaneous distribution of either two piezoelectric
materials or a non-piezoelectric and a piezoelectric
material in the design domain.

3. The projection technique helps to find smooth grada-
tion function, which is desired for manufacturing pur-
poses. In addition, themanufacturing of FGPT becomes
possible by implementing the layer-like optimization;
for instance, piezoelectric graded ceramics composed
of green layers can be sintering by using the spark
plasma sintering technique (Paulino et al., 2003).

4. The MAC arises as an adequate technique to follow
desired mode shapes in FGPT. This is important for
designing FGPT for wave generation applications;
for instance, tracking piston-like mode as this mode
is generally associated with high PMC.

5. The numerical examples demonstrate that TOM and
FGM concept can increase the user-defined mode
eigenvalue. Thus, FGPT with optimal graded proper-
ties along thickness direction may exhibit higher res-
onance frequency. In addition, FGPTs that vibrate at
user-defined frequencies and user-defined mode
shapes can be designed: high correlation is obtained
between user-defined and final mode shape, and a
small difference (less than 1% in the present study)
is achieved at user-specified resonance frequency.
Finally, a high increment (around 65% in the present
study) is achieved when the PMC (electro-mechanical
coupling) of the piston-like mode is maximized.

For future work, other objective functions can be con-
sidered on the optimization problem; such as designing
narrowband and/or broadband FGPT. In addition, gra-
dation along other directions can be considered besides
thickness direction; for instance, gradation along longi-
tudinal direction. Finally, the concept of hybrid materi-
als should be further explored.
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APPENDIX: LIST OF SYMBOLS

Latin Symbols

x, y¼Cartesian coordinates
r¼ subscript indicating resonance condition
a¼ subscript indicating antiresonance condition
k¼ subscript indicating the number of the vibra-

tion mode
e¼ indicates finite element
o¼ subscript denoting the electrical potential d.o.f

of the non-electrode nodes
p¼ subscript denoting the electrical potential d.o.f

of the ungrounded electrode node
g¼ subscript denoting the electrical potential d.o.f

of the grounded electrode nodes
wk¼weight coefficients for mode k
m¼ number of modes considered in the multi-

objective function
n¼ user-defined power at objective functions
nd¼ number of nodes per finite element

rmin¼ user-defined radius in the projection technique

rij¼ radius between nodes i and j
A¼ piezoelectric modal constant
E¼material properties for material type 1 or 2

EH
¼ homogenized material properties

F¼ represents objective function
N¼ shape function per node

Ndes¼ number of nodes of discretized domain
Ntype1¼ number of nodes with material type 1

Si¼ sub-domain corresponds to a circle with its
center located at the node i

T¼ indicates transpose
Vi¼material volume at node i
V*¼ constraint for design variables related to mate-

rial type 1
W¼weight function in the projection technique
T¼ second-order stress tensor
D¼ electric displacement vector
C
E
¼ elasticity property tensor, (elastic stiffness at
constant electric field)

e¼ piezoelectric property tensor
r¼ unit vector in the Cartesian coordinate system
u¼ displacement vector
U¼ nodal displacement vector
F¼ nodal mechanical force vector
Q¼ nodal electric charge vector

Muu¼mass matrix
Kuu¼ ‘stiffness’ elastic matrix
Kuu¼ ‘stiffness’ piezoelectric matrix
Kuu¼ ‘stiffness’ dielectric matrix
Nu¼ shape functions for the displacements
Bu¼ strain�displacement matrix
Bu¼ voltage-gradient matrix
WF¼ equivalent nodal force vector
Ip¼ vector of the ungrounded electrode nodes

Greek Symbols

l¼ eigenvalue
l0¼ user-specified eigenvalue
�¼ density of material
!¼ circular natural frequency

�
TOM
¼ design variable or pseudo-density.

�e
TOM
¼ pseudo-density at finite element e

�p
TOM
¼ nodal pseudo-density

�p
TOMj
¼ pseudo-density located at node j

�n
TOM
¼ nodal design variable

�n
TOMi
¼ design variable located at node i

�¼ bi-dimensional design domain
�s¼ design domain with material type 1
u¼ nodal electric potential vector
eS¼ dielectric property tensor, (dielectric suscept-

ibility at constant strain)
)¼ eigemode vector
)u¼mechanical component of eigenmode vector
)’¼ electrical component of eigenmode vector
)ref¼ user-defined or target mode shape
)c¼ current mode shape at each iteration of the

optimization process
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